169 research outputs found

    Reliability and Condition-Based Maintenance Analysis of Deteriorating Systems Subject to Generalized Mixed Shock Model

    Get PDF
    For successful commercialization of evolving devices (e.g., micro-electro-mechanical systems, and biomedical devices), there must be new research focusing on reliability models and analysis tools that can assist manufacturing and maintenance of these devices. These advanced systems may experience multiple failure processes that compete against each other. Two major failure processes are identified to be deteriorating or degradation processes (e.g., wear, fatigue, erosion, corrosion) and random shocks. When these failure processes are dependent, it is a challenging problem to predict reliability of complex systems. This research aims to develop reliability models by exploring new aspects of dependency between competing risks of degradation-based and shock-based failure considering a generalized mixed shock model, and to develop new and effective condition-based maintenance policies based on the developed reliability models. In this research, different aspects of dependency are explored to accurately estimate the reliability of complex systems. When the degradation rate is accelerated as a result of withstanding a particular shock pattern, we develop reliability models with a changing degradation rate for four different shock patterns. When the hard failure threshold reduces due to changes in degradation, we investigate reliability models considering the dependence of the hard failure threshold on the degradation level for two different scenarios. More generally, when the degradation rate and the hard failure threshold can simultaneously transition multiple times, we propose a rich reliability model for a new generalized mixed shock model that is a combination of extreme shock model, δ-shock model and run shock model. This general assumption reflects complex behaviors associated with modern systems and structures that experience multiple sources of external shocks. Based on the developed reliability models, we introduce new condition-based maintenance strategies by including various maintenance actions (e.g., corrective replacement, preventive replacement, and imperfect repair) to minimize the expected long-run average maintenance cost rate. The decisions for maintenance actions are made based on the health condition of systems that can be observed through periodic inspection. The reliability and maintenance models developed in this research can provide timely and effective tools for decision-makers in manufacturing to economically optimize operational decisions for improving reliability, quality and productivity.Industrial Engineering, Department o

    Optimal maintenance of multi-component systems: a review

    Get PDF
    In this article we give an overview of the literature on multi-component maintenance optimization. We focus on work appearing since the 1991 survey "A survey of maintenance models for multi-unit systems" by Cho and Parlar. This paper builds forth on the review article by Dekker et al. (1996), which focusses on economic dependence, and the survey of maintenance policies by Wang (2002), in which some group maintenance and some opportunistic maintenance policies are considered. Our classification scheme is primarily based on the dependence between components (stochastic, structural or economic). Next, we also classify the papers on the basis of the planning aspect (short-term vs long-term), the grouping of maintenance activities (either grouping preventive or corrective maintenance, or opportunistic grouping) and the optimization approach used (heuristic, policy classes or exact algorithms). Finally, we pay attention to the applications of the models.literature review;economic dependence;failure interaction;maintenance policies;grouping maintenance;multi-component systems;opportunistic maintenance;maintencance optimization;structural dependence

    A review on maintenance optimization

    Get PDF
    To this day, continuous developments of technical systems and increasing reliance on equipment have resulted in a growing importance of effective maintenance activities. During the last couple of decades, a substantial amount of research has been carried out on this topic. In this study we review more than two hundred papers on maintenance modeling and optimization that have appeared in the period 2001 to 2018. We begin by describing terms commonly used in the modeling process. Then, in our classification, we first distinguish single-unit and multi-unit systems. Further sub-classification follows, based on the state space of the deterioration process modeled. Other features that we discuss in this review are discrete and continuous condition monitoring, inspection, replacement, repair, and the various types of dependencies that may exist between units within systems. We end with the main developments during the review period and with potential future research directions

    Optimal maintenance of multi-component systems: a review

    Get PDF
    In this article we give an overview of the literature on multi-component maintenance optimization. We focus on work appearing since the 1991 survey "A survey of maintenance models for multi-unit systems" by Cho and Parlar. This paper builds forth on the review article by Dekker et al. (1996), which focusses on economic dependence, and the survey of maintenance policies by Wang (2002), in which some group maintenance and some opportunistic maintenance policies are considered. Our classification scheme is primarily based on the dependence between components (stochastic, structural or economic). Next, we also classify the papers on the basis of the planning aspect (short-term vs long-term), the grouping of maintenance activities (either grouping preventive or corrective maintenance, or opportunistic grouping) and the optimization approach used (heuristic, policy classes or exact algorithms). Finally, we pay attention to the applications of the models

    Modèles de fiabilité et de maintenance prédictive de systèmes sujets à des défaillances interactives

    Get PDF
    RÉSUMÉ: L’interaction des défaillances est une thématique qui prend une ampleur considérable dans le monde de la recherche industrielle moderne. Les systèmes sont de plus en plus complexes et leurs fonctionnements et défaillances sur le long terme sont sujets à diverses sources d’influence internes et externes. Les actifs physiques en particulier sont soumis à l’impact du temps, de l’environnement et du rythme de leur utilisation. Connaître ces sources d’influence n’est pas suffisant car il importe de comprendre quelles sont les relations qui les lient afin de planifier de façon efficiente la maintenance des actifs. En effet, cette dernière peut s’avérer très couteuse et sa mauvaise planification peut conduire à l’utilisation de systèmes dangereux pouvant engendrer des évènements catastrophiques. La fiabilité est un vaste domaine. Elle propose une large panoplie de modèles mathématiques qui permettent de prédire le fonctionnement et les défaillances des actifs physiques. Ceci dit, les concepts des modèles les plus appliqués à ce jour se basent sur des hypothèses parfois simplistes et occultent bien souvent certaines relations de dépendances qui régissent un système. L’interaction des défaillances dans le cadre des dépendances stochastiques est abordée par de nombreux travaux de recherches. Par contre, la compréhension et l’implémentation de ces travaux demeurent un défi pour les spécialistes en maintenance qui ont besoin de modèles réalistes pour une maintenance préventive efficace. Cette thèse traite de la fiabilité et la maintenance prédictive des actifs physiques en exploitation et sujets à divers modes de défaillance interactifs. Elle établit avant tout l’importance d’accorder une attention particulière à l’interaction des défaillances dans le domaine de la fiabilité et de la maintenance. Dans une revue de littérature, les concepts et les méthodes de modélisation et d’optimisation en fiabilité et en maintenance préventive sont présentés. Les divers types de dépendances dans un système sont discutés. Un cas d’application, à savoir celui des ponceaux en béton, est proposé. Les travaux entrepris par la suite fournissent avant tout un cadre pour la modélisation de la fiabilité incluant l’interaction des défaillances. A cette fin, une étude comparative des modèles existants les plus pertinents est effectuée de points de vue conceptuel, méthodologique et applicatif. Le cadre étant défini, un modèle basé sur les chocs extrêmes et les chaînes de Markov est construit afin de valoriser le caractère séquentiel des défaillances interactives. Cette proposition est améliorée pour prendre en compte la dégradation du système. Une stratégie de maintenance prédictive est conséquemment développée. Toutes ces approches sont appliquées à un ensemble de ponceaux en béton observés sur plusieurs années. Cela permet d’expliquer les dépendances entre l’occurrence de déplacements et l’occurrence de fissures dans une structure. Tous ces concepts et résultats sont finalement discutés afin de déterminer des perspectives réalistes pour une étude approfondie de l’interactivité d’un point de vue fiabiliste et dans un but stratégique pour la planification de la maintenance.----------ABSTRACT: Failure interaction is a subject gaining growing attention in the world of modern industrial research. Systems are becoming increasingly complex. Their life cycles are subject to various internal and external influences. Physical assets in particular are impacted by time, environment and usage. Knowing these sources of influence is not enough. Indeed, it is important to understand the relationships between them in order to plan effectively for the maintenance of assets. Maintenance can be quite expensive. Thus, poor planning can lead to dangerous systems that could cause catastrophic events. Reliability engineering offers a wide range of mathematical models to predict failures. That being said, the concepts of the most widely applied models in the industry are often based on simplistic assumptions and tend to overlook certain dependencies within a system. Failure interaction in the context of stochastic dependencies is largely addressed in the literature. However, understanding and implementing the proposed approaches remains a challenge for maintenance specialists that need realistic models for efficient maintenance planning. This thesis focuses on the reliability and predictive maintenance of physical assets subject to interactive failure modes. First of all, it emphasizes the importance of paying particular attention to failure interaction. In a literature review, the concepts and methods for modeling and optimizing reliability and preventive maintenance are presented. The diverse dependencies in a system are discussed. A case study is proposed, namely concrete culverts. Subsequently, the research provides a framework for modeling reliability that integrates the interaction of failures. To this end, the most relevant models in the literature are comparatively studied from a conceptual, methodological and applicative point of view. In the defined framework, a model based on extreme shocks and Markov processes is built in order to represent the sequential nature of interactive failures. This approach is extended to take into account the natural degradation of a system. A predictive maintenance strategy is consequently developed. All these models are applied to a set of concrete culverts observed over several years. The dependences between the occurrence of displacements and the occurrence of cracks in a structure are explained through these approaches. Finally, these concepts and results are discussed in order to determine realistic perspectives for in-depth studies of the impact of failure interaction on reliability and for strategic maintenance plannin

    Optimal Periodic Inspection of a Stochastically Degrading System

    Get PDF
    This thesis develops and analyzes a procedure to determine the optimal inspection interval that maximizes the limiting average availability of a stochastically degrading component operating in a randomly evolving environment. The component is inspected periodically, and if the total observed cumulative degradation exceeds a fixed threshold value, the component is instantly replaced with a new, statistically identical component. Degradation is due to a combination of continuous wear caused by the component\u27s random operating environment, as well as damage due to randomly occurring shocks of random magnitude. In order to compute an optimal inspection interval and corresponding limiting average availability, a nonlinear program is formulated and solved using a direct search algorithm in conjunction with numerical Laplace transform inversion. Techniques are developed to significantly decrease the time required to compute the approximate optimal solutions. The mathematical programming formulation and solution techniques are illustrated through a series of increasingly complex example problems

    Modelo de apoio à decisão para a manutenção condicionada de equipamentos produtivos

    Get PDF
    Doctoral Thesis for PhD degree in Industrial and Systems EngineeringIntroduction: This thesis describes a methodology to combine Bayesian control chart and CBM (Condition-Based Maintenance) for developing a new integrated model. In maintenance management, it is a challenging task for decision-maker to conduct an appropriate and accurate decision. Proper and well-performed CBM models are beneficial for maintenance decision making. The integration of Bayesian control chart and CBM is considered as an intelligent model and a suitable strategy for forecasting items failures as well as allow providing an effectiveness maintenance cost. CBM models provides lower inventory costs for spare parts, reduces unplanned outage, and minimize the risk of catastrophic failure, avoiding high penalties associated with losses of production or delays, increasing availability. However, CBM models need new aspects and the integration of new type of information in maintenance modeling that can improve the results. Objective: The thesis aims to develop a new methodology based on Bayesian control chart for predicting failures of item incorporating simultaneously two types of data: key quality control measurement and equipment condition parameters. In other words, the project research questions are directed to give the lower maintenance costs for real process control. Method: The mathematical approach carried out in this study for developing an optimal Condition Based Maintenance policy included the Weibull analysis for verifying the Markov property, Delay time concept used for deterioration modeling and PSO and Monte Carlo simulation. These models are used for finding the upper control limit and the interval monitoring that minimizes the (maintenance) cost function. Result: The main contribution of this thesis is that the proposed model performs better than previous models in which the hypothesis of using simultaneously data about condition equipment parameters and quality control measurements improve the effectiveness of integrated model Bayesian control chart for Condition Based Maintenance.Introdução: Esta tese descreve uma metodologia para combinar Bayesian control chart e CBM (Condition- Based Maintenance) para desenvolver um novo modelo integrado. Na gestão da manutenção, é importante que o decisor possa tomar decisões apropriadas e corretas. Modelos CBM bem concebidos serão muito benéficos nas tomadas de decisão sobre manutenção. A integração dos gráficos de controlo Bayesian e CBM é considerada um modelo inteligente e uma estratégica adequada para prever as falhas de componentes bem como produzir um controlo de custos de manutenção. Os modelos CBM conseguem definir custos de inventário mais baixos para as partes de substituição, reduzem interrupções não planeadas e minimizam o risco de falhas catastróficas, evitando elevadas penalizações associadas a perdas de produção ou atrasos, aumentando a disponibilidade. Contudo, os modelos CBM precisam de alterações e a integração de novos tipos de informação na modelação de manutenção que permitam melhorar os resultados.Objetivos: Esta tese pretende desenvolver uma nova metodologia baseada Bayesian control chart para prever as falhas de partes, incorporando dois tipos de dados: medições-chave de controlo de qualidade e parâmetros de condição do equipamento. Por outras palavras, as questões de investigação são direcionadas para diminuir custos de manutenção no processo de controlo.Métodos: Os modelos matemáticos implementados neste estudo para desenvolver uma política ótima de CBM incluíram a análise de Weibull para verificação da propriedade de Markov, conceito de atraso de tempo para a modelação da deterioração, PSO e simulação de Monte Carlo. Estes modelos são usados para encontrar o limite superior de controlo e o intervalo de monotorização para minimizar a função de custos de manutenção.Resultados: A principal contribuição desta tese é que o modelo proposto melhora os resultados dos modelos anteriores, baseando-se na hipótese de que, usando simultaneamente dados dos parâmetros dos equipamentos e medições de controlo de qualidade. Assim obtém-se uma melhoria a eficácia do modelo integrado de Bayesian control chart para a manutenção condicionada
    corecore