6 research outputs found

    Value Chain: From iDMU to Shopfloor Documentation of Aeronautical Assemblies

    Get PDF
    Competition in the aerospace manufacturing companies has led them to continuously improve the efficiency of their processes from the conceptual phase to the start of production and during operation phase, providing services to clients. PLM (Product Lifecycle Management) is an end-to-end business solution which aims to provide an environment of information about the product and related processes available to the whole enterprise throughout the product鈥檚 lifecycle. Airbus designs and industrializes aircrafts using Concurrent Engineering methods since decades. The introduction of new PLM methods, procedures and tools, and the need to improve processes efficiency and reduce time-to-market, led Airbus to pursue the Collaborative Engineering method. Processes efficiency is also impacted by the variety of systems existing within Airbus. Interoperability rises as a solution to eliminate inefficiencies due to information exchange and transformations and it also provides a way to discover and reuse existing information. The ARIADNE project (Value chain: from iDMU to shopfloor documentation of aeronautical assemblies) was launched to support the industrialization process of an aerostructure by implementing the industrial Digital Mock-Up (iDMU) concept in a Collaborative Engineering framework. Interoperability becomes an important research workpackage in ARIADNE to exploit and reuse the information contained in the iDMU and to create the shop floor documentation. This paper presents the context, the conceptual approach, the methodology adopted and preliminary results of the project

    Implementation of a generic concurrent engineering environment framework for boatbuilding

    No full text
    Boatbuilding is a growth market with global competition and tight profit margins. Concurrent engineering is not presently prevalent within the boatbuilding industry and yet this is a technique that has found much success in other industries. A methodology has, therefore, been developed to aid design in the leisure boatbuilding industry. This environment uses collaborative engineering and automated communication to aid the passing of direct communication between all members of the design team. This paper determines the characteristics of importance within boatbuilding and relates these to a framework concurrent engineering environment aimed specifically at this industry. The current work focuses on the structural and production subsystems in an attempt to improve design for production. The use of concurrent engineering tools has been highlighted with an example

    How the aviation industry can help us create beautiful buildings that add value

    Get PDF
    Thesis (S.M. in Architecture Studies)--Massachusetts Institute of Technology, Dept. of Architecture; and, Thesis (S.M. in Real Estate Development)--Massachusetts Institute of Technology, Program in Real Estate Development in Conjunction with the Center for Real Estate, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (pages 140-151).The term "mass-customization" in the Architecture, Engineering and Construction (AEC) industry refers to architectural elements that have similar purpose but are completely different from each other. Architects use mass-customized elements to give diverse design to different parts of a building. Mass-customization derives from three developments in computational technology: Building Information Modeling (BIM), the implications of programing in graphical representation, and the progress of computer-controlled manufacturing machines. However, the promise held by these technologies has not been fulfilled. While mass-customization is implemented in projects with large budgets, they are rarely employed in mainstream real estate. This thesis examines two multi-family projects: The Project on 8 Spruce Street and the Porter House, both located in Manhattan, to outline the challenges of executing commercial real estate projects that employ mass-customized envelope systems and makes suggestions as to how to overcome them. The thesis then examines the aircraft manufacturing industry, which is proficient in the use of Building Information Modeling and has advanced logistical expertise in transporting large-scale elements. The thesis examines its use of design and assembly processes such as Concurrent Engineering and Lean Manufacturing, and suggests that these techniques can be incorporated into the project delivery methods of the AEC industry. The thesis focuses on the production of fuselage and metallic wing skin panels, distinguishing between fabrication technologies that are used for the manufacturing of single-curved and double-curved panels. The thesis proposes ways in which these processes can be adapted to the standards of the Architecture, Engineering and Construction industry, and suggests that such adaptation could reduce fabrication costs. The thesis concludes by outlining the incentives for the aircraft industry to transition part of its operation into the fabrication of mass-customized envelopes for commercial real estate, pointing to the potential markets for such systems in the growing economies of China, Latin America and India. This thesis attempts to demonstrate the potential of utilizing features of the aircraft manufacturing industry so as to improve cooperation between all parties involved in the process of commercial real estate development and to create more beautiful and valuable buildings.by Shaul Goldklang.S.M.in Real Estate DevelopmentS.M.in Architecture Studie

    Knowledge-based Engineering in Product Development Processes - Process, IT and Knowledge Management perspectives

    Get PDF
    Product development as a field of practice and research has significantly changed due to the general trends of globalization changing the enterprise landscapes in which products are realized. The access to partners and suppliers with high technological specialization has also led to an increased specialization of original equipment manufacturers (OEMs). Furthermore, the products are becoming increasingly complex with a high functional and technological content and many variants. Combined with shorter lifecycles which require reuse of technologies and solutions, this has resulted in an overall increased knowledge intensity which necessitates a more explicit approach towards knowledge and knowledge management in product development. In parallel, methods and IT tools for managing knowledge have been developed and are more accessible and usable today. One such approach is knowledge-based engineering (KBE), a term that was coined in the mid-1980s as a label for applications which automate the design of rule-driven geometries. In this thesis the term KBE embraces the capture and application of engineering knowledge to automate engineering tasks, regardless of domain of application, and the thesis aims at contributing to a wider utilization of KBE in product development (PD). The thesis focuses on two perspectives of KBE; as a process improvement IT method and as a knowledge management (KM) method. In the first perspective, the lack of explicit regard for the constraints of the product lifecycle management (PLM) architecture, which governs the interaction of processes and IT in PD, has been identified to negatively affect the utilization of KBE in PD processes. In the second perspective, KM theories and models can complement existing methods for identifying potential for KBE applications.Regarding the first perspective, it is concluded that explicit regard for the PLM architecture decreases the need to develop and maintain software code related to hard coded redundant data and functions in the KBE application. The concept of service oriented architecture (SOA) has been found to enable an the explicit regard for the PLM architecture.. Regarding the second perspective, it is concluded that potential for KBE applications is indicated by: 1.) application of certain types of knowledge in PD processes 2.) high maturity and formalization of the applied knowledge 3.) a codification strategy for KM and 4.) an agreement and transparency regarding how the knowledge is applied, captured and transferred. It is also concluded that the formulation of explicit KM strategies in PD should be guided by knowledge application and its relation to strategic objectives focusing on types of knowledge, their role in the PD process and the methods and tools for their application. These, in turn, affect the methods and tools deployed for knowledge capture in order for it to integrate with the processes of knowledge origin. Finally, roles and processes for knowledge transfer have to be transparent to assure the motivation of individuals to engage in the KM strategy

    Knowledge-based Engineering in Product Development Processes - Process, IT and Knowledge Management perspectives

    Get PDF
    Product development as a field of practice and research has significantly changed due to the general trends of globalization changing the enterprise landscapes in which products are realized. The access to partners and suppliers with high technological specialization has also led to an increased specialization of original equipment manufacturers (OEMs). Furthermore, the products are becoming increasingly complex with a high functional and technological content and many variants. Combined with shorter lifecycles which require reuse of technologies and solutions, this has resulted in an overall increased knowledge intensity which necessitates a more explicit approach towards knowledge and knowledge management in product development. In parallel, methods and IT tools for managing knowledge have been developed and are more accessible and usable today. One such approach is knowledge-based engineering (KBE), a term that was coined in the mid-1980s as a label for applications which automate the design of rule-driven geometries. In this thesis the term KBE embraces the capture and application of engineering knowledge to automate engineering tasks, regardless of domain of application, and the thesis aims at contributing to a wider utilization of KBE in product development (PD). The thesis focuses on two perspectives of KBE; as a process improvement IT method and as a knowledge management (KM) method. In the first perspective, the lack of explicit regard for the constraints of the product lifecycle management (PLM) architecture, which governs the interaction of processes and IT in PD, has been identified to negatively affect the utilization of KBE in PD processes. In the second perspective, KM theories and models can complement existing methods for identifying potential for KBE applications.Regarding the first perspective, it is concluded that explicit regard for the PLM architecture decreases the need to develop and maintain software code related to hard coded redundant data and functions in the KBE application. The concept of service oriented architecture (SOA) has been found to enable an the explicit regard for the PLM architecture.. Regarding the second perspective, it is concluded that potential for KBE applications is indicated by: 1.) application of certain types of knowledge in PD processes 2.) high maturity and formalization of the applied knowledge 3.) a codification strategy for KM and 4.) an agreement and transparency regarding how the knowledge is applied, captured and transferred. It is also concluded that the formulation of explicit KM strategies in PD should be guided by knowledge application and its relation to strategic objectives focusing on types of knowledge, their role in the PD process and the methods and tools for their application. These, in turn, affect the methods and tools deployed for knowledge capture in order for it to integrate with the processes of knowledge origin. Finally, roles and processes for knowledge transfer have to be transparent to assure the motivation of individuals to engage in the KM strategy

    Metodolog铆a de implantaci贸n de modelos de gesti贸n de la informaci贸n dentro de los sistemas de planificaci贸n de recursos empresariales. Aplicaci贸n en la peque帽a y mediana empresa

    Get PDF
    La Siguiente Generaci贸n de Sistemas de Fabricaci贸n (SGSF) trata de dar respuesta a los requerimientos de los nuevos modelos de empresas, en contextos de inteligencia, agilidad y adaptabilidad en un entono global y virtual. La Planificaci贸n de Recursos Empresariales (ERP) con soportes de gesti贸n del producto (PDM) y el ciclo de vida del producto (PLM) proporciona soluciones de gesti贸n empresarial sobre la base de un uso coherente de tecnolog铆as de la informaci贸n para la implantaci贸n en sistemas CIM (Computer-Integrated Manufacturing), con un alto grado de adaptabilidad a la estnictura organizativa deseada. En general, esta implementaci贸n se lleva desarrollando hace tiempo en grandes empresas, siendo menor (casi nula) su extensi贸n a PYMEs. La presente Tesis Doctoral, define y desarrolla una nueva metodolog铆a de implementaci贸n pan la generaci贸n autom谩tica de la informaci贸n en los procesos de negocio que se verifican en empresas con requerimientos adaptados a las necesidades de la SGSF, dentro de los sistemas de gesti贸n de los recursos empresariales (ERP), atendiendo a la influencia del factor humano. La validez del modelo te贸rico de la metodolog铆a mencionada se ha comprobado al implementarlo en una empresa del tipo PYME, del sector de Ingenier铆a. Para el establecimiento del Estado del Arte de este tema se ha dise帽ado y aplicado una metodolog铆a espec铆fica basada en el ciclo de mejora continua de Shewhart/Deming, aplicando las herramientas de b煤squeda y an谩lisis bibliogr谩fico disponibles en la red con acceso a las correspondientes bases de datos
    corecore