113,574 research outputs found

    Approaches to High-Level Programming and Prototyping of Concurrent Applications

    Get PDF
    Concurrent programming is conceptually harder to undertake and to understand than sequential programming, because a programmer has to manage the coexistence and coordination of multiple concurrent activities. To alleviate this task several high-level approaches to concurrent programming have been developed. For some high-level programming approaches, prototyping for facilitating early evaluation of new ideas is a central goal. Prototyping is used to explore the essential features of a proposed system through practical experimentation before its actual implementation to make the correct design choices early in the process of software development. Approaches to prototyping concurrent applications with very high-level programming systems intend to alleviate the development of parallel algorithms in quite different ways. Early experimentation with alternate design choices or problem decompositions for concurrent applications is suggested to make concurrent programming easier. This paper presents a survey of approaches to high-level programming and prototyping of concurrent applications to review the state of the art in this area. The surveyed approaches are classified with respect to the prototyping process

    Teaching Parallel Programming Using Java

    Full text link
    This paper presents an overview of the "Applied Parallel Computing" course taught to final year Software Engineering undergraduate students in Spring 2014 at NUST, Pakistan. The main objective of the course was to introduce practical parallel programming tools and techniques for shared and distributed memory concurrent systems. A unique aspect of the course was that Java was used as the principle programming language. The course was divided into three sections. The first section covered parallel programming techniques for shared memory systems that include multicore and Symmetric Multi-Processor (SMP) systems. In this section, Java threads was taught as a viable programming API for such systems. The second section was dedicated to parallel programming tools meant for distributed memory systems including clusters and network of computers. We used MPJ Express-a Java MPI library-for conducting programming assignments and lab work for this section. The third and the final section covered advanced topics including the MapReduce programming model using Hadoop and the General Purpose Computing on Graphics Processing Units (GPGPU).Comment: 8 Pages, 6 figures, MPJ Express, MPI Java, Teaching Parallel Programmin

    Persistent Memory Programming Abstractions in Context of Concurrent Applications

    Full text link
    The advent of non-volatile memory (NVM) technologies like PCM, STT, memristors and Fe-RAM is believed to enhance the system performance by getting rid of the traditional memory hierarchy by reducing the gap between memory and storage. This memory technology is considered to have the performance like that of DRAM and persistence like that of disks. Thus, it would also provide significant performance benefits for big data applications by allowing in-memory processing of large data with the lowest latency to persistence. Leveraging the performance benefits of this memory-centric computing technology through traditional memory programming is not trivial and the challenges aggravate for parallel/concurrent applications. To this end, several programming abstractions have been proposed like NVthreads, Mnemosyne and intel's NVML. However, deciding upon a programming abstraction which is easier to program and at the same time ensures the consistency and balances various software and architectural trade-offs is openly debatable and active area of research for NVM community. We study the NVthreads, Mnemosyne and NVML libraries by building a concurrent and persistent set and open addressed hash-table data structure application. In this process, we explore and report various tradeoffs and hidden costs involved in building concurrent applications for persistence in terms of achieving efficiency, consistency and ease of programming with these NVM programming abstractions. Eventually, we evaluate the performance of the set and hash-table data structure applications. We observe that NVML is easiest to program with but is least efficient and Mnemosyne is most performance friendly but involves significant programming efforts to build concurrent and persistent applications.Comment: Accepted in HiPC SRS 201

    Lock-free Concurrent Data Structures

    Full text link
    Concurrent data structures are the data sharing side of parallel programming. Data structures give the means to the program to store data, but also provide operations to the program to access and manipulate these data. These operations are implemented through algorithms that have to be efficient. In the sequential setting, data structures are crucially important for the performance of the respective computation. In the parallel programming setting, their importance becomes more crucial because of the increased use of data and resource sharing for utilizing parallelism. The first and main goal of this chapter is to provide a sufficient background and intuition to help the interested reader to navigate in the complex research area of lock-free data structures. The second goal is to offer the programmer familiarity to the subject that will allow her to use truly concurrent methods.Comment: To appear in "Programming Multi-core and Many-core Computing Systems", eds. S. Pllana and F. Xhafa, Wiley Series on Parallel and Distributed Computin

    Deterministic Consistency: A Programming Model for Shared Memory Parallelism

    Full text link
    The difficulty of developing reliable parallel software is generating interest in deterministic environments, where a given program and input can yield only one possible result. Languages or type systems can enforce determinism in new code, and runtime systems can impose synthetic schedules on legacy parallel code. To parallelize existing serial code, however, we would like a programming model that is naturally deterministic without language restrictions or artificial scheduling. We propose "deterministic consistency", a parallel programming model as easy to understand as the "parallel assignment" construct in sequential languages such as Perl and JavaScript, where concurrent threads always read their inputs before writing shared outputs. DC supports common data- and task-parallel synchronization abstractions such as fork/join and barriers, as well as non-hierarchical structures such as producer/consumer pipelines and futures. A preliminary prototype suggests that software-only implementations of DC can run applications written for popular parallel environments such as OpenMP with low (<10%) overhead for some applications.Comment: 7 pages, 3 figure
    corecore