
The World According To GARP

Gail E. Kaiser
Columbia University

Department of Computer Science
New York, NY 10027

Roy Campbell, Steven Goering, Susan Hinrichs,
Brenda Jackels, Joe Loyall, Simon M. Kaplan

University of TIl inois
Department of Computer Science

Urbana, IL 61801

June 1988
(revised Decernber 1988)

CUCS-351-88

Abstract

This technical repon consists of two papers describing the GARP concurrent programming
system. Garp: Graph Abscractions for Concurrenl Programming investigates construction of
dynamic process topologies in parallel processing languages. It proposes the use of a graph­
grammar based formalism to control the complexities arising 仕om 町ring to program such
dynamic networks. Garp: A Graphica/ Language for Concurrenc Programming describes the
GARP system, a programming environment that implements 由is graph-grammar approach , and
gives solutions to ex缸ηple problems in which the topologies of concurrent systems dynamically
change.

Prof. Kaiser is supponed in pan by grants from A T &T, IBM , Siemens and Sun , in p町t by the
Center of Advanced Technology and by the Center for Telecommunications Research ‘ and in
pan by a DEC Faculty Award. Prof. Kaplan is suppo口ed in part by a grant 仕om AT&T
Corporation.

Garp : Graph Abstractions for Concurrent Programming

Simon M. Kaplan.

U niversity of IllinoÍB

Department of Computer Science

Urbana, IL 61081

Gail E. Ka.isert

Columbia University

Department of Computer Science

New YI。此， NY 1∞27

Abltract: Several reøearch projecta are inv倒也igating parallel procesøing languages wbere dynamic pro­

C帽 topologi饲 can be COIlßtructed. Failur曹 to imp帽 abetractioIlß on interpr倪翩 connection patterna e&n

result in arbitr町 inter∞nnection topologÌe8 that are 也fficult to understand. We propoee the \lIIe of a

graph-gr&IDInar ba时 lormaliam to control the complexitie. ar面且g from trying to program such dynamic

networu.

køywor句ab.tr缸tion ， ac饵rI，∞ncurrency，心目ributed 町的em， graph gramm町， m帽age puai.吨，

。bj民争。riented 町ltem， parallel pr饵e.ing

TAere U 4 ，rotllÍ叼 "etfllor effective 1114'.

to 叮."...e . .. llutn6.ted ，叫f'4nu [14].

1 Introductlon

Langu.,_ with the 由ility to senera阔的i‘rary networu ol pr民翩翩翩国creaainSly a rocua ol r翻arch.

Little e1f'on hu h.D怡缸Wd， bownu , ~由‘M忧缸tionJ of th. ~ting 阳pologi8l j lailure to IUppon

auch abltractiol1.l幅Dl幅dω c:haoûc procram- th~ &n di1Bcult to und臂，"and and mai.ntai.n. We pro萨嗣

graph gram皿&r-~abm&c刽饨au ‘国MDI lor impoli且1 m田~ure 侃 topologi8l. Thia paper ÌDtrod.Ucel

GARP (缸aph Âbmactioaa forαJDCU[ND‘ b叩ammi鸣)，‘ DOtatiOD bued OD srapb sramm&nl [11] for

d配ribiq dyu&mÌc intceoD.D缸ωnto伊也...

Graph gram皿翩 翩 m且.， to lVi吨 ~acep‘也皿 (1) 也. body of a production ÎI a çaph

and (2) 山e rewritiD， ωiOD ÙIωreplACft!M1l‘ of a y曾惚 bya ll'呐.

"N.'m&ll: øpluOLc:a.a.!uc.eci.. S.ppon.d la P&I1 bf • cnas from 'u AT&iT corporú阳.
tN.'m皿1: Þ皿rOa.ωl-=bl..... b. S.ppon.d la p&ñ bf craa'- froaa 山 AT缸T~‘且d&tloa， S.... R翩veh uui T时­

uoloc t..bon\on., a.Ad N.. York St&~ Ca&er for A.ct咽品c.ed T忧àaoklø - Colll~&er ~ Wormúioa S1fÌGll, a.Ad lA pU1

'"‘ DI&itù EqlLipm..' CorponUoa hnlty A..，也

‘
192

The purpose of GARP 山 ωreplace arbitra.ry dynamic corrununication patterna witb ab回归缸tiona in the

same sense that Dijkstra [6] replaced goto-ridden spaghetti code with structured control cO lUltructs. There

18 a cost to th山， of cour回. J u.st aø there are some sequential progr lUTU! that are difficult to write in a

programming language without gotoa , there 町e topologies that are difficult if not impoaaible to epeciCy

uaing GARP. There is , however , a major difference between the graph grarruna.r approach taken in GARP

and the adding of structured progra.mming conatructs to sequential prograrruning languag创 ln the latter

CðSe, a fixed set of constructs are always U8ed , whíle in the former we know that we nud abstractions, but

not what specifìc patter国 to provide. So in GARP the gramma.r ~ used to give a. set of patterna for a

particular program , not for &11 progr !UIl8.

GARP us四 graph gra皿mar-s as follow!!. For a graph generated from a graph grammar I each vertex 山

interpreted M a process (which w曹 call an age叫. Agenta have por t4 through which they can send and r阳lve

m臼øages. Edges in the gnph provide asynchronoU8 cornrnunicatioIU! pat~ between port!l. Rewriting of an

agent by a production corr回ponda to the spawníng of a graph of new pr悦目胆量 as defìned in the body of

the production , and conn民ting th回e into the pr悦目a topology to replace the agent being rewritten u.sing 且

connection strate盯 sp配迫ed in the production. The 吨enta perform &11 computation (including tbe initiation

of rewritωon tbe graph) while the gnph gramma.r acta as an abstr缸tion structure that deacribes the legal

procωI topologies.

To illu川rate tbe uae of the GARP framework we adopt a model in wbich GARP agenta a.re Scheme [191

program.a augmented witb port operatiora (de6.nable in terma of core scheme and a b49 也ta type) and

operationa to control rewriting (de6.ned in terma of grapb gra.mmar tbeory). We emphaaÌJe tbat tbia model

of agenta is not centra.l to our 11M o(çapb rram皿&l'I ω ∞ntrol proc髓. topology complexitiωi our ideas

肌肉U创Iy applicable ω 。tber prop倡&ÙI for proc帽 model.a， inc.luding Acton [刻， Cantor 间， NIL [201 and

Argu.s [141

Section 2 deh. tbe aceDU ∞mpoDen~ O(G ARP I eectioD 3 defin.. graph gramm&r1 and aec:tion .. ah侧'

how graph gramman ue ad‘ pted into 山e GARP prosr‘皿皿ing fon:naliam. Section 5 diJcu.uee the Scbeme

implementation of our id... and illu.lira凶 G A.R.P witb two uampl... S<<tiOD 6 .ummarisee GARP 出

tbe ligbt of the exampl_.. Sec tiOD 7 ∞mp缸. GARP ωrel&ted work ，回peci&lly Actor 町阳IIlI and otber

application. of grapb gra.mm&l'l to d.iltribu也"町StemI.

193

let m = a mesaage (contents &l'e irrelev&nt)
!=a bag-The inMrnal r巾esentation for the M回sage Handler
U = an empty bag

operatlons
(N-rece1ve b m) =争 b • (0 m b)
(N-empty b) =争(1f (= b []) true /4Üe)
(N-aend b) =争 (ch01ce b) and b - (reat b)

end

Figure 1: Semantics for M倒age Handlers

2 Message Handlers, Ports and Agents

- -

Computation in G ARP 山 performed by groupø of agenu. Agenta communicate among themselves by writing

mω8ages to or reading m饵8ag回 from port.. M髓8&g四 written on porta 缸e stored by a me.uge htJftcller

until read by another agent.

A mesaage hand1er representa the pool of m四aag刨出at have b伺n !lent to it, but not yet delivered to any

agent , u a 64g. I! a ia an item that can be inaerted into a bag and b and c 缸e baga, the operationa on bags &l'e:

(0 a b) (inaertion). 但矗 b) (membersh.ip), (= b c) (叫uality) ， (choice 的， (which nondeterministically

也00嗣 an element o(b) and (reat b) (wh.ich returtlA the rem&inder o(the ba.g aíter a chooae). Manna

and Waldinger [151 give a th四叮 o(bagl.

\{esaage handlers are an abetraction buìlt 00 top of baga. Tbe operatioos on mesaage handlers , together

with their semantia , &re given in fìgure 1. Tbωe operationa are atorruc. An additional level o(detail 山

needed i(sending a meuage to a port ï. to be a 6ra. tlc lU t operatioo; this is a simple extension and the

det &.i la &re omitted.

Agentl communicate by reading (rom and writing to 阴阳. They can be irnplemented in any language,

butπlUlt 8uppon tbe (oUawin, minimal 剧。f portbandling ∞DJltructa (with behaviour in tuma of the

meeeage handlinc ∞mman也山 6gu.re 1:

• (..nd port …·吨.) ï. interpre也ed u (M-rec1 .,.e port …",e).

• (11,1 port) 山山terpreted U (J1O t (M… Pt 1 P。民)) .

• (on port bod，.)山 interp~ted u wait until (..,! port) 山 true ， then apply bod,. to the result of

(M… nd port).

With th... operationa , more IIOph i.aticated operatio tl.l can be deñned , IUch u:

194

• (on-and portUat body). WlÙ t until ea.ch port in the portliat haa a m臼aage ， a.nd then apply the

body 阳 the m倒age(s).

• (on-or ({(port body)}叫). Nondetermínistically choose a port with a m蝴age ， and apply the

corre叩onding body to the m四8age.

• Looping veraions of OD, on -or and on -ud.

An agent can be thought of aa a cloaure wboae pa.rametera include the portø through which it w让l

communicate witb otber agenta , and i.s simila.r to a procesa in CSP [10] or NIL , an actor in Actor Sy阳田，

an obj创 in Cantor, a gua.rdian in Argu.s or a taak in Ada1 [1]. Åß in Actor Syøtema , Cantor a.nd NIL ,

commurucatlon among agenta 国 aaynchronous ， and the &rrival order o(m饵aag四川 a port iø nondetermin.i.stic.

By cu归claronotU we me&n tbat the sending proc剧 d。倒 not know tbe state of the intended reciever, aa

。ppoeed to a "nelaronotU communication , in wbich tbe reciever must be ready and w山insωrecieve a

meeaage before tbe IM!nder c皿 tranamit it.

The interconn配tions amons asenta 时e determined usins tbe grapb gr&lIUIla.r formaliøm dωcribed in tbe

fo lJowinS aection.

3 Graph Grammars

Graph gr&lIlIll&n a.re simil&r in I~ructure t.o Itrins sram皿町... Tbere 山 an alpbabet of symbola, divided into

three (仙.joint) aeta e&lJed 山 term皿血， nonterm皿&la and portaymbola. Productio !l4 have a nonterminal

øymbol u the goal (tbe aame nonterminω Ill&J be the &0&1 of m.a.ny productiona) , and tbe 吨ht.-band lIide of

the production hu two pvt.:‘ çapb (called the bodyçapb) and an embeddin& rule. Each vertex in tbe

body&raph 山 labeled by a tenn皿ω 。r nonterminallymbol , and bu u舶ciated with it a aet of portlymbola.

Any portlymbol m.&J be u献>CÍated wi山m&DJ t.ermin a.t. or nOn termin a.t..

The rewritin, adion OD a çapb (tbe b帽~ç叩b) 山 tb. replaeement o(a vertex labeled with a nontlerminal

by tbe bodyçapb o(a 肘。duction (or wbich tbat nonterminal 山 tbe 10&1, and the em6etltlin, of the bodyçapb

in t.o the ha.t ~aph. Thia embed也1 proc:aa inyoly. ∞四川ÍDI (po阳ueoc:iated witb) verticee in the

body~apb to (阴阳回ociated witb) 刊rti~ in tbe b倒也 F呐. Tbe embeddins proc幅油 r刨出削"

tbat wben a vertex \1山阿written ， onJJ v曹rti~ 山川町e ÍD th. netøla6ø r l&ood o(v-th俑'∞nnected to \1 by

a path of unit len (tb-也an b. ∞m民ted t.o the verticel in tbe bodnr‘ pb tbat replacet \1.

I Ada iJ ‘ tra.dama.rk o(th. UlI.i凶d 5t‘国 ~.nun.nt ， Ad. Jolnt procnm 。但ω.

195

Because we use these graph gramm
an abstraction construct for concurrent programming , we c&l..\

them concurrent abetra.ction gramma.rs (CAGs).

E缸h symbol in the alphabet of terminals a.nd nonternùnals has a880Ciated with it a set of symbola called

poruymboú. The S&llle portaymbol may be asøociated with severa1 terminala or nonterminala. We denote

terminals a.nd nonterminals by uppercaae characten X , Y, . .. and portn&lll四 by G reek ch&l'acten 也 fJ， . . '.

Verticωare denoted tI， ω ，'" and the symbollabeling a vertex tI is identified by Lab
u

. PSx denotee the set

of po阳y咄咄翩。ciated with the (terminal or nonterminal) symbol X

For a.ny graph G, let Va denote the vertic四 in G and Ea tbe edg回。f G. Each vertex u can be qualified

by the portaymbols in P S Lω. to form a port-identijìer. Edges are denoted by pain of port- identifien, for

example (tI.α， ωβ). For any vertex tI in a graph G ， 也he neighborhood of tI，儿，山 {ωI (tI, \U) E EG}'

Definit10D 1 A concurrent ah.traction grapla grammar Ï8 a t t&ple GAG = (N,T ,S,P,Z), wlaere N 句 aβnite

ød oløymboú caJled tlae nontermin4Ú 01 伪e gramm町， T ù a βnite øet 01 "mboú called tlae termin4Ú 01 tlae

gramm4r 4nd S Ù 11 jinite .et ol.,mboú caJled tÁe poru,mboú 01 协e grammar ,.cla tla4t T n N = N n S =

T n S = 0; P ù a .et 01 proéuctio fU, wl&ere production. 4re de.βned jn deβnit，'on 1 belo町 and Z Ù 4 .n句"

dùtingvùlaed nontermin aJ "0"'" U tÁe c1%旬m 01 tÁe gr4mmar.

The &xiom Z 山 the ~oal of ex缸tly one production and m町 not appear in any bodY!l'aph. Tba

requirement i.s not a restriction 山 pra.ctice U one can a!w町11 augment a gram.ma.r with a distinKUi.shed

production that lIat i.sfiee tru. NlqWnment.

Defin1 tiOD l A pr04uctω" i. • GAG ù deji"eti u: p : L， → B" 几 wh.ere- p ÌI 4 vnipe 14bel; L, E N ù

caJled 仇e 90aJ 01 tÁe ，r~.etio.; 鸟 Ù 11" orkt,..r, g,..,1& (eaJled tÁe bodvgrapla 01 tÁe produetio f&J, wlaere

e4cla uerte% ù løkl,ti 6, ." dlfft,,,, 01 T u N; II.~ F, ù tÁ' emkdtiing rule 01 th.e pr04t&etion; 11 let 01 pai"

(Xα， L，.丁) 0' [X.a, Y.P! , tDÄcn X ldcú /1 vertu i" 8" αE PSx ,P E PSY ， 1 ε PSL，.

The aame 町mbol m&y 呼p.ar ..ver创 tïme. in a bodY lTaph; tha a r髓。lved by IUbeeriptinS tbe 町mbol

witb &n i:adex 叫ue to &ll何也em to b4 diJtinl'1且ed [22].

Defini t1on' TA , re.ntt旬， (0' rtβ" ，m，.') 01 • verte% \1 i" • ~a，1& G eo".t,.de4 I,om 0 CA G 6, CI

pN>4vction p lor tø l&ie l& Lob. u tÃ, ，~ ù ,cr/ormeé ã" tÃ, 'ollo W1i叼 Itep.;

• T1a e raeigUorlaoo~)1. ù i~，，，ti.βeé.

• Tlae ve,tu v ...é &ll e~，u i" c;~，.， 0" it .rt remov，~ Irom G.

• T1ae l>oé"ro,1& B, ù iul&Ati&t，~ to 10"" • ~..，lúer-~.，I&， ",I&ie l& ù ifUerteå if\lo G.

196

• Tlae d(Jf4glater graph ù embedded cu lollowø. For eacJa pair i" F" 01 tJa e lorm (X.α ， L"汀) 4" edge ÙI

placed from tJae α port 01 e4cJa lJertez i" tJa e daug Jater-gr4p Ja 14be/ed b, X to tÞJa4teoer IJ.丁 ωωconnected

to 6e/o,e tJa e øt4rt 矿 tJae rewriting. For e4cJa p4ir in F" 01 the lorm [Xα， Y.ßI 4" edge ÙI pl4Wi Irom

tJa e α port 01 e4cJa lJertez i" tlae d4ug Ja ter-gr4p Ja l4bded 6, X to tJa e β port 01 e4cJa tlerte:z: in tlae let

{ω|ωε 从 4nd Lab", = Y}.

Note there are two ways to sp民ify an embedding pair, using 0 or 0 notation. The former 山 often more

convenient, but more restrictive &8 it giv回∞ way to t&ke a port- identifìer with several inputa and 叩lit

th帽e over the vertic四 in the bodygraph when rewriting.

The m佣t importa.nt property that CAGs should have Î8 conftue"ce. Such a property would mean that

any vertices in the graph ca.n be rewritten in parallel. Unfortunately, we will prove that two vertices that are

in one another's oeighborhOO<iA饵nnot be 陀written in parallel (a.lthoush the graph.a are othe~ confluent).

Thia important r四ult meana that the rewriting 缸tion muat be atomic. We appro缸h the proof of thia ~ult

in two stepe: fim 9fe prove an intermediate reøult about the r四triction of the extent of embeddingsj the

limiωd confiuence r铺叫t followl.

Deftnitlon 4. B, r町ursive rewritins 014 lJertez IJ ωe me4" 1'0,.,111, remti", tI to lome gr4ph- tJae inIt4"-

ti4tion 01 tJae bcxi'Vap l& B, ol.ome r.le p lor wl&ic l& tI å4 tÅe goa.l-4nd tÅe" munting recur.切ely tl& e lIertict:l

in tJa tù grop l&.

Deftnitlon 5 For on, lJutu tI in cl grtSI''' G , ld JJ: dt槐ott t伪Åt .π川iωtle"e 01 1'0.11仿ω61e π旧e1句ghbωour州hoω04白， 0矿f tJ

t川Åot c叫o叫.u 4巾阳t b忖， 陀m叫ti"叫f (仰何附c

b忖， ~lμ1 PO'川川li6协le 俨附e衍c‘.r"切U肘e 陀w由j"叼，μ. 0矿f υ町; .，.~ 1ωdS，乓: = G: - (G - {轩tJ}川v飞1.ι8. ， S: å4 j..t 伪 t .et 01 ..6gnsl'hI

co".tr.ct4b le fro'" v i" tÅc rec:.rft"c 时，曲"，.

Lem皿.a e Gt"" • ，.付" " ." • ,",. G , .", (renr....) re ... 曲j"， 01 v W1ÜI "oC ,,,Cr"04UCt edg t:l 1'0'" tÅ t

lJ erti~. 01 tÅc ~.叼胁， ,"'Å 01 V (0' ."，仙，Iú" ,",1& rec:.'ftvcl, ."tro..c:t~ ."Co tht ctouglatt , grtSI''')

to .n, fltrtu c.ht ü uC .")1: u S: .
Proot: By inC1uction 00 t.h. rewritinc 民raWC.

Bu1a: ConJider a çaph G with a nont.ermina1 yenu v. Rdn. t1 by a production p for which L4h， 山

the Soal. By de6ni t. ion of CAG. , all th. verticee in G ωwhieh 白. nrticee of t.he daush t.er-çaph may be

connected are in N.. Thereíore the bue c.ue da. not cont.radiet. th. t.heo~.

I.nductlw Step: ConJider now t.he çaph G' 明白 a yena "', wbere G' hu b帽n formed from G by a

lNow tu j, ..t d.i!'1'I11ω10 tàe "-" do. QO‘ 4撞tritna也..

197

senes of refinemeots (st&rtiog with a vertex u) , and u' ha.s b回n iotroduced ioto the gr&ph by one of th甸m-r峭efi曲由fio…1

io N川:. Now rewrite u'. Ooly ver也ices in Nu' can receive edges as the result of embedding the new daughter­

graph , so the statement of the theorem remains true under the effect of the rewriting. ThU completes the

proof.

己

Theorem 7 Two vertice8 u Ilnd ωin ellch other ￥ neighbo盯hood (i .e. υε 儿 and w E 儿) may not be

rewritten in pllraJlel.

Proof: Suppose that it were p侃sible to rewrite the two vertices in p&rallel and that any rewrite ofωwould

iotroduce a oew vertex % such that Lab llJ = LabJ!, that would connect to u by the embedding rule，且od IlÏce

Uer81l. Suppc赠 further that oncl' the daughter-graph replacingωhs been ÍMtantiated, but before the edge

to tI bas been pl缸ed ， the rewritlDg of tI begins by removing u from the graph. Cle&rly at this point there

III 00 vertex u to which to perform the embedding. Therefore it ca.nnot be p锦aible to rewrite two vertic眉

tbat are in one another's oeighbourhooda in p&rallel.

口

Corollary 8 Giuen a graph G conltructed from CI CAG, the uertice. in G mlly be re1Of'1tten in a饵， order.

Proof: Follows from previou.s theorem and lemma .

...,

4 Relating Graph Gra皿marø and Agentø

A G A RP prosram bu two pan.a:‘ CAG and code for each agent. Yerticee in the çapb çammar r哩pr哩aent

agenta. Ea.ch‘cat n&me山 eitber a terminal or nonterm.in‘ 1 lIyrnbol of tbe çammar. We extend the

reportoire o(th. 吨eat. to inc.lud. a r.町1t. operation with (orm:

(r.町1 te 11U. 'XP ...)

wbere nu. i.a tbe label o(a production that bu the n&me o(tbe 吨ent ‘民ut to be rewntten u go&1 and the

exp .., are parameten to the product.ion. The interpretation of thi8 operation 山 the definition of rewri阳g

given in 眠tioo 3. The re町1 t. actioo m\l.lt be the agent '11 I..t, becaUM the model o(rewriting requir回

tbat the agent be replaced by the ageota io the bodyçapb o(the production u.ed in the rewriting.

We exteod the productioo labe l.a o((T aph (T&m血缸， ωbave a ti.t of (ormal pvameters. Each element

of the list 山 a p&.Ì r 句"的. paru.t.r> , which ident温.. tbe a<<ent in the bodygrapb of the production to

198

which the pal'&meter muat be paaed, and the apecific form&l par&meter for that agent that shou1d be u且d.

When rewriting , the agenta apecified in the par缸neter liat are paa嗣d the 叩propriate actuωpua.meter when

they are created. Thia ability to paaa argumenta from an agent to the agenta that replaι.e it provides a way

to pau the state ol the agent to 阳 replacementa. Thia feature 山 not unique ω 。ur agent sy侃em a.nd can

be found in Actora and Cantor.

5 Exa.mples

Thi.8 阳tion o(the paper illustrat回 the use ol GARP with two ex缸nples written in GARP/Scheme , a vemon

ol G ARP that ua崎 Sc.beme u the underlying language for agenta. In thia system, agenta a.nd productiolU are

implemented aa first-cl四ac.heme obj配ta; 响也n therelore experim四t with parallel progr&mming a.nd our

idea.ø on procesø struture while ret&i.ning &l1 the adyantages of a am&l1 but extremely powerful programm皿g

languages. All the (eatur髓。(a pro(ra皿皿血g langu吨e r明白甜 (or GARP agenta have been implemen~

in Sc.heme uaing that language's p何时ul m.a.cro (acilities to provide rewrite ru1es into core Sc.heme. There

11 noωng about the implementation that ia un.ique to Sc.heme, ho响ver; another implementation uaing the

。bject-oriented language MELD [13] u an underlyins framework i.s under development.

The first ex a.mple &iv回 a G ARP pro(r&m (or quiw。目 aa a tutorial: thia i.s not the moat efficien' way t。

酶的 a stream o(numbers , but the G ARP pro(ram ÌI euy to understand. Tbe 阳ond exa.mple demoaJtrates

a syatema application: t lW GARP pro(l'&m tÙeI u input an encodins o(a dataBσw progra.m, generates a

dataBow machine t&ilored (or it , and then ex民ut.el it. 1'1la couJd be useful in allocating proc幅IOrs 10 a

large MIMD m缸hine to dat&ftow tub.

Tbe graph gr .. 皿皿ar (or th. q山cbort exampl. ÎJ !ound in ðsure 2, and theωde (or the a.genta in fisure 3.

Tbere are two !urtber 鸣"钮， no& 础。W11， mod创且， Rand&rd input and output. Tbia prolra.m tù. a 的"‘m

o(numbers from 侃ud&rd input. ION them uln' diTid. and ∞nquer ， and 山enpu嗣 the reeult to ltanda.rd

output. Th. procram ueeutel recuni.,.ly: Whm 也8 &0民-abe 吨ent r配ein. ‘ m....e that ÌI DOt th.

end-o(-缸e object, it rewri阳 i凶lf to a .ort -body bc川dYllaph ， puaiDg tbe m.aar;e jua‘ read u a Ieed value

to tbe Ip l1 t vertex introduced 国由. nnni~. Thia .pl1 t yertex p…&J..l valu帽 received by it that a.re

r;reater tha.n the eeed through 也. ll.1 pon , all otber n1u. t.hrough the 10 pon, a.nd t.he Med i田lf t.brour;h

tbe …dport. Tbe joill a,ent waita (or ~ε111 OD ita 10, h1 and…cl port.l and p… the ∞ncaten..tion

o(thes啤 thr回 m锦ngωωit.a out por1. Tbe 10 and h1 pON are ∞m配ted to lort - ab. 吨四ta ， which in

turn rewrite thernaelv~ to lort-body çaplu on r民.eipt o(an 叩propriate m帽ar;e. Wben end-oC-缸，山

1 A COpy of tlW implam' l1utioD ÍI ...，.也丛b!. trom Ul, !.r'It &U\hor.

i productio且a.xiom

听fO协ab.\、
气."。叽U

199

Embedd.inp:
(Splii.in - IIOr• ab..in)
Join.oui - IIOr• ab..out

Figure 2: 80rt Example - Graph Grammar

en∞unte陀d ， it ia propagated through the graph a.nd the aort-aba agenta left in the graph send the empty

list aa a mreeul俨 value. The ax10a production starta the pro(1'&m rt皿且ing.

The graph grMUI1ar for the datafiσw example ia given in fìsure " (the agent code ia om.itted due to

space reetrictiona). In thù system , the controller agent reW datafi何 programa aa input m倒ag饵， &lld

p&8lM!a them to the proS node , which immediately rewr旧.. 1也嗣lf to a new pr吨， 回 。ut-handler a.nd a d1

agent. The new proS wa.it.l for a.nother datafiσw pro(1'am , while the d1 node rewritωitøelf to a dataftow

maclùne (using the ar1thaet1c , 1dent1 ty a.nd 1f-atat...nt productioDS, a.nd the out-handler wai t.a for

the output from the datafiow m缸hine. At e缸h Itase of th.ia cozutruction procesa the d1 agent loolcs at ita

proçu pa.rameter , d民id帽 what 阳rt of conatruct to 阿write to , b~aka up the proçu a.ccordingly, a.nd

puees the componenta to tbe new agenta yia the par‘ meten o(tbe production uted in the rewriting. For

example , when an &rithmetic operation ï. ident温ed ， the proçu can be broken up into tbe operation, a

‘ left" program &acmeot and a .riSht" proç&m frasment. The d1 apot r民osniJet th翩∞mponenta and

rewn阳 itael! u.lÎDl tbe ar1tha. t1c productioo , paEnS th. oper&tioo to the ar1thop 吨eot and the ‘ left"

a.nd ‘ right" program fracmt.Dta to tbe appropriate new acenta. Leaf 'I&lu髓， IUch U conatanta，町e ha.nd.led

internally by the d1鸣"也 (and themore are in 00 production explicitly).

Oo1y '. aimplè dataðow lanfU吨，四川ppò~ 山 th.ia examplej ext.enaioo to more complex ∞natructa 山

not 也fficult. Onωthe dataðaw mvbjne bu b幅n built , it execu阳 the proll'&m (or .hich it wu ∞natructed

and then P'" the r回ulta to the out-han.cUer ‘,em.

GARP ï. alIO particululy weU.山也"ωtbe 1arse cl... of ..a,tivt ,ritl proç&ml, IUch u linear düferential

叫uation 回lven(211. In auch a pro ll'&m, a (rid 山∞DJ1ruded and tbe (un~ion 101ved 川础 point in the

200

(agent sort-abat
(porta 1nport outport)
(on inport (1ambda (mes8age)

(agent split

(1t (eq? me8sage eof-object)
(aend outport ,())

(rewr1te aort-body meøøage)))))

(argø seed)
(ports in hi 8eedport 10)
(send seedport aeed)
(100p 1n (1ambda (1n)

(agent j01n

(1t (not (eq? in eof-object))
Cbegin

(it (< 1n aeed)
(send 10 in)
(aend h1 1n)))

(begin
(aend hi eot-object)
(..nd 10 tof-object)
(brea.k))))))

Cporta hi ae.d 10 out)
(on-and (hi…td 10)

(lubda (h1 …d 10)
C..nd 。的(呼pend 10 (1iat .eed) h1)))))

Fi(Ule 3: 50rt Example - Agent Code

grid. Grid pointa 山 e缸h other'. neighborhood then tr&Mmit their 501utiona to one another. If there is t∞

large a dÌ!Continuity between rwul t.a at any po时， that point ia rewritten to a fìner gfid and ~he proc帽

repeated. Solution.a to euch problem. IiDd n&iuraJ expNlS.ïon in GARP.

6 Graphø and Ab.traction.

We can now summarise bow CAG. belp ∞ntrol n蕾trwork topololÍea. Ratber tban aJ10wins asenta to conn创

to other agenta in arbitrary w町矶山. intereonnection.a .,. tùen care o(by the CAG. We 嗣 aever创

advantagea to thi.a approac.h. Firn, it forc.e. çouping o(吨四t.a (via production.a) tbat will 阴阳"

togetber to perform IIOme upect o(tbe computation. It 山 euy to .. whic.h agenta will work tocetber; one

j ust baa to looi at the CAG. seco时， in~rconne<:tionωpolo&i_町e determined at tbe level o(tbe CAG , no t.

at the level of individua.l &<<enta. Tha me&O.l t.ha t. ee t. ting upωpolo，i回 b悦。ma the provin伺 of the deeigner

ratber than of the pro(T缸nmerø implementin, the agenta , u ，∞d.。食w&re en (ineerin, practice dictatea.

r

production mom

Embeddinp;:
(prog'1.prop; - pror; .prop;)
(df.input - nil)

production uithmetic < uithop , op>
〈缸11 ， prop;um> <d fS2, pro p;r且皿〉

df ->

Embeddin,:
(uithop.rauh - dl.ou\pu\)
(d l'l1.inpu\ - dl.input)
dfdI2. iDpu$ - dl. iDpu\

201

production il-.tmt < dfS l , prosr&m >
< df12, pl'ogra.m >

< dfS3, prop;ram> < dl1", prosr&m >

dI ->

Embed也nl:
(江'-rault.output - dr.output)
(dfS".input - dI.input)

production identity

dr ->

Emb.dωnl:
(ident.output - df.output)
(ident.input - dl.input)

Fi~ 4: Dù&llow Example - Graph Grammar

202

7 Related Work

There is a large body of literature on graph grammars (酬， Cor example , [7]). Some resea.时era have

developed veηpσwerful Cormalism.s where graphs can be rewritten to graphs rather tha.n juat rewriting

ve叫ω[8][17]. Thiswork Ùl quite 川剧ive on the surf叽 but would be &1m倒也 imp铺ible to implement:

identifying the graph to be rewritten is NP-hard , and it is not clear how to synchronize the mutual rewriting

of the vertices in the graphs. The primary COCU8 of the臼 r回earchers ha.s been on theoretical i88Ues such

as the con.fluence of varÎous cla属回 of graph grammars and the hardn四I! of the r民ognizability problem.

We have i.natead baøed CAGs on a more limited Corm of graph grammar, Node L&bel Contro l1ed (NLC)

grammars [11]. The basic diJference between CAG and NLC gramma.ra ia e础 CAG production h&8 its

own embedding rule. Our "自由-confluence" 他回rem do回 not ，也o our knowledge , appe缸山 the literature.

GARP can be view时 as an exteIlJlion of NLC grammar reøe町d 山也。 a more pr缸tical domain.

Kahn and M缸Queen [12] have inv回tigated a parallel progr&mming model in which individual proc臼翩

&re replaced by networkaj while our work 山 similar ， the major düference 山 that 响 have a Cormal way of

modelliq the network topologies that are created.

Degano &nd Montanari [5] have uaed a graph gr&m皿ar Cormaliam similarωCAG &8 the vehicle for

modeling datributed øystema. A1 though 咄咄 work diffen from oun in seve叫 resp饵ta-a more reeiricted

model of embedding 山 taed ， there ia no model of ∞mmunication &mong pr饵眉酶:11， graphs in their formωism

car叮 history information , and the gr&lIl..lll&n ar曹 uaed to model programa rather than &8 a programming

formal.血m in their OW11 right一it 山 It诅&n inter四ting ∞mplement to our work , and we believe that many

。f their n!IIulta w诅 be tran.fer‘ ble.

G础川P 山叩t .im副皿血副i且lar 阳缸旬n4 [问3叫] [阳问9叫l 旭 impωu皿也 d咀i涩ft'ereoceω 山 t比h剖山 GAR.盯P c∞ommun山i比ca创ωM川tiω阳阳iω阳m。创∞IlJII..!

pattωena 缸are de6.n且"皿 t由h. Il'a&:皿n皿&l， whenu in 缸ton they are Mt up by p皿ing oí addr锦翩 among

Ac阳n. We b剑"鸭山u thia lack of 民ructure ia po t.en tiaJ.ly dang盯。ua ， u it r1Ili_ 00 the g∞dwill and

c∞pentioo of 也. proçama:皿n buildinC the 町.tem. A. 100' u the proll'&mmen ∞ntinue to c∞perate

1 ucceÉull y, th. .,.tem w诅 workj but 也. ana.LI. error in prop吨úioo oí A.ctor addr帽嗣∞uld le&d

to chao.. Expenence with larp 副食ware 町刷刷 1rriu.en in Mquential proll'‘皿m皿， 1ansuas- .troosly

aul&笛ta that lac.k of ruitable ruucturin，∞D.ltructa ror 山.0耐'WOrk w让1 c.翩翩 ..ri。回副食ware encineerin,
probl~. An att.mptωadctr.. thia problem usinc rc饵，tio...ù aJ.law. th. programmer to bre础 Up the

Ac阳n into &rOUpe by connotion oruy; a m皿hnioua pro ll'ammet' m町侃出 breù the .yltem by p...mg

.internal. Acωraddr田.. out to other Acton. ln G ARP 也iI cannωh‘ppen.

's~ 4kt&\eI tbl 响回回. tll. rudu ÍI f‘millu • i\À ~r lfI\emI

203

The diatinetion betw饵n the proeesa 5pawning supported by Actora and by GARP ia analosoWl阳 ~he

replacement of∞ndition&l and uncondition&l branch回 in sequential programminS 1anSU吨饵 with IItructur曹d
control con.tructa. The diatinction between the cat lOn patterna 山皿&lOSoWl to the diatinction

betw~n dyn&nÚc and lexicalscoping.

Two 的her w町11 of d饵cribing pa.r&llel networks-CCS [16] and Petri Neta [18]-are 山陀i叫凶 our

worlc. With CCS we IIha.re the ∞ncept of ports and the idea of a networlc of proc翩翩 h佣rever ， we

WIe &.!ynchronoUß conum皿ication where CCS ia synchronoUß and needs no notion of global time. It 创曲

8ee11Ul that the application of CCS ia li皿ited to fixed 阳pology networkll. Petri neta uae uynchronoUß

communication, but 町e wo limited to fìxed topology.

focUß回 on providing a good language model for a proc钮8，皿d &ll but ignor回 inte叩roceaø topo10C 田ues;

Cantor is inter饵ted in pa.r&llel obj配非oriented progr&IIl.IIÚng and giv回 the lI&me IIUpport for topoloC conirol

&.! do回 Actor 5y阳lllII i and Årgl皿 f∞useø on 1皿u四 of atomicity and robuatn饵a. Th酬 iaaues are ortha.s∞&l

to thoee addr四eed in tru. paper.

8 ConclusioDØ

MIMD computer lynetDa m.ù. in.vitable the dnelopment of la.rge p&r&llel pro(l'&ma. At preeent ihere

are no ad叫ua问'W&)"I阳 sp缸i行 th. intereonnωiOll.l among Pr0<:e8M8山 theee progulDI. We belinot that

th山 will lead to a aitu&lÎon in ..hich prosrama C&D generate completely a.rbitrary proceaa topoloKies. Sueh

programa will be difficult 句 d.bul ， v臂ify， or aWnt&in. Th.i. problem ia ana1吨。u 阳 the -go阳 problem.of

the 196。、 and 响 proP'* an analosoua 曲lution: rather than being 由1. to ∞nnruct ubitrary networu,

abetrωiOIa lhou1d 1M im庐嗣d 由"∞ntrol neiWork nruc:ture. Hawe.，霄， un.lib th. -g。ωproblem. I 响 d。

not believe that i' wi1l be 庐.ïbJ. t.o deri.,. a _ o{ aund&rd form ai.milar to th. ‘ir and -巾· forma UMd

山Mquenii&l PI"OlfUDlDÌD.l; ra也霄， "" belie.，.也&l for each pv山1 proçam , th. ct.ipr lhou1d identify a

翩。(interconuc创ω 阳刚晴tGnpla棚 ud uae 也。...白. &bIuacûona for 山&l proçam.

Graph (l'&m皿&rI ~da an ueelle鹏因edium in ..hich t.o encod. th.. t.empl&tel, and in 也. GAR.P

syltem we ha.,., Ih何n 山&l am_l. aft il' a1 imerpret.atioD ol & w bc.1.. ol p'&ph cram皿&rI - CAG lf&Dl皿町'

- do.. ind嗣d allow th. 崎岖i8ω1ÌOD of ime叩~ eocmectiOD.l and thair aut.om.atic UM in a parall创

progr&m皿lllg 町n.e皿.

204

Acknow ledgements

Thw lI to Roy Campbell and Steve Goeriog for frequeot diacusaiooll 00 the GARP sylltem a.nd the th臼ry

uoderlyiog it , &11 well as their commeotll 00 earlier draftll of thill pap盯·

References

[1] Re/erence Manu4J lor tJ&e Ada Programmi叼归叼uøge. Technical Report MI.I,STD 1815, United Statee

Departmeot of Defen.se.

[21 Gul Agha. ACTORS: A Model 01 Concurrent Computation in DUtributed 5.，阳旧. M.I.T. Pr棚，

Cambridge, Muø. , 1986.

[31 Gul Agha. Semantic con.sideration.s in the 缸tor paradigm of concurreot computatioo. In A. W. R嘟"

S. D. Br∞k甸回d G. Win.skel , editors, Seminør 0" Co"curre"cJ, LNCS 197, pages 151-179, Sprinpr­

Verlag , New York , 1985.

[4] W. C. Ath&ll and C. L. Seitz. Cantor U.er Report. Technical Report 5232:TR:脯， California Institute

of Techoology, Janua.ry 1987.

[5] Pie叩ω10 Iñgano and U go Mon阳&ri. A mo也1 for d.inribu~ systema bued 00 graph rew削ng. J.

ACM, 34(2):411-449, April 1987.

[6] Ed.øger W. Dijkltra. A DUci,li"e 01 Pr句"mm叫. Prentic萨H&l.l， Eoglewood C1iffs , NJ , 1976.

[7] Hartmut Ehrig , Mantr.d N吨1 ， &Dd Gnecon Rosenbers (eda). Gr.,1t. Grammarl ud 执nr AppliC4t1o"

to Com,.ter Sci,,,cc, Lcct.f'f Notu.. Co,",t&lcr Scie ，，~ 15'. Springer- Verl吨， 1锦4.

[8] Hartmut Erhic. m&r叫削ion阳山向.br&lC tbeory of çapb rram皿&f'I. In Hartmut Erhig Volierα‘四

andGnes饵'1 Rosenb吨， editon, G,..,. GN"，刷" ..i tAeir Â"licatio" to Co",,..,er Scie.ec ."i

BiølOfJ， 阳pll~， Spriqer-Veri吨， Heidelb耐事， 1m.

[9] C. Hewiu , T. Reinha.rt, G. A&ha. and G Atta.rdi. LÌD~ic IUpport of rec.ptioni.N for ahared 陪

!IOu.rces. In A. W. Roecoe S. D. Br∞k_ and G. Winòel , edi阳n， Sem."., o. Cø"Cllf'ft肘J， LNCS lØ1,

pages 151-179, Springer-Ver1&l, New Y，。此， 1985.

[10] C. A. R. Hoare. Com皿山catÌDg Mquωi&l pr配_. Co,"",_"iccatio tU 01 山 ACN， 21(8):6幡~77 ，

Auguat 1978.

r

?

205

[11J Dirk J &nsaens and Grzegorz Rozenberg. Graph grammars with node- label control and rewriting. 10

Hartmut Ehrig , Manfred Nagl , and Grzegorz Rozenberg , editors , Proceedingø 01 the øecond Jntern lJ tionai

Workøhop on Gr lJph Gr lJ mmarø IJnd their Application to Computer Sc,'ence, LNCS 159, pages 186-205 ,

Springer-Verlag , 1982.

(12] G. Kahn and D. MacQueen. Coroutines aod networks of parallel proc四ses. 10 1旷ormlJtíon Proceuing

77, pages 993-998 , Academic Press , 1978.

[13J Gail E. Kaiser and David Garlan. Melding data flow and object-oneoted programming. ln Conlerence

on Object Oriented Programming Systerru, Languageø, and Applicationø, Kissirnmee, FL, October 1987.

[14] Barbara Liskov and Robert Scheifler. Guardians and actioo.s: 1ioguistic !upport for robust , distributed

progr !Ul'l.8. ACM TOPLAS, 5(3):381-404 , July 1983.

[15] Zohar Manna and Richard W创ding町 . Tlae L咿cal BIUÜ lor Computer Progr lJmming, Volume 1.

Addiaon- Wesley, Readiog , Mω. ， 1985.

[161 R. Milner. A 咄ulus of commuoicatiog system.!. In Ledure Noteø in Computer Science tlolume 9H,

Springer- Verlag , Ber1io , 1980.

(17] Manfred Nag l. A tutori&l and bibliographic&l survey on graph grammars. 10 Ha.rtmut Erhig

Volker Claus and Gnegon Rozenberg , editors , Grapla Grammarl and tlaeir Application to Computer

Science IJnd 8iolo9r, pag回 70-- 126 ， Springer- Verl吨， Heidelberg , 1979.

[18] C. A. Petri. Concunency. In Net Theory and Applic础。"4， LNCS 町， Springer-Verl吨， Ber1in, 1980.

)9] J. Reea and W. Cling町 (EdiLon). ReviMd (3) 陀port on 山创gorithmic language acheme. Sigpla"

Noh"ce.， 21(12):37刊 Oecember 19倒.

[20] Roben E. Strom &Dd Sbaula Yemin.i. Tb. nil diatributed .yllt41ma progra.mming language: a statu.

repon. In S. O. Br∞a.， A. W. Ro配oe，&DdG.Win血剑， ec:titol'l, Semi" /lr 0" Co"c"，何ncr， LNCS

H7, P‘ ge. 512-523, Sprillser-Verlas , New York , 1985.

[21) J. F. Thompeon , Z.U.A Wani , &Dd C. W. Mutin. N.menCGl Gntl Ge"叫川 Fo.ndAtiofU /lntl

Applicltio".. North-Holland , New Y。此， 1985.

[22] William M. W&it.e and Gerha.rd G明. Comyiler Corutr叫io". Springer-Verl吨， New York , 19创.

嘀嘀.

，
-
A飞』

-1·iMr

t
F
，
，
也
.
，
a
w
o

'带

r ,

J‘三

Garp: A Graphical Language for Concurrent Programming

Simon Kaplan

Roy Campbell Steven Goering

Joe Loy时l Susan Hinrichs Brenda J缸kels

aL­
F
』

n aL· C

BQM
川

r
1

川

e
8

·
r
i
F

川
u
n
u

mu-m ,,
&VA 。
江

L

MvqJ -Ifa mMm
N
W
U

此

γ
L
a
L
W
?
r
ι

umI

町
P BLM

D

Gail K心ser

Department of Computer Science

Columbia University

New York , NY 1∞27

Abøtract

The advent of the la.rge , inexpeIlßive MIMD computer makell inevita.ble the devel­

opment of la.rge concurrent softwa.re syste IIUl. Such lIysteIIUI will often h a.ve dynamic

topology: the number of procellllω a.nd the让 interconnectionll will cha.nge. It is there­

fore impera.tive th a. t we develop progra.mming not a.tionll to simplify the 5peci6.ca.tion of

systeIru involving cha.nging topologiell. Such a. not a.tion must not only speci均 connec­

tiona a.nd na..me procellllell, but it mu.st provide uller-defìned a.batra.ctionll that fa.cilit a.te

the programming of complex topologiea by structuring 咀d airnplifìcation. This paper

proposes a gra.ph grammar baaed- a.pproa.ch to specifying cha.nging topologies. We in­

troduce the GARP ayltem, a programming environment that irnplements thi! grap~

gramma.r approa.c.h a.nd give aolutioM to example probleIIlß in which the topologies of

concurrent ayate IIlJl dyuamica.lly cha.nge.

keywordl: ‘batra.ction，缸tora ， concuπency ， di.etributed aystem , graph grammar, mea­

sage pa.uing, object-oriented ayøtem, parallel procesaing

l

1 Introduction

This paper proposes a method for specifying the topologies of dynamica.lly changing pr。

cesses and their communications in progra.m.s也hat describe ma.sslvely concurrent systems.

The prop创al is b回ed both on theory and on experiment. GARP 1. is an example software

programming system th剖 we ha.ve built to demonstrate the proposa.l.

The problem which we study h国 the following cha.r配terization. In a concurrent sys­

tem with dynamic topology, proce臼臼缸e frequently created a.nd destroyed. As some pro­

ce回倒町e created a.nd destroyed, other proc臼脂s must update their communication links

to accomrnodate the cha.nges. Without a suitable progra.m皿ing notation to sp民ify such

changes, a system cannot e国ily be designed tha.t is 仕回 from error. The problem can be

compa.red to the unstructured use of goto statements in sequentia.l programs. A notation

can be used to a.id the "structured progra.mming" of dynamic concurrent systems in much

the sa.me way as while and f or 1∞p constructs were introduced to structure sequentia.l

progra.ms. However, in at lea.st one r回pect ， the problem of structuring dyna.mic concurrent

systems is more complicated than that of the goto problem. Because concurrent system.s

a.re nondeterministic , errors a.re 。白en hard to reproduce. Thus，也he activities of debugging

and ma.inta.ining dynamic concurrent systems can be many times more difficult tha.n the

sequentia.l ana.logy if a. notation for structuring the progr缸丑ming of the system is not used.

The problems of progr&IIlII让.ng dyna.mic concurrent systema is exemplifìed in the fol-

lowing adaptation of the five phil帽。phe~ problem introduced by Dijkstra. In the origina.l

problem, each phil惕。pher repeata a cycle of eating and thinking , where each activity lasts

for a va.riable length of time. To eat, a phil惕。pher mU!也 sit at a table and pick up two

forks , a right fork and a le负 fork. (Pick i.ng up a fork 山 represented by performing a P

operation on a semaphore.) There a.re five forks , each fork is both a left and 川ght fork

for tw。回parate phil帽phe~. If the philosophers should &11, by chance , sit down together

a.nd pick up a fork to 咄咄 left (or right) concurrently, the result would be deadlock unl酬

one or more of them can put down a fork. Should the philo80phers be a.llowed to put down

a ra.ised fork , starvation may occur becaU5e &11 the philO8Ophe~ may put down their forks

I -Garp- .ta.且也 for Grapla Abltrac: tioru lor concu.R rent Proceu，叼·

2

concurrently. A solution to the problem must prevent deadlock or the starvation of any of

the philosophèrs.

In the dynamic adaptation of this problem, we allow the number of philosophers and

forks to v町y. A new philosopher must both bring a new fork to the table and be willing

to share that fork with a.nother philosopher. The philosophers already eating and thinking

must adapt to the a.ddition or removal of a philosopher. A departing philosopher may

remove a shared fork from the table. A.!ly solution to this problem requires a program that

dynamically changes the binding of resources to processes. A卫 "ideal" solution should per­

mit the concurrent arrival a.nd departure of philosphers and the让 forks while still preventing

deadlock and starvation. A "structured" solution to this problem would be composed of

two parts, a solution to the progra.mming of the appropriate synchronization involved in

sharing forks a.mong philosphers a.nd a solution to the programming of the changing topol­

ogy of the philosophers and forks. GARP is a language that we have designed to express

the solution to such problems clearly and pr民isely.

The method that specifì四 dyn创卫ic topologies in G ARP sep町ates the issues of program­

ming agents (both proce回倒也d r阔。urc臼山 GARP are called agents) from the problem of

specifying the changing topology of the dynamic concurrent system. Each agent has a set

。f ports through which it communicates with other agents. These ports are abstractions for

(sets of) other agents. A pa.rticular topology is sp配迫ed by mea.ns of a graph that describes

the 阴阳ble communications (the edg髓。f the graph) between the agents (the vertices of

the graph) in an implementati ∞ independent manner. A州llc∞。mmu川uni江皿山ni丘lcaωa剖ti阳。臼∞n ar盯mo

础ynchron∞1归ous. The set of grapha that repr四ent valid topologies of the concurrent system 臼

described by mea.na of a graph gr&IIUIla.r. A valid change to the topology of the concurrent

system 山 spec埠ed by the application of a production of the graph gramrnar to an agent

of the system. That 泪， a c.hange corr~pon~ to a reWl'ite rule that modifìes a process or

resource of the underlying concurrent systemωthat it confOrIIlß to the graph created by

applying the production.

A gr.aph gra.mma.r is simila.r to a string gra皿皿町， except that the right hand side of the

productions are graphs rather than trees. Each vertex 山 the productions is labeled by a

3

terminal or nonterminal symbol, representing an agent. The left hand side of a production

IS a nonterminal symbol. The rewriting action on graphs replaces a vertex labeled by a

nonterminal with the body (岳阳 hand 仙) of a production for which tha.t no阳minal

is the goal syrnbol. This replacement involves the connection of the instanti a.tion of the

body to the vertic臼 already in the graph (a proc酬 known as embedding); we restrict this

embedding to be to v圳倒也hat were in the neighbourhood (connected by a pa.th of length

1) of the vertex being rewritten.

The theory behind GARP is presented in [11]. This paper exten也 previous work ∞

GARP by enhancing the a.gent language with an object-oriented style in order to reduce

the effort needed to write progra.m.s. (The earlier work used a CSP-like [7] appr。叫 to

reading from and writing on p。由.) We believe the ÌS8ues of programmi吨 agents and

progra.mming topologi臼町e orthogonal; GARP progra.Dl8 agents independently 仕om the

topology of the system (the communications through the ports.) The 国e of a graph

grammar based notation provides a rnethod of declaring the specification of a dynamic

concurrent system in a manner that can be readily analyzed. Each production of the

gra.ph grarnmar repr四ents an abetr缸tion of the ways in which the systern can change; it

d臼cribes the manner in which an agent and its communications can be transformed.

The G ARP system provid四 a structured way of building concurrent systerns. The graph

grarnmar simultaneously 缸ts aa a d四ign document , a proc酬 interconnection langua.ge a.nd

an abstraction rnechaniøm.

We should note tha也 few languages that currently supp。目 concurrent progranu咀吨，

such a.s Ada [1] , CSP 171 , NIL 1161 or Arguø [12] provide any high-level specification of

topologi四.M帽t provide a model for process回 and primitiv回 for cornrnunication while

ignoring structurωinterconn配悦。n 四ues. Even Actor SysteIll! [2] , in which topologi臼 C皿

be flexible , can only control topologi帽 by paaøing around addresaes of proc四8饵，皿d th四e

pr白山1V四时e analogola to pointen or goto statementø.

In the body of the paper we tùe a bottom-up approac.h to the rnotivation and introduc­

tion of the G ARP system. S配tion 2 d.i配uaa倒 agent8， and giv回 some examples. Section 3

overvieW8 graph gram皿町'皿d d.iacu.saes their application to topology control. Section 4

4

illustrates the 四e of the GARP approach with some ex缸nples. Section 5 discusses the

implementation and section 6 discusses related work.

2 Agents

All computation in G ARP is carried out by agents. An agent

• is an independent entity that computes asynchronously from all other entities.

• communicates with other agents by sending messages. This message sending 创SO lS

asynchronous.

• irnplernents a set of method8, which defìne the messages to which the agent can

r四pond.

• h国 a set of ports on which messages for other agents are written, and through which

the replies to those messages are returned. Each port ca.n be connected to a set of

agents , and a sophisticated selection mecha.nism is provided for choosing subsets of

the agents connected to a port.

We will define agents more completely in the body of the section.

Agents are most similar to Actors; the major clifferences 町e (1) that agents do not

explicitly know or deal with address回 of other a.c tors; a.nd (2) agents have a port concept

that acts as an abstra.ction of other a.ctors. The qUe5tion of how topology control is achieved

in G ARP is deferred to the following 臼ction.

A且 agent 山 defìned Wling the synta.x山 figure 1. An agent a 国 a n&Illed , parameterized

object with a set of porta 凡， a set of methods Mo , internal definitions and a list of

initialization expr四aions. The methods de6ne the set of m回8ag回 to which the agent can

respond. The ports 缸t &s abstr缸tions of (阴阳。f) other agents with which this agent can

communicate. The internal de fin..i tiorul allow the declaration of 1。ωstorage ("instance

variables" in object-oriented jargon) a.nd procedur回. The initialization expressions are

executed when an inst a.ntiation of the agent 山 created. The par&Illeters to the agent allow

the pa.ssing in of state information when a.n insta.ntiation is created.

5

(agent name
(ports name ...)
(args name ...)

(define ...) internal detinitions here

(method name lambda-e :tpression)
(method name lambda-e :tpression) .

ezpression .,.)

Figure 1: Syntax for Agents

In order to e国e the implementa.tion of the GARP langua.ge we built the implementa.tion

on top of Scheme [15]. GARP therefore inherits the featur四 of Scheme including 川ic

scopmg and the ability to pass and return procedur目也。 and 丘。m other procedur四"

values; the l a.mbda-expressiona in the definition of an agent are just Scheme lambda­

expressions, and are 岛st class v&lu四.

The set of methods .M o defined in an agent sp民诅回 the m四sag回 to which the agent can

respond , and the expected arity (nw由er of arguments) of eac.h message. For simplicity

in th臼 paper ， we a.ssume that all methods are explicit1y given in the agent definition.

In practice it is po臼ible to a.dd an inheritance hierarchy to the language to permit code

sharing and the development of common interfac四 among groups of functionally sir四lar

agents. In object-oriented terIIlJ!l, the graph constructed during a GARP program ex民ution

is an in"tance interconnection structure; adding inheritance is therefore an or也吨。nal issue

which we d。∞t d.iacusa further here.

Each port p E 凡 in an 80gent a is typed by 80 翩。fm倒80ge nam髓， denoted Íp. or Íp

if the sp民i.6c asent is irrelevent or determinable from the context. This typing imposes

the foll而且g restriction on a leg叫 GARP graph: when an agent a 响itea a measage m

on a port p to which are connected a 则。f agenta A 8uch that m E iλ ， the predicate

'Vaε A : m E Mo mU.!t hold , i.e all the agents must be able to reapond to m回aage m.

6

When an agent ia inatantiated, each port ia connected to a (poaaibly empty) set oí

agents. When a meaaage is written on a port , it is íorwarded to the set oí agents connected

to the port , and the results oí the procesaÍng oí the message at the remote agents are passed

back to the sending agent. Often the agent wishes to communicate wi也h some subset oí the

agents connected to the portj to support this a ßexible selection mechanism is provided,

which we will describe below. Each message sent is encoded with the addresa oí the sender,
to ía.cilitate replies.

Ports can thus be thought of as a.cting as abstractiona of (aets of) agents. From the

viewpoint of the programmer writing the code for an age时， the ports themselves 町e

active objectsj the interfacing to the system, naming of remote agents , and identi印mg

their locations are a11 hidden from the programmer.

Messages are sent out of a port using the form

(portexp message arg ...)

where the portexp is either a port name , in which case it na.皿es a.ll the agents connected

to the port , or ít is a select expreaaion as defined belσw ， in which case the subset of the

agents connected to the port which satisfy the selection critena are named by the portexp.

The mes8age indicates which m回sage is being sent a.nd the arg ... are the arguments to

the method responding to the m四8age. The portexp 山 evaluated ， yielding a list of agents.

These are then each 臼nt the m四8age a.nd arguments. The result of the meaaage send is a

list of replies , one for each agent ident迫ed by the portexp. Each reply ís 缸tua.lly a pa.írj

the reply and the a.ddr四8 of the agent that generated it. The latter ínformation is for use

by the select operator explained below , a.nd is not directly accessible by the programmer.

The select operator allows the programmer to select a 8Ubeet of the agents connected

to a port without knowing their addr钮'钮， how ma.ny agents there 町e ， what their stat回

are, or what stat回 they were in or m饵sage repli臼 they returned when previoWl m饵sag回

were sent out of the port. This ability to work at 8uch a high level 山 very important 8.8

the network topology is dyna皿ic. We cannot expect knowledge about agents connected

to a port to remain current for a.ny longer tha.n the evaluation of a portexp. Instea.cl we

always 叫民t by sending a me臼age out the po民 using the fust foπn ， and then apply some

7

relation to the replies to select the required subset. The general form is

(select predicate agentlist arg ...)

The predicate is any predicate, the agent1ist is a list of agents connected to the port ,

obtained as the result of the message sending form above, or from a. previous select. The

arg ...町e once a.gain a.dditional arguments, this time to the predicate. The result p町b

of ea.ch pair in the agentlist is submitted to the predicate along with the arguments. If

the predic a.te evaluat臼 to true , the reply pair for that agent is retumed，。他erwise a "null"

pair is returned. The list of all agents that satisfy the predicate is the result of the select

operator. That list can then be 田edi皿mediately in a message send, or p国民d through

another sel民tion. Select can be thought of as a specialized form of the Scheme procedure

map.

The following eX&IIlple 让lustrat臼 the UBe of 盹lection. We 皿ume that this code is

written for a user agent , which wish回 to send a fìle to an agent dedicated to proc四smg

text fil四 usi.ng tro :U orτEX. The agent haa a textprocusor port which com.munica.tes

with all such agents, but only a 8Ubaet support eac.h type of text processor. The following

selection chooses the subset that h&Ildl倒 τEXjobe:

(aelect eq? (乞extprocea8or 'type?) 'latex)

This sends the type? m四aage to every agent cOOllected to the textprocessor port , a.nd

then chooses the 8Ubaet wh饵e type waa equal to latex. We C&Il then use this selection in

a more complex one that ch。俑倒也e mac.hine with low削 load:

((select .in ((.elect eq? (textproce..or 'type?) 'latex) 'load?))

'proc…text11le)

This selecta the τ民 procee嗣同 aa bef，。凹，也四 een也比帽e the load? message，咀d then

四l创8 the leut loaded pr出踵80r aa the r臼pient of the file. That proc蹦出 is then sent

the proce.. m幽age ， alons with the file to be proc翩翩d.

Tlúß appr。皿h allows the progra.皿皿er to work a.t a. level independent of knowledge

about the network or the number of text pr民回lIing eervers to which his agent is connected

at a.ny tune.

8

There are two other forms used occasionally when working with messages. The first oí

these, (breù: express1on) is d四igned for use in case where the reply to a m臼sage is not

needed. The express10n is a message send; and rather than wait on a reply, t也he break

c叫a削us阳e臼s execu山i

of 仁也山he brea咄叫k叫). The v 剖ue oí a break is undefìned.

The second íorm is (reply express1on) and is useful in case where a method wishes

to send a reply and then conti.nue with some processing. The express10n is evaluated

and its result sent 础 the result of the method. AIly other reply in the method before it

terminat四 is evaluated (岛r side-effects) but its result is not sent to the ori胆ator of the

message that triggered the method's execution.

A.s an example of an agent , consider the agents that implement forks and philosophers

for the dining phil佣。phers problem, shown in figures 2 and 3. Note how we 88Bume that

each fork p。冈山 conn配ted to exactly one fork. Forks have no portsj this is b民au四 they

initiate no communÎcations. We have not yet indicated how the agents are instantiated, or

how they are wired together to produce a working concurrent system; this is 也he subject

of the next section. Later we wiU use these agents in a solution to the dynamic dining

philosopher problem, in which the number of phil。回phers (and forks) can change.

3 Using Graph Grammars to Interconnect Agents

Thus far we have introduced and explai.ned our concept of an agent. Agents 88Bume that

there is an underlying networì: into which they have been spliced in some w町， which takes

care of naming 四u四 for them. The purpoøe of thùs section of 也he paper Í8 to introduce

graph gram皿缸I and explai.n how they are used to ach.ieve thi.s. Section 3.1 briefly reviews

formal graph gram.皿ar isau饵， and section 3.2 cfucu.e.sea the integration of gramm町s and

agents. Eumpl回町e deferred to section 4.

3.1 Graph Gram.mars

Graph gra.m.mar芭町esl.In且ar in structure to string gramma.rs. There i.s an alphabet of sym­

bols , divided into thr回(也j。回) sets called the tenn山山， nonterminals and portsymbols.

9

Productions have a nonterminal ay础。1 as the goal (the aame nonterminal m町 be the go&l

。f many productions) , and the 吨ht-hand aide of the production has two parta: a graph

(c&lled the bodygraph) and an embedding rule. Each vertex in the bodygraph is labeled

by a termin&l or nonterminal symbol, and has associated with it a aet of portaymbola. Any

portaymbol may be associated with many terminals or nonterminalß.

Edges in the graphs are directed, and always g。丘。m a port associated with a vertex to

some vertex (possibly the same vertex). This captur刨出e notion that a port on an agent

15 conn民ted to some other agent.

The rewriting action on a :rraph (the hoet graph) is the replacement of a vertex labeled

with a nonterminal by the bodygraph of a production for which that nontem让n&l is the

goal, and the embedding of the bodygraph into the h08t graph. This embedding process

involves pl缸ing edg四告。皿 porta associated with vertic回 in the bodygraph to vertic四 10

the host graph, or from ports 皿80ciated with vertic国 in the h08t graph to vertic臼 in the

bodygraph. The embedding procesø is r臼tricted 四 that when a vertex υ 臼 rewritten ， only

vertices that a.re in the neigh60rhood of tJ-th铺e conn民ted to tJ by a path of unit length-侃n

be connected to the vertic四 in the bodygraph that replac回 υ.

Because we use these graph gra皿皿ars回 M 皿 abstr缸tion c∞。∞n田struct fl。臼r c∞。ncu旧ur陀en川t P严rc伽忡

gr阳ran创町Iπmm卫1

Each s叮ymbol in the alpha仙be剖t of termi血且ala 皿dn∞。E川l比阳b问e町rmi血na.剖18 has 皿盹cia剖te创d wit也h i沁t a

set of symbol! ca.lled port.ymbolø. The sa.me portaymbol may be associated with !!ever&l

term血础。r nonterminala. We denote tenninal.s and nonterminala by uppercase cbar缸ters

X,Y,… and portnam回 by Gr回k cha.r缸tersα，{3，…. Vertices a.re denoted υ ， ω，… and

the symbol1abeling a vertex tJ is identüied by Lab ll • PSx d凹的回 the set of portsymbola

&S8OCl叫 with the (termin&l or nontermin&l)町mbol X.

For 8.Oy graph G, let Va denote the vertic回 in G and Ea the edg四 of G. Each vertex t.I

can be qualified by the portsymbol.s in PSw. to form & port-identifier. Edg回 are denoted

by pairs, the 肚'也 element of which is a p。同 identifier a.nd the second is a vertex , for

example (川， ω). This indic80tes a.n edge from p。目 αon vertex t) to vertex ω. For any

vertex tJ in a graph G , the neighborh∞d of tJ，儿， is {ωI (υ ， ω) E EG}.

10

Defuútion 1 Â concurrent ab8traction graph grammar i8 a tuple CAG = (N,T ,S ,P,Z),

where N ;., a βnite set 01 8ymbol8 called the nonterminais 01 the grammar, T 句 a βnite

8et 018ymbo18 called the termin aJ8 01 the grammar and S i8 a βnite 8et 01 8ymbols called

the port8ymbo18 01 the grammar 8uch that T n N = N n S = T n S = 0; P i8 a 8et

01 production8, where production8 are deβned in definition E below; and Z is a unique

distinguished nontermin aJ known a8 the aziom 01 the grammar.

The axiom Z is the goal of exactly one production a.nd may not appear 国a.ny body­

graph. This requirement is not a restriction 国 pr皿tice 回 one ca.n always augment a

gramrnar with a distinguished production that satisfies this requirement.

Definitlon 2 A production in α CAG is deβned as: p : Lp →鸟，几 where p i8 a unique

label,' L1' E N is caJled the goo1 01 the production; Bp Í8 an arbitrary graph (called the

bodygraph 01 the production), where each vertex labeled by an element 01 T u N; and 马

;s the embedding rule 01 the production: a set 01 pair8 each 01 which has one 01 the following

lorm8: (X.α ， L1' •丁)，(Y.β， X) or (X.α ， Y), where X labe18 a vertex in B1" Y E Jh, or Y is

the 8pecial wildcard character U>> or Y is the specio1 8ymbol 窍， αε PSx ， ß ε PSY ， ï ε

PSL,. These term8 are explained below.

The same symbol may appe缸 sever a.l times in a bodygraph; this is resolved by 8Ub­

sc呻ting the symbol with an index va.lue to allow them to be distinguished [17].

Deflnit10n 3 The rewriting (or r仙m叫 01 a 川ex tI in a graph G con8tructed from

a CA G by a production p lor which Lab" Í8 the goaJ i.t perlormed in the lollowing steps:

• The neigla60rhood }/u u identified.

• Th.e vertez tI and fII1 edge, incident on it 4re remo tJed Irom G.

• The bodygraph Bp Ü inøtantiated to lorm 4 d4ughter-graph， ωhich ;s inserted ;nto G.

• The daughter graph i, embedded as lollow,. For each p4ir in F1' 01 the lorm (X.a , Y)

an edge i, placed jrom the α port 01 e4ch vertex labeled by sym601 X in the daughter.

graph to any agent bound to symboI Y in }/u' For e4ch pair 01 the lorm (Y.ß ,X) an

11

edge ú placed Irom the β port 01 each verte :J: 60und to label Y in }./I) to each vertez

labeled X in the daughter graph. In Ca8e where Y is the special wildcard character

It U then an edge ú placed 介'om ρ0) every sym601 in the neighbourhood that has a

portsym601 ß. In case where Y Ì8 the special symbol % an edge ú placed /rom (to) the

verte :J: in the neighbourhood which sent the me88age which triggered the rewrite. In

60th cases, il the edge is placed Irom the vertez in the neighbourhood, it comes /rom

the port labeled ß.

The remaining lorm 仇 Fp ωes the edges 切cident on tI be/ore the rewriting to place

new edges. Thú is use/ul in case where the writer 01 the grammar does not wish to

use the neighbour symbols 句licitly (such ω 叫en a production is to be used in many

different conte础). For the lorm (X.α ， Lp.j) an edge ú placed from the α port 01

each verte :J: labeled by X in the daughter-graph to the agents that were connected to

the γ port 01 tI be/ore the rew忖ting began.

For further defìnitione, and a proof that CAG8 have 8. limited con.fluence prope即(皿Y

two vertices not connected by a path of unit length may be rewritten in parallel) see [11].

3.2 Relating Graph Grammars and Agents

We can now addre回 the 田ue of relating agenta and CAG8, and d锦cribe how to execute

the two as a concurrent 8ystem. A GARP program has two parts: a CAG and code for

each agent. Vertic眉山 the graph grammar repr四ent agents. Each agent name is bound to

either a termin&l or nontenninal symbol of the gra皿皿町. For a terminal or nonterminal

symbol X , the porta defined by the agent mu.st match PSx. We extend the reportoire of

the agents to inelude a re町it. operation with form:

(r.wri t. nue exp ...)

where nue Î8 the label of a production that has the name of the agent about to be

rewntten a.s goal and the exp ... are parameters to the production. The interpretation of

th.is operation 山 the definition of rewritins given in section 3. 1. The rewr位，皿tion must

be the agent'!! last, because the model of rewriting r叫wr回 that the agent be replaced by

12

the agents in the bodygraph of the production used in the rewriting. We will write of

nonterminal and terminal agents, depending on the symbol to which the agent is bound in

the grarnmar

We extend the production labels of graph gram.mars to have a list of formal paramete~.

Each element of the list is a pair (agen乞， parueter) , which identm臼 the agent in the

bodygraph of the production to which the p町缸neter must be pa.ssed, and the apecmc

formal parameter for that agent that should be used. When rewriting, the agents specifìed

in the p町创neter list are pa.sseà the appropriate a.ctual par缸neter when they are created.

This ability to pass 町guments 击。m an agent to the agents that repla.ce it provides a way

to pass the state of the agent to its replacements. ThiB feature is not unique to our agent

sy阳m and can be found in Actors and Cantor[4j.

The graph grammar productions give us a way of determining (in polynomial time) ex­

actly which agents might potentially be conn创ed to some port p; this allowa 句P民h民king

of the ports to ensure that all th回e potentially connected agents suppo剖 the correct set

of methocls.

With this machinery we can detìne the way that computation 山 achieved in G ARP .

When a GARP program begins execution , all the agents in the bodygraph of the production

with axiom a.s the goal are instantiated (instantiation consists of creating an instance

of the agent and starting its ex配ution) ， and ports are connected 8.! indicated by the

edges in the bodygraph. When a nonterminal agent cho佣倒也。 rewrite itself, it ex民utes a

rewri te operation , which modifì回 the graph by removing the agent and all incident edgea,

instantiates the agents in the bodygraph of the production being used in the rewrite and

connects these new agenta into the r础。f the graph using the embedding rule. Note that

conn民tioD.8 are made to sp钝迫c ports; in this way the "n&m.in g" of agents in the graph

chang四 dyna皿ie&lly.

Rewriting i.s an atomic action within a neighbourhood, so agents must enter into a

dialog with their neighbours to indicate that a rewrite will be beginning. If any edge to

be removed in the 肚前 stage of the rewrite i.s being used in a select operation, then the

rewrite must wait unt i1 the selection i.s complete or the edge i.s removed from contention in

13

the selection proc四8.

Whenm倒sages are sent to an agent , they are queued in an input buffer. An agent re­

peatedly nondetermi.nistic&l.ly selects a message from the bu.ffer and applies the appropriate

method (or returns an error if no appropriate method exists). When an agent is r叫"盹

80y messages waiting in the input bu.ffer are distributed according to the following sche囚e:

For e缸h message, determine its 阳山ce (must be a n叫hbour of 也e agent being rewritten)

80d then determi.ne the new agents to which the port of the 四urce through which the

message w国盹nt are being connected. The m四8age is then placed in the input buffer of

each of these agents. Thus 证 an agent a w回 connected to 80me agent b through some port

P, 80d b rewrit回 it臼旺， 80y m四sag四丘。m a to b that have n。也 yet been proc田sedw诅

be duplicated as m80y tim回国 newedg回 are placed from p to new agents. The converse

situati∞ (having to d创 with replies coming b配k to a.n agent that has been re町tten)

cannot occur; An agent cannot rewrite it回lf while waiting for a reply to a m回sage ， b回ause

it 山的ill in the m四sage-回nd expre臼ion. It Ì! p佣aible that 80 agent ca.n send a. m回sage

80d rewrite itself in case that the bre lÙt operator Ì! used , but 阳 this c国e the reply is

irrelevent.

4 Examples

We now illustrate GARP with several ex&mpl回. We fìnt pr回ent two solutions to the

dining philosophers problem. The 岛'St Ì! the trad.ition叫 problem with a fìxed number

of philosophe r'S. The 眠。nd &l.lOW8 philosophers to join the table at random tim回. The

S民ond eXlUIlple 山ustratee a variab怜de08ity curve plotting algorithm. ln thÌ! problem we

wish to plot • nu皿b缸。f pointa repreeenting a curve, with the proviao that the more rapid

the rate o(c:hanle o(the curve, the greater the number of pointa that should be plotted.

Wel∞k 岛，也 at two vemona of the dining phil惕。phera problem，咀ing the agenta defìned

in section 2. The 岛'St Ì! the traditional problem with a fìxed number of philoωpher'S. The

graph grammar is trivial in thia ca.se (oo1y one production 回 a剧创). Nonethelese the

eX lUIlple is worthwhile as & gentle introduction to the GARP &pproach 80d as an indication

o(how easy it Ì! to model traditional static topologi倒回 GARP (including !luch thing!l as

14

Petri nets [141 , although we give no illustration of this). The se1:ond example considers a

dynamic dining philosophers problem, in which the number of philosophers can change.

This il1ustra.tes the ease in which dyna皿ic topologies can be specified in GARP, with no

need to change any of the agent code.

The fìrst example is to be found in figure 4. The single production is instantiated ,

which takes the philosopher and fork code given above and creates 国 many copi回国 there

a.re vertices with the appropriate labels, and generates instances, making the binding of

fork ports in philosopher agents to the appropriate fork agents. From then on the system

runs independently.

The extension of this example to one in which there is a static topology but the number

of philosophers can be fìxed at instantiation time is simple but sp缸ed。因 not permit its

consideration.

The Se1:ond example allows the dyna.mic introduction and removal of philosophers. We

focus mainly on philO8Opher introduction. A philosopher who wish回 to join the group

enters, bringing with him one more fork. He then attempts to join the table. This in­

volves taking an existing philosophers fork conne1:tions , breaking one and inserting the

new philosopher and fork. We do not allow the new philo80pher to be so rude as to

grab a. fork which is currently in use; instead the new arrival must seat himself between a

philosopher and a fork that iB not in use by that philosopher.

To implement th.iB we introduce a new nonterminal , called mal tre -d. The maitre-d

sits on the edge betw~n a phil倪。pher and a f，。此， and monitors the fork statu!. If a new

philosopher enters and aaka the maitre-d to be seated betw~n the old philosopher a.nd

his fork , the maitre-d ch民ka the fork !!Itatu !!l and if not in U !!le, rewrites itself to a new

philosopher and fl。此，也。gether with appropriate new conne1:tion.e and new maitre-d nodes.

All thi.s ia illuatrated in figure 5. Initially, for !!Iimplicity we a!!I8ume we have two phil08。

phers. The new agent 1l\a1 tre-d haa ite code ahown in figure 4. The agent redeves all the

m臼sag四 that a tork agent could re1:ieve. It monitors the fiow of m臼8ages between the

philosopher and fork to which it iB conne1:ted , and maintains internally a statUß fiag. It

also reciev臼 a new m四sage ， add-new-phllollopher. On re1:iept of this message it returns

15

'OK or 'BUST. In the fonner ca.se it proc臼ds to rewrite itself to add a new philosopher to

the system.

It is also possible to remove a phil080pher and his fork from the network. This involves

recording a refinement history of the network , and updating it with refinement and em­

bedding information each time a rewrite OCCunl. Then, when an "unrewrite" is requested ,

this history information can be used to r四位ucture the network appropriately. Space do饵

not permit us to go 阳也。 detailsj the data structur四 and algorithm.s to do this unrewriting

are described in [101 (副beit in a slightly different cont叫.

We look now at the example of variable-density curve plotting. In this example, we

calculate the y-valu田。f a function I given a set of x-valu回. Then we compare each pai.r

。f y-valu钮， and 迁出ey differ more than a specified amount, we compute the 缸nction at

some set of intermediate points. We do this repeatedly until all y-values 町e within a given

tolerance of each other. The r四ul也。f this is 协副 where the curve is relatively fiat , fewer

points are computedj but aa the curve becom阔的eeper ， 80 more points 町e computed to

detìne the curve more exactly. The gram.mar is given in figure 7, and the agent code in

figure 8. Initially, we start with thr饵"田.ta ， the beginning, end and middle of the curve,

as sh拥而 in the fir!t production in the fìgure. The second production is used to add more

points if needed.

5 Implementation

GARP is implemented wring Sc.heme &nd X windows. It haa been run on Suns, RTs, Vax回

and HP workatationa. The working 町，ωm currently conaista of two parts:

• A graphical programmjng environment for creating gramman. This includ回 inter­

active typ~民king of the çamman ag&inst a data dictionary of agent information.

The environment ia implemented in Scheme &nd X for port抽出ty.

• A simulator oí the runtime behaviour of the system. This，也。0 ， is written in Scheme

and haa been in use íor approximately one year.

16

A truly pa.r&llel implementation of the system is under development for the Encore Multi­

max. Once complete a distributed implementation on the Hypercube is planned.

6 Related Work

There is a large body of literature on graph grammars (see, for example, [5]). The primary

fOCU8 of previous work h国 been on theoretical Ïssues such as the confluence of various

cl幽es of graph grammars and the hardness of the rec。但zability problem. We have

instead focused on pr缸tial application of the thωry to concurrent programming. CAGs

are based on a graph grammar formalism called Node Label Controlled (NLC) grammars

[8]. The basic difference between CAG and NLC gram皿ars 15 e叫 CAG production has

its own embedding rule.

An earlier paper on GARP [11] introduces a more primitive agent model (at approx­

imately the level of CSP, but with dynamic topologies) , a.nd focuses more on t出he阳o创r川e

issues. This paper differs from its predecessor in that it presents a more sophiaticated,

object oriented agent model in which ports are abstr缸tions of sets of agents , introduces a

model of selection on ports a.nd shows how G ARP allows an abstract na.ming model in the

face of dynamically cha.nging process networks.

Kahn and MacQueen [9] have investigated a parallel progra.m皿ing model in which in­

dividua.I processes 町e repl缸ed by networks; while our work Îß simil町， the major difference

is th80t we h80ve & form&.l way of modelling the network topologi四 th80t are created.

GARP 山 mOl!l t similar to Actons2 [3] [6]. An importa.nt difference is th80t in GARP

communic8otiona P80tt町回缸e defìned in the gram.m町， whereaa in actO I'8 they 町e set up

by paæing of addr四aes &mong ActoI'8. We believe th80t thia lack of structure is potentially

dangero明， u it reli髓。n the goodwill a.nd cooper 8otion of the progra.m皿ens building the

sy l!ltem. M lons aa the progra.mmeI'8 continue to c∞per80te succ回øfully， the system w诅

work; but the sm&.ll臼t error in propag 8otion of Actor addr幅画倒 could lead to chaos. Expe­

rience with large 四ftware sy l!ltema written in sequenti&.l prograrnming l a.nguag臼 strongly

lSpace dict&tωth&t we auum. the reader i. fa皿丛lar with Actor lY.telIa

17

sugg回归 that lack of euitable etructuring constructs for the network w让1 cauee serioU8臼ι

ware engineering problems. An attempt to addr蹦出is problem ueing reception i8u al1O'N8

the programmer to break up the Actore into groupe by convention oo1yj a miechevioU8

programmer may st山 break the sy的em by p8.S8ing "internal" Actor addr回S回。ut to other

Actor田. In G ARP this cann。也 happen.

Two other ways of d回cribing p&r山1 networkø - CC5 [13J and Petri Nω[141- are also

related to our work. Wi他 CC5 we sh&re the ∞ncept of porte and the idea of a network of

proce回回jhσwever ， we use asynchronoue communication where CC5 ie synchronoU8 and

n倒也 no notion of global time. It also 皿ems that 也he application of CC5 ie limited to

fix时 topology networks. Petri nete use asynchronoue communic剖ion ， but &re also limited

to fix创 topology.

There are seve川的her approach回 to concurrent programming: Ada [11 fOCU8回 on

providing a good language model for a proce圃， and all but ignor四 interproce88 topology

issueøj Cantor ie inter倒也ed in p&rallel obj削-oriented programming and giv倒 the same

support for topol。盯 control u d。倒 Actor 5y阳møj 皿d Argus [12] fl。ω倒。n 四ueø of

atonUcity and robuetn四8. Th四e lMU倒町e orthagonal to th幅eaddr回配d in thiø paper.

7 Credits

GARP 臼 principally the work of the firat auth町， who also b山lt the prototype. Campbell,

Goering and Kai.øer have contributed øubetantially to the d四ign of the syøtem. Loyall

is respon.sible for the parallel implementation on the Multim&X and H且richø and J缸keIø

have built the X-baaed proça皿皿ing environment. Scheme i.ø uaed a8 the implementation

language throu&.hout the project.

8 ConcluøioDø

Thiø paper hu introduced the concurrent programming øyøtem GARP. GARP uaes a multi­

p&radigm approach to øolving the proble;n of building concurrent syøtemø with dyn&mÏc

interprocess topologi饵， in w hic.h i.øsu目。fna皿ing and topology control are described graph-

18

ically using a CAG graph grammar, a.nd individu&l proc四se8 are Sp民诅ed ~ing a textual

programming la.nguage (our current base la.nguage is Scheme). This &llows a separation of

concerns when programming; the programmer ca.n fOCUB on the ∞de for the proc臼8which

he is developing , without being di8tracted by naming isaues, a.nd the designer of the system

can spec迂Y all interconnections econ。因cally wi也 a graph grammar, and not have to rely

on the programmer implementing the correct addr四smg 也o m&ke the naming in the system

work properly.

References

[1] Re/erence Manual lor the Ada Programming La.ngωge. Technical Report MIL-STD

1815, United Stat四 Department of Defense.

[2] Gul Agha. ACTORS: A Model 01 Conωrrent Comput a.tion in Distributed Sy8te f'7U.

M. I.T. Pr侧， Cambridge, Maøs. , 1986.

[3] Gul Agha. Sema.ntic conside川。n8 in the actor p町adigm of concurrent computation.

ln A. W. Ro配oe S. D. Brook四 and G. Win.skel , edito凹， Seminar on Concurrency,

LNCS 197, pages 151-179, Springer-Verlag , New York , 1985.

[4] W. C. Athas a.nd C. L. Seitz. Ca.ntor User Report. Technic&l Report 5232:TR:邸，

California Institute of TI民hnology， Janu&ry 1987.

[5] Hartmut Eh吨， Ma.n.fred Nagl , and Grzegorz Rozenberg (edø). Graph Gramma.r8

and their Applic4tioft to Computer Scieft饵， Lecture Notes in Computer Science 159.

Springer-Verlag, 19M.

[6] C. Hewitt , T. Reinhart, G. Agha, and G Attardi. Linguistic !lupport of receptionists

for share:i resourc四. In A. W. Ro配。e S. D. Br∞kes and G. Winakel, editor菌， Seminar

on Concurrency, LNCS 197, pages 151-179, Springer-Verlag, New York , 1985.

[7] C. A. R. Hoare. COIIllIl1皿icat时 sequential proc幽眉• Communic a.tion8 01 the A. CM,

21 (8):666-Ð77, AU81ll't 1978.

19

[8] Dirk Jan.ssens and Grzegorz Rozenberg. Graph grammars with node-label control

and rewriting. In Hartmut Ehrig, Manfred Nagl , and Grzegorz Rozenberg , editors,

Proceedingø 0/ the second lnternationai Work8hop on Graph Grammars and their Áp­

plication to Computer Science, LNCS 159, pag饵 186-205 ， Springer-Verl吨， 1982.

[9] G. Kahn and D. MacQueen. Coroutines and networks of parallel processes. In ln/or­

mation Processing 77, pages 993-998 , Academic Pr臼8 ， 1978.

[10] Simon M. Kaplan. lncremental Attribute E圳uation on Graphs (Revised Version).

Technical Report UIUC-DCS-86-1309, University of lllinois at Urbana.-Champaign,

December 1986.

[11] Simon M. Kaplan and Gail E. Kaiser. G町p: graph 阳tr削ions for ∞ncurrent pro­

gramming. In ESOP '88, Springer-Verlag , March 1988.

[12] Barbara Liskov and Robert Scheifier. Guar面ans and actions: lin胆istic 四pport for

robust , distributed progra.扭Iru!

[131 R. Milner. A calculus of communicating systems. In Lecture Noteø in Computer

Science 1J0lume 9E, Springer-Verlag , Berlin , 1980.

[141 C. A. Petri. Concurrency. In Net Theory and Applicationø, LNCS 84, Spri吨er-Verlag ,

Berlin, 1980.

[15] J. Rees and W. Clinger (Edit叫. Reviaed (3) report on the algorithn山 language

scheme. Sigplan Notice" 21(12):37-79, D民ember 1986.

[16] Rob的 E. Strom and Shaula Yemini. The nil diatributed 町阳IIl8 programming lan­

guage: a statu.s report. In S. D. Br∞k饵， A. W. Roecoe , and G. W in.skel , edit。目，

Seminar On Concurrency, LNCS 197, pages 512-523 , Springer-Verlag , New York ,

1985.

[17] William M. Wa.i te and Gerhard Go倒• Compiler Conøtruction. Springe川'erl吨， New

York , 1984.

20

(agent tork
(ports 0)
(args 0)

(detine busy?
(lambda 0

code to determine
fork StIJtU8))

(detine concede-tork
(lambda 0

code to mark for l: cu
in use IJnd return 'OK reply))

(detine tree-tork
(lambda 0

code to marl: fork 48 Iree))

(method P
{lambda 0

(it (busy?)
'Fork-in-Uae

(concede-tork))))

(method V
{lambda 0

(fr..-fork)))

(free-fork))

Figure 2: Fork Agent

(agent philoøopher
(ports leftfork r1ghtfork)
(args 0)

(define pick-up-forks
(lambda (first second)

(detine re也ry
(lambda 0

(øleep-random-t1me)
(p1ck-up-forks f1rst second)))

(if (eq? (tirs乞 'P) 'OK)
(1f (eq? (øecond 'P) 'OK)

'Got-the-Forks
(beg1n

(t1rst 'V)
(retry)))

(retry))))

(def1ne relea.e-fork
(lobda (fork) (fork 'V)))

(whlle tt (乞h1nlt)

21

(pick-up-for~. 1eft r1ght)
(ea乞)

(re1ease-fork r1ghtfork)
(re1ea.e-fork 1eftfork)))

Figure 3: Phil帽。pher Agent

production diner~

Figure 4: Static Dining Philosophers Grammar

22

production initial-d主 ner

production add-philo~opher

maitre-dSO -->

embeddinq rule
(maitre-dSl. fork , fork)
(philo~opher .1eft , mait re-dS3)
(philosopher.riqht , maitre-dS3)

Fi~ 5: Dyn&mic 0国皿g Philoeophera Grammar

23

(agent maitre-d
(ports tork)
(args 0)

code for internal statu8 manipulation omitted

(method P
(lambda ()

(let ((temp (tork 'P)))
(set-internal-statu8 temp)
temp)))

(method V
Clambda 0

(reset-internal-øtatus)
(tork 'V)))

(method add-new-phil。目。pher
(lambda ()

(if (internal-statuø-ok?)
(begin

(reply 'OK)
(re盯ite add-philosopher))

'BUSY))))

Figure 6: Code for M&i tre-d nontermina.l agent

24

Produc tion Axicm ((A$l, f) (A$2 , f) (P 仙， f) CP$* , x))

production new-poin巳((A$l , f) (1.$ 2 , f) (P , f) (P , x))

A$O ..>

embedding rule
(A$O . L, A$l. L)
(A$O.R , A$2.R)

Fisure 7: V町iable Detuity Curve Grammar

25

•- -

(agent P
(ports ())
(args f x)

(define val (f x))

(method value
(lambdaO

(cons x val)))

(agent A
(ports (L R))
(args f)

~define compare-resulta-阻止rewrite
(lambda (pl p:2)

(it (not (close-enough? (cdr p1) (cdr p2)))
(re盯ite new-point f f f (average (car pl) (car p2))))))

code for cloøe-enougla ~， a fJerage not slaown

(compare-reaults- &nd-re町ite ((L 'value))
((R 'value)))))

Figure 8: Yariable Density Curve Agents

26

