
Approaches to High-Level Programming and

Prototyping of Concurrent Applications

Wilhelm Hasselbring

University of Dortmund

Concurrent programming is conceptually harder to undertake and to understand than sequen-
tial programming, because a programmer has to manage the coexistence and coordination of
multiple concurrent activities. To alleviate this task several high-level approaches to concurrent
programming have been developed. For some high-level programming approaches, prototyping for
facilitating early evaluation of new ideas is a central goal.

Prototyping is used to explore the essential features of a proposed system through practical
experimentation before its actual implementation to make the correct design choices early in the
process of software development. Approaches to prototyping concurrent applications with very
high-level programming systems intend to alleviate the development of parallel algorithms in quite
di�erent ways. Early experimentation with alternate design choices or problem decompositions
for concurrent applications is suggested to make concurrent programming easier.

This paper presents a survey of approaches to high-level programming and prototyping of
concurrent applications to review the state of the art in this area. The surveyed approaches are
classi�ed with respect to the prototyping process.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Program-
ming|Parallel Programming, Distributed programming; D.2.2 [Software Engineering]: Tools
and Techniques|Computer-aided software engineering (CASE), Petri nets, Software libraries;
D.2.m [Software Engineering]: Miscellaneous|Rapid prototyping; D.3.2 [Programming

Languages]: Language Classi�cations|Concurrent, distributed, and parallel languages, Very
high-level languages; D.3.3 [Programming Languages]: Language Constructs and Features|
Concurrent programming structures

General Terms: Languages

Additional Key Words and Phrases: Concurrency, Parallelism, Distribution, Rapid prototyping,
Very high-level languages

Address: Computer Science Department, Informatik 10, D-44221 Dortmund, Germany; email:
hwilli@ls10.informatik.uni-dortmund.dei.

2 � W. Hasselbring

Contents

1 INTRODUCTION 2

2 APPROACHES 3

2.1 Low-Level versus High-Level . 3
2.2 High-Level Libraries . 4
2.3 Set-Oriented Data Parallelism . 6
2.4 Concurrent Functional Languages . 7
2.5 Concurrent Logic Languages . 9
2.6 Concurrent Object-Based Languages 11
2.7 Composition and Coordination Languages 13
2.8 Graphical Programming Systems . 15

3 TRANSFORMING PROTOTYPES INTO EFFICIENT IMPLE-

MENTATIONS 19

4 CONCLUSIONS 20

1. INTRODUCTION

There has been particular attention on concurrent programming within the com-
puter science community during the last decades. We regard concurrency as the
potential for parallel execution and distribution of activities. Thus, concurrent pro-
gramming encompasses parallel programming and distributed programming. Sev-
eral motivations for concurrent programming exist:

(1) Decreasing the execution time for an application program.

(2) Increasing the fault-tolerance.

(3) Exploiting explicitly the inherent parallelism of an application.

Achieving speedup through parallelism is a common motivation for executing an
application program on a parallel computer system. Usually, parallel program-
ming aims at high-performance computing. Another motivation is achieving fault-
tolerance: for critical applications like controlling a nuclear power plant, a single
processor may not be reliable enough. Distributed computing systems are poten-
tially more reliable: as the processors are autonomous, a failure in one processor
does not a�ect the correct function of the other processors. Fault-tolerance can,
therefore, be increased by replicating functions or data of the application on several
processors. If some of the processors crash, the others can continue the job.
However, the main motivation for integrating explicit parallelism into high-level

prototyping languages is to provide means for explicitly modeling concurrent ap-
plications. Consider, for instance, concurrent systems such as air-tra�c-control
and airline-reservation applications, which must respond to many external stimuli
and which are therefore inherently parallel and often distributed. To deal with
nondeterminism and to reduce their complexity, such applications are preferably
structured as independent parallel processes.
Combining concurrent programming with prototyping intends to alleviate con-

current programming on the basis of enabling the programmer to practically ex-

Approaches to High-Level Programming and Prototyping of Concurrent Applications � 3

periment with ideas for concurrent applications on a high level neglecting low-level
considerations of speci�c parallel and distributed architectures in the beginning of
program development. Prototyping concurrent applications intends to bridge the
gap between conceptual design of concurrent applications and practical implemen-
tation on speci�c parallel and distributed systems.
To be useful, prototypes must be built rapidly, and designed in such a way that

they can be modi�ed rapidly. Therefore, prototypes should be built in very high-
level languages to make them rapidly available. Consequently, a prototype is usually
not a very e�cient program since the language should o�er constructs which are
semantically on a very high level, and the runtime system has a heavy burden for
executing these highly expressive constructs. The above-mentioned primary goal of
parallel programming | decreasing the execution time for an application program
| is not the �rst goal for prototyping concurrent applications. The �rst goal is
to experiment with ideas for concurrent applications before mapping programs to
speci�c parallel architectures to achieve high speedups.
Section 2 presents a survey of approaches to high-level programming and pro-

totyping of concurrent applications. For each approach, �rst the general idea is
discussed. Then, a short presentation of an example system follows before some
sample systems are listed. The short example is intended to give a �rst impression of
the particular approach. For the listed sample systems a brief characterization and
some references are given. We do not intend to provide a comprehensive bibliogra-
phy in this paper. For each included approach just a few representative references
will be given. We also do not intend to provide a comprehensive survey of concur-
rent programming languages. Only approaches which are designed for prototyping
or appear to be good candidates for prototyping are included. The transformation
of prototypes into e�cient implementations is discussed in Section 3, and Section 4
draws some conclusions.

2. APPROACHES

2.1 Low-Level versus High-Level

There exist many approaches to concurrent programming. The traditional model
of message passing is that of a group of sequential processes running in paral-
lel and communicating through passing messages. This model directly re
ects the
distributed memory architecture, consisting of processors connected through a com-
munication network. Many variations of message passing have been proposed. With
asynchronous message passing, the sender continues immediately after sending the
message. With synchronous message passing, the sender must wait until the re-
ceiver accepts the message. Remote procedure call and rendezvous are two-way
interactions between two processes. Broadcast and multicast are interactions be-
tween one sender and many receivers. Languages based on the message passing
model include occam, Ada, SR, and many others. As these languages with their
variations of message passing have been studied extensively in the literature, we
refer to Bal, Steiner, and Tanenbaum [1989] for an overview, and do not discuss
them in detail here.
For some applications, the basic model of message passing may be the optimal

solution. This is, for example, the case for an electronic mail system. For other

4 � W. Hasselbring

applications, however, this basic model may be too low-level and in
exible.
Processes that are collaborating on a problem will ordinarily need to share data,

but in the message-passing model data structures are sealed within processes, and
so processes cannot access the others' data directly. Instead they exchange mes-
sages. This scheme adds complexity to the program as a whole: it means that
each process must know how to generate messages and where to send them. This
greatly increases the complexity of programs, and also restricts algorithm design
choices, inhibiting experimentation with alternate algorithm choices or problem de-
compositions. Refer to Bal [1990] for an extensive discussion of the shortcomings of
the message-passing model. To quote from Agha [1996]: \Programming using only
message passing is somewhat like programming in assembler: sending a message is
not only a jump, it is a concurrent one."
In contrast to the message-passing model, the shared-memorymodel allows appli-

cation programs to use shared memory as they use normal local memory. The pri-
mary advantage of shared memory over message passing is the simpler abstraction
provided to the application programmer, an abstraction the programmer already
understands well.
Because of the problems with the low-level programming models for message

passing, many models which emphasize some kind of shared data have been de-
veloped that intend to deliver a higher level of abstraction to alleviate concurrent
programming. These high-level programmingmodels appear to be good candidates
for prototyping concurrent applications.
The traditional method for communication and synchronization with shared data

is through shared variables. The use of shared variables for coordination of concur-
rent processes with, e.g., semaphores or critical sections has been studied extensively
[Andrews 1991]. However, we regard shared variables as a low-level medium for co-
ordination, because the synchronization, which is necessary to prevent multiple
processes from simultaneously changing the same variable (avoiding lost updates),
is di�cult. Several other coordination models based on shared data exist, however,
which are better suited for concurrent programming and consequently proposed for
prototyping concurrent applications.
Our survey of approaches to high-level programming and prototyping of concur-

rent applications starts with high-level libraries for message passing (Section 2.2)
to continue with data parallelism (Section 2.3), concurrent functional languages
(Section 2.4), concurrent logic languages (Section 2.5), concurrent object-based lan-
guages (Section 2.6), composition/coordination languages (Section 2.7), and graph-
ical programming systems (Section 2.8). Figure 1 classi�es the approaches surveyed
in the paper into a simple taxonomy.

2.2 High-Level Libraries

Idea. Mechanisms for concurrent programming are often provided to the pro-
grammer through libraries of functions on an operating-system level. As the use
of many of these libraries is very complicated, it has been proposed to use some
kind of high-level libraries for prototyping concurrent applications. These high-
level libraries intend to alleviate their use by the provision of simple interfaces and
more
exibility than the lower-level libraries provide, while relinquishing e�ciency
to some extent.

Approaches to High-Level Programming and Prototyping of Concurrent Applications � 5

library

graphical
representation

Petri−Nets

state−transition
diagrams

other
data−flow
diagrams

data−parallel

functional
logic

composition and
coordination
languages

surveyed approaches

linguistic approaches

object−based

Fig. 1. A taxonomy for the approaches surveyed in the paper.

Such libraries only support unstructured programming since there exists no com-
piler support for checking the proper use of the libraries. It could be argued that
these approaches are not really high-level approaches, but they are included in this
survey because some are explicitly designed for prototyping concurrent applications.

An Example. IPC FBase [Cao et al. 1993] is a library which supports prototyp-
ing on Transputer networks. The Transputer is a processor providing four serial
links, which may be connected to other Transputers. Transputer processors are
usually con�gured into a two-dimensional grid. To alleviate programming of such
systems, the library IPC FBase supports high-level functions for routing and dy-
namic recon�guration to allow early prototyping and performance evaluation of
di�erent parallel algorithms on Transputer networks. Examples for topology emu-
lation functions are:

soft pipe(NumberOfNodes)
soft ring(NumberOfNodes)
soft tree(NumberOfNodes)
soft star(NumberOfNodes)

Corresponding to each basic network topology, a routing function is provided which
supports two-way communication (routing pipe() etc.). These functions are in-
tended to o�er the programmer the possibility to experiment with parallel algo-
rithms for di�erent processor topologies. With traditional programming languages
for Transputer systems (e.g. occam or Parallel-C), it is somewhat arduous to sim-
ulate and recon�gure di�erent topologies on the grid-based architecture.
As a case study, Cao, de Vel, and Wong [1993] discuss a parallel tree search

algorithm which uses the tree topology. The algorithm uses the divide-and-conquer
technique, in which the overall search is broken down into a collection of smaller

6 � W. Hasselbring

searches that can be undertaken in parallel. With the tree topology, the search
involves communication of a search key to the root, dispersion of the key through
the branches and to all the leaves, check for the existence of the key in each leaf,
and to gather in the results from all the leaves via the branches. With the functions
for emulation of and routing in trees, it was straightforward to implement the �rst
versions of this parallel algorithm.

Some Sample Systems. In addition to IPC FBase, there exist some other ap-
proaches to prototyping with high-level libraries:

|Polylith [Purtilo et al. 1988; Purtilo and Jalote 1991] is a module library for proto-
typing concurrent applications, that supports di�erent communication primitives
with speci�ed delays, and provides primitives to aid debugging and evaluation.
The environment also supports heterogeneous computation in which processes
can execute on di�erent hardware. Di�erent source languages can be used for
coding di�erent modules of the processes.

|StarLite [Son and Kim 1989] provides a library of functions for prototyping trans-
action processing mechanisms for distributed database systems.

|The high-level library VAN (Virtual Agent Network) for prototyping computa-
tional agents in a distributed environment is presented in French and Viles [1992].

|It has also been proposed to prototype distributed information systems with
remote procedure call (RPC)-based programs [Zhou 1994].

2.3 Set-Oriented Data Parallelism

Idea. Data parallelism extends conventional programming languages so that some
operations can be performed simultaneously on many pieces of data. For example,
all elements in a list or in an array can be updated at the same time, or all items
in a database are scanned simultaneously to see if they match some criterion. For
an account to data-parallel algorithms refer to Hillis and Steele [1986] and for an
account to data-parallel programming refer to Quinn and Hatcher [1990]. Data-
parallel operations appear to be done simultaneously on all a�ected data elements.
This kind of parallelism is opposed to control parallelism that is achieved through
multiple threads of control, operating independently.
Data parallelism is a relatively well-understood form of parallel computation

as it is the simplest of all styles of concurrent programming, yet developing sim-
ple applications can involve substantial e�orts to express the problem in low-level
data-parallel notations. Approaches to prototyping data-parallel algorithms usually
extend a sequential prototyping language with some high-level data-parallel con-
structs to allow experimentation with di�erent data and problem decompositions.
In contrast to most traditional data-parallel approaches, high-level data-parallel ap-
proaches usually provide some kind of set-oriented, nested data-parallel constructs.
The data-parallel approach lets programmers replace iteration (repeated execu-

tion of the same set of instructions with di�erent data) by parallel execution. It does
not address a more general case, however: performing many interrelated but dif-
ferent operations at the same time. This ability is essential in developing complex
concurrent application programs. Therefore, the capabilities of the data-parallel
approach for prototyping concurrent applications are limited.

Approaches to High-Level Programming and Prototyping of Concurrent Applications � 7

An Example. Let us take a look at a data-parallel extension of SETL. SETL is
a set-oriented language designed for prototyping (sequential) algorithms [Kruchten
et al. 1984]. In PSETL [Hummel and Kelly 1993], parallelism is introduced into
SETL through the use of explicit parallel iterators, which are used in iterator ex-
pressions and in loops over sets and tuples. For instance, the instructions in the
following nested loop are executed in parallel and not executed in sequential itera-
tions:

MySet := fg;
for Range par over f[1..1000], [3000..5000], [8500..9000]g do

MySet := MySet + ff(Index): Index par over Rangeg;
end for;

The expression \ff(Index): Index par over Rangeg" is a nested parallel loop
over the tuple Range. This example computes the set of all values of some function
f applied to the indexes in the given ranges.

Some Sample Systems. In addition to PSETL, there exist some other approaches
to prototyping data-parallel algorithms:

|Parallel ISETL [Jozwiak 1993] is a variation of ISETL [Dubinsky and Leron 1993]
that supports data parallelism. ISETL is an interactive implementation of SETL.

|Proteus [Mills et al. 1991] is another variation of ISETL that supports control and
data parallelism for prototyping concurrent applications. In addition to the data-
parallel constructs, Proteus supports future synchronization (see Section 2.4) and
shared variables for control parallelism.

|NESL [Blelloch 1996] is a data-parallel extension to a set-oriented language which
emphasizes nested data-parallel constructs. NESL is somewhat di�erent as it has
an ML-like syntax with strong typing. It has been designed for teaching and high-
level programming. The NESL compiler is able to generate e�cient code on the
basis of an underlying performance model [Blelloch et al. 1994].

2.4 Concurrent Functional Languages

Idea. A functional program comprises a set of equations describing functions and
data structures which a user wishes to compute. The application of a function to
its arguments is the only control structure in pure functional languages. Functions
are regarded in the mathematical sense that they do not allow side e�ects. As a
consequence, a value of a function is determined solely by the values of its argu-
ments. No side e�ects are allowed. No matter what order of computation is chosen
in evaluating an expression list, the program is guaranteed to give the same result
(assuming termination).
Therefore, functional programs are implicitly parallel. Because they are free of

side e�ects, each function invocation can evaluate all of its arguments and possibly
the function body in parallel. The only delay may occur when a function must wait
on a result being produced by another function.
However, the real problem with e�ciency in functional programs is not discov-

ering parallelism but reducing it so as to keep the overhead on an acceptable level.
Concurrent functional languages address this problem by allowing the programmer
to insert annotations which specify when to create new threads of control. Multilisp

8 � W. Hasselbring

[Halstead 1985] is a typical parallel functional language, which augments Scheme
with the notion of futures where the programmer needs no knowledge about the
underlying process model, inter-process communication or synchronization to ex-
press parallelism. She or he only indicates that she/he does not need the result
of a computation immediately (but only in the \future") and the rest is done by
the runtime system. Refer to Szymanski [1991] for a collection of papers on several
concurrent functional languages.
Processes sometimes cooperate in a way that cannot be predicted. It is impossi-

ble, for instance, to predict from which terminal of a multi-user computing system
the next request for a particular service might come. Moreover, the system behav-
ior necessarily depends on previous requests. Therefore, pure functional languages
are not suitable for programming cooperating processes: they are deterministic
and they do not have variables. Processes described as functions cannot include
choices of alternative actions and they cannot remember their states from one action
to another. Nondeterminism would destroy referential transparency in functional
programming languages. Both nondeterminism of events and dependence on the
process history are strong arguments for an imperative rather than applicative pro-
gramming model for cooperating processes. This is due to the determinism and the
lack of variables which make pure functional languages impractical for program-
ming concurrent applications. Therefore, approaches to prototyping concurrent
applications with functional languages usually support some kind of state.

An Example. In the PSP approach [Heping and Zedan 1996], a functional lan-
guage has been extended with state variables to allow prototyping parallel respon-
sive systems. A PSP function for changing the direction in a lift system is presented
as an illustrating example:

fun Change direction()r:bool
= let val up request = (existsi mem

(up buttons sor down buttons sor panel buttons)
suchthat i > position)

val down request = (existsi mem
(up buttons sor down buttons sor panel buttons)
suchthat i < position)

in

if (Been served(0) and (up request or down request))
then if (direction and up request)

then true

else if (not direction and down request)
then false

else not direction
else direction

end

In this small example, position, direction, up request, down request, up buttons,
down buttons, and panel buttons are global state variables. Refer to Heping and
Zedan [1996] for a discussion of the complete prototype implementation of this lift
system.

Approaches to High-Level Programming and Prototyping of Concurrent Applications � 9

Some Sample Systems. Another approach extends a functional language with
state variables to support prototyping:

|PAISLey [Zave and Schell 1986; Nixon et al. 1994] is a functional programming
language that combines asynchronous processes and functional programming to
overcome the problems with pure functional languages for programming cooper-
ating processes. Parallelism in PAISLey is based on a model of event sequences
and used to specify functional and timing behavioral constraints for asynchronous
parallel processes. Each process computes some function of its inputs and runs
in parallel with the other processes. Each computation is activated by an event.
The process then evaluates the function and returns the result. This result is
used as the process state. Therefore, the life of a process is represented by a
series of state changes, each of which is considered to be the result of a computa-
tion. The connection between two functions is established via channel attributes
of the function calls.

However, some pure functional languages have also been used for prototyping:

|The Crystal approach [Chen et al. 1991] starts from pure functional programs
(prototypes) through a sequence of transformations to the generation of e�cient
target code with explicit communication and synchronization.

|The functional subset of Standard ML has been used for prototyping parallel
algorithms for computer vision [Wallace et al. 1992; Michaelson and Scaife 1995].

2.5 Concurrent Logic Languages

Idea. Logic programming languages, of which PROLOG [Clocksin and Mellish
1987] is best known, express programs as a set of clauses, which may be read
procedurally or declaratively. For example, the following clauses:

A :- B,C,D

A :- E,F

can be interpreted as \to do A, do either B, C, and D, or do E and F". Alternatively,
we can view it as \A is true, if either B, C, and D are true, or E and F are true".
PROLOG programs express two distinct forms of implicit parallelism. Firstly,

several di�erent clauses may be evaluated separately. This is called OR-parallelism,
since only one of them must succeed. Secondly, each subgoal (in the above example
B, C, D, E, and F are subgoals) can be executed in parallel, although data depen-
dencies may limit the extent of parallelism. This is called AND-parallelism, since
all of the subgoals must succeed for the clause to succeed. AND-parallelism is the
simultaneous reduction of several di�erent subgoals in a goal; OR-parallelism is the
simultaneous evaluation of several clauses for the same goal. AND/OR-parallelism
is implicit parallelism similar to the implicit parallelism found in functional lan-
guages, which does not give additional expressiveness.
AND-parallel committed choice logic is an approach to concurrent logic languages

which uses guards in the clauses [Shapiro 1989]. Subgoals are uni�ed in parallel.
This approach uses shared logical variables as a communication medium. In OR-
parallel committed choice logic, all clauses that match a goal are tried in parallel
and when one can be uni�ed, the execution to this clause commits. If more clauses

10 � W. Hasselbring

can be uni�ed, one is chosen nondeterministically. A clause in committed choice
logic has the structure:

A :- G1, ..., Gm | B1, ..., Bn

G1, ..., Gm are guards, and the rest is like ordinary PROLOG clauses. Such a
clause includes a commit operator | (omitted if the guard is empty) used to sepa-
rate the right-hand side of the clause into a conjunction of guard conditions and a
conjunction of subgoal predicates. The guard conditions must evaluate to true to
enable the evaluation of the subgoals. The commit expresses don't-care nondeter-
minism, i.e., the termination of the OR-parallel evaluation of alternative clauses:
if more than one clause can apply to reduce a subgoal, one is chosen arbitrarily
and no backtracking can take place if that choice later results in a failure. The
underlying idea in the family of committed choice concurrent logic languages is to
model synchronization between processes by imposing some constraints on the uni-
�cation mechanism. Shapiro [1989], Ciancarini [1992], and de Kergommenaux and
Codognet [1994] present surveys of several concurrent logic languages and systems.
As PROLOG has been used for prototyping sequential algorithms [Budde et al.

1984], concurrent logic languages seem to be good candidates for prototyping con-
current applications.

An Example. As an example for a committed choice logic program, let us consider
a parallel quick-sort program in the Reactive Guarded De�nite Clauses (RGDC)
notation, which is copied from Huntbach and Ringwood [1995]:

qsort([], L) :- L:=[].
qsort ([HjT], Q) :- qsort(S,SS), qsort(L,SL), append(SS, [HjSL], Q),

part(T,H,S,L).
part([], X, S, L) :- S:=[], L:=[].
part([HjT], X, S, L) :- H<X j S:=[HjS1], part(T,X,S1,L).
part([HjT], X, S, L) :- H�X j L:=[HjL1], part(T,X,S,L1).
append([], L, L1) :- L1:=L.
append([HjT], L, A) :- A:=[HjA1], append(T, L, A1).

Parallel sorting is split into parts using the guards H<X and H�X. Synchronization
is implicit through data dependencies. The symbol j is overloaded: it is used for list
concatenation and to separate the guards. For a detailed discussion of this compact
parallel quick-sort program refer to Huntbach and Ringwood [1995].
At least for developers who are familiar with logic programming, this approach

provides a way for experimenting with concurrent applications on a very high level.

Some Sample Systems

|Strand [Foster and Taylor 1989] is a commercial system based on committed
choice logic which comprises a language, a development environment and con-
current programming libraries to support prototyping of parallel algorithms.

|PROLOG has been used for simulation and prototyping of Estelle protocol spec-
i�cations in the V�eda system [Jard et al. 1988].

Approaches to High-Level Programming and Prototyping of Concurrent Applications � 11

2.6 Concurrent Object-Based Languages

Idea. An approach to imperative programmingwhich has gained widespread pop-
ularity is that of object-oriented programming [Meyer 1997]. In this approach, an
object is used to integrate both data and the means of manipulating that data. Ob-
jects interact exclusively through message passing by method invocation and the
data contained in an object is visible only within this object itself. The behavior
of an object is de�ned by its class, which comprises a list of operations that can
be invoked by sending a message to an object. All objects must belong to a class.
Objects in a class have the same properties and can be manipulated using similar
operations. The de�nition of an object class can act as a template for creating
instances of the class. Each instance has a unique identity, but has the same set of
data properties and the same set of operations which can be applied to it.
Inheritance allows a class to be de�ned as an extension of another (previously

de�ned) class. Typically when a new class is created, a place for it is de�ned
within the class hierarchy. The e�ect of this is that the new class inherits the state
attributes and operations of its superclass in the hierarchy. Objects may inherit
features from more than one class in some approaches (multiple inheritance).
There are several possibilities for the introduction of concurrency into object-

oriented languages, viz.:

|Objects are active without having received a message.

|Objects continue to execute after returning results.

|Messages are sent to several objects at the same time.

|Senders proceed in parallel with receivers.

These possibilities can be realized by associating a process with each object. Just as
a parallel-processing environment implies multiple processes, a concurrent object-
oriented system spawns multiple active objects, each of which can start a thread
of execution. Objects are usually addressed by an object reference (returned upon
creation of the object) or by a global object name.
Concurrent object-oriented languages use three types of communication: syn-

chronous, asynchronous, and eager invocation. Synchronous communication uses
remote procedure calls. It is easiest to implement, but sometimes ine�cient because
of the necessity for both the sender and receiver to rendezvous. Asynchronous
communication eliminates the wait for synchronization and can increase parallel
activity. Eager invocation, or the futures method, is a variation of asynchronous
communication (see also our discussion of futures in Multilisp in Section 2.4). As
in asynchronous operation, the sender continues executing, but a future variable
holds a place for the result. The sender executes until it tries to access the future
variable. When the result has been returned, the sender continues; if not, it blocks
and waits for the result.
Probably the most di�cult aspect of integrating parallelism into object-oriented

languages is that inheritance greatly complicates synchronization. When a subclass
inherits from a base class, programs must sometimes rede�ne the synchronization
constraints of the inherited method. If a single centralized class explicitly controls
message reception, all subclasses must rewrite this part each time a new operation
is added to the class. The subclass cannot simply inherit the synchronization code,

12 � W. Hasselbring

because the higher-level class cannot invoke the new operation of the subclass.
The concurrent object-oriented languages resolve these synchronization problems
in di�erent ways as discussed in Agha [1990]. Matsuoka and Yonezawa [1993]
provide a detailed discussion of this so-called inheritance anomaly in concurrent
object-oriented languages, where re-de�nitions of inherited methods are necessary
in order to maintain the integrity of parallel executing objects. Inheritance anomaly
represents the situation where the synchronization on a parent class needs to be
changed as a result of the extension on that class via inheritance [Mitchell and
Wellings 1996]. This anomaly could eliminate the bene�ts of inheritance. Meyer
introduces the subject with the warning:

\Judging by the looks of the two parties, the marriage between con-
current computation and object-oriented programming| a union much
desired by practitioners in such �elds as telecommunications, high per-
formance computing, banking and operating systems | appears easy
enough to arrange. This appearance, however, is deceptive: the prob-
lem is a hard one." [Meyer 1993, page 56]

Due to the problems for synchronization which are caused by inheritance, concur-
rent object-based systems have been suggested for prototyping concurrent applica-
tions. Object-based languages do not support inheritance. The actor model is a
classical example for an object-based model [Agha 1986; Agha 1996]. Actors extend
the concept of objects to concurrent computation: Each actor potentially executes
in parallel with other actors and may send messages to actors of which it knows
the addresses.
To our knowledge there exists no published approach to prototyping concurrent

applications with concurrent object-oriented languages, in spite of the fact that
object-oriented languages | in particular Smalltalk | appear to be good candi-
dates for prototyping sequential systems [Barry 1989; Budde et al. 1992; Bischof-
berger and Pomberger 1992].

An Example. PDC [Weinreich and Ploesch 1995] is a concurrent object-based
system that extends C++ to use operating system processes as active objects. The
communication between active objects is handled by executing so-called remote
method calls which may be synchronous or asynchronous. It is not allowed to modify
or rede�ne remote methods through inheritance to avoid the problems with the
inheritance anomaly. Figure 2 displays a snapshot of active objects in PDC. Each
active object is a sequential process implemented in C++. The prototyping idea
here is to provide simple mechanisms for communication between active objects.
PDC is accompanied by the graphical tool ProcessBuild, which o�ers a graphical
representation for con�guring the active objects (see also Section 2.8).

Some Sample Systems. Some other concurrent object-based systems have been
suggested for prototyping parallel algorithms:

|RAPIDE [Luckham et al. 1993] is a concurrent object-based language speci�cally
designed for prototyping parallel systems that combines the partially ordered
event set (poset) computation model with an object-oriented type system for the
sequential components.

Approaches to High-Level Programming and Prototyping of Concurrent Applications � 13

Active Object

Active Object

Active Object

local passive objects

(remote method calls)

method call for passive objects

communication between active objects

Fig. 2. A snapshot of active objects in PDC. Each active object may contain several passive
objects, but no active objects.

|The PROTOB [Baldassari et al. 1991] approach considers nodes in PROT nets
[Bruno and Marchetto 1986] to be communicating objects (see also Section 2.8).
Inheritance is not supported by PROTOB.

This is not an exhaustive list of concurrent object-based languages. Other examples
are the ABCL [Yonezawa 1990] series of languages and HAL [Houck and Agha 1992],
which could be used for prototyping concurrent applications. Agha, Wegner, and
Yonezawa [1993] provide a collection of papers on various concurrent object-oriented
approaches, and Wyatt, Kavi, and Hufnagel [1992] provide a survey of concurrent
object-oriented languages.

2.7 Composition and Coordination Languages

Idea. With composition and coordination languages, programming is split in two
separate activities: a sequential language is used to build single-threaded computa-
tions, whereas a coordination language is used to coordinate the activity of several
single-threaded computations. A coordination language provides means for process
creation and inter-process communication which may be combined with sequential
computation languages [Carriero and Gelernter 1992]. The concurrent extensions
of logic, functional and object-oriented languages discussed in the preceding sub-

14 � W. Hasselbring

sections are coordination languages. The present subsection discusses coordination
languages which are somewhat independent of the computation language.
With composition and coordination languages, concurrent systems are described

in terms of processes that comprise a system and the communication and control
interconnections between these processes. As discussed in Ciancarini [1996], there
is a need for high-level coordination languages to simplify the design and imple-
mentation of concurrent applications, because most software engineers currently
develop concurrent applications using low-level communication primitives.

An Example. A coordination language should orthogonally combine two lan-
guages: one for coordination (the inter-process actions) and one for (sequential)
computation [Carriero and Gelernter 1992; Ciancarini 1996]. ProSet-Linda [Has-
selbring 1994; Hasselbring 1997] combines the sequential prototyping language
ProSet [Doberkat et al. 1992] with the coordination language Linda [Gelernter
1985] to obtain a concurrent programming language as a tool for prototyping con-
current applications. ProSet is an acronym for PROtotyping with SETs. The
procedural, set-oriented language ProSet is a successor to SETL [Kruchten et al.
1984]. The high-level structures that ProSet provides qualify the language for
prototyping.
To support prototyping of concurrent applications, a prototyping language must

provide simple and powerful means for dynamic creation and coordination of par-
allel processes. In ProSet-Linda, the concept for process creation via Multilisp's
futures [Halstead 1985] (see also Section 2.4) is adapted to set-oriented program-
ming and combined with Linda's concept for synchronization and communication.
The parallel processes in ProSet-Linda are decoupled in time and space in a simple
way: processes do not have to execute at the same time and do not need to know
each other's addresses (this is necessary with synchronous point-to-point message
passing). The shared data pool in the Linda concept is called tuple space, because
its access unit is the tuple, similar to tuples in ProSet; thus, it is rather natural
to combine both models on this basis. Reading access to tuples in tuple space
is associative and not based on physical addresses, but rather on their expected
content described in templates. This method is similar to the selection of entries
from a data base. ProSet-Linda supports multiple tuple spaces. Several library
functions are provided for handling multiple tuple spaces dynamically [Hasselbring
1994].
ProSet-Linda provides three tuple-space operations. The deposit operation

deposits a tuple into a tuple space:

deposit ["pi", 3.14] at TS end deposit;

TS is the tuple space at which the tuple ["pi", 3.14] has to be deposited. The
fetch operation tries to fetch and remove a tuple from a tuple space:

fetch ("name", ? x) at TS end fetch;

This template only matches tuples with the string "name" in the �rst �eld and
integer values in the second �eld. The optional l-values speci�ed in the formals (the
variable x in our example) are assigned the values of the corresponding tuple �elds,
provided matching succeeds. Formals are pre�xed by question marks. The selected
tuple is removed from tuple space. The meet operation is the same as fetch, but

Approaches to High-Level Programming and Prototyping of Concurrent Applications � 15

the tuple is not removed and may be changed. Tuples which are met in tuple space
can be regarded as shared objects since they remain in tuple space irrespective of
changing them or not. With meet, in-place updates of speci�c tuple components
are supported. For a detailed discussion of prototyping parallel algorithms with
ProSet-Linda refer to Hasselbring [1994]. Some application experience with the
ProSet-Linda approach is discussed in Hasselbring and Kr�ober [1997].

Some Sample Systems. Several other approaches to prototyping concurrent ap-
plications suggest the use of composition and coordination languages:

|ISETL-Linda [Douglas et al. 1995] is a control-parallel extensions to ISETL very
similar to ProSet-Linda.

|The focus of the Parallel Composition Notation (PCN) [Chandy and Taylor 1992]
approach, which is based on committed choice logic (see Section 2.5), is the
development of programs by the parallel composition of simpler components, in
such a way that the resulting programs preserve the properties of the components
that they compose.

|The parallel constructs of Compositional C++ (CC++) [Chandy and Kessel-
man 1993] are based on the ideas of Strand and PCN, while using C++ for the
sequential portions of the code. CC++ uses pure single assignment variables
and not logical variables as found in other concurrent logic languages such as
Strand or PCN. PCN and CC++ are explicitly designed for rapid prototyping of
concurrent applications [Chandy and Taylor 1992; Chandy and Kesselman 1993].

|Durra [Barbacci and Lichota 1991] provides a con�guration language through
which one can specify the structure of Ada programs in conjunction with the
behavior, timing, and implementation dependencies. These speci�cations may
be validated by a run-time interpreter to allow prototyping.

2.8 Graphical Programming Systems

Idea. Graphical representations of parallel programs are annotated graphs: data

ow graphs, control
ow graphs etc. In particular for message-passing programs,
such multi-dimensional representations appear to be a good way to get over the
complex architecture of concurrent applications. The animation and simulation
features, as well as the code generation from the graphical representations may be
used to prototype some aspects of concurrent applications. Petri-Nets [Reisig 1985],
state-transition diagrams like Statecharts [Harel 1987] and data-
ow diagrams [De-
Marco 1978] are often used to build prototypes for message-passing programs since
they can be regarded as graphical representations of message-passing programs. A
variety of these and other graphical representations are suggested for prototyping
concurrent applications.

An Example. Enterprise [Schae�er et al. 1993] is a programming environment
for developing parallel programs. With Enterprise, the parallelism is expressed
graphically independent of the sequential code. The system automatically inserts
the code necessary to correctly handle communication and synchronization to allow
the rapid construction of parallel programs.
Enterprise supports coarse-grained parallel programs which make use of a small

number of regular techniques, such as pipelines, master/slave processes, and divide

16 � W. Hasselbring

and conquer. Enterprise does not directly support arbitrarily structured paral-
lel programs, but for many applications it relieves users from the tedious details
of distributed communication to let them concentrate on algorithm development.
The user speci�es the desired technique by manipulating icons using the graphical
user interface. The user interface is implemented in Smalltalk and allows program
animation for prototyping [Lobe et al. 1993].
Figure 3 displays a snapshot while animating a parallel program with Enterprise.

Program animation is used to monitor and to identify weak points in the imple-
mented parallel algorithms. The double-line rectangle represents the enterprise,
which is the entire program. Each icon represents the state of a parallel process.
Message queues are displayed as connecting lines between the process icons. The
system assumes that the displayed events are partially ordered. It is possible to
monitor the parallel program while it is running or to replay the events. For a more
detailed discussion of this example refer to Lobe, Szafron, and Schae�er [1993].
Szafron and Schae�er [1996] provide an experimental comparison of parallel pro-

gramming with the Enterprise system and with message-passing libraries based
on the experience in a graduate parallel and distributed computing course. This
comparison supported the claim that higher-level tools can be more usable than
low-level message-passing libraries.

Some Sample Systems. Petri-Nets, state-transition diagrams, data-
ow diagrams
and some own notations are suggested for prototyping concurrent applications:

(1) Petri-nets are a popular formalism for designing and analyzing parallel algo-
rithms. Their simulation and animation can be used for prototyping concurrent
applications:
|In Breant [1991], it is proposed to use Petri-net prototypes for developing
occam programs. Petri-nets are used to validate and evaluate a model before
its implementation.

While providing a valuable formalism with which to describe and analyze con-
current systems, plain Petri-Nets cannot help with system decomposition and
structuring for large, complex systems. Several extensions of place-transition
nets are proposed for prototyping concurrent applications:
|CommunicatingPetri-nets (CmPNs) [Bucci and Vicario 1992] have been pro-
posed for prototyping distributed systems. With CmPNs, subsystems are
modeled as Petri-nets. Connection diagrams model the global system struc-
ture. A tool supports animation and code generation for prototyping.

|The speci�cation formalism Concurrent Object Oriented Petri Nets (CO-
OPNs) [Buchs et al. 1992] combines algebraic speci�cations with Petri-nets.
The speci�cation is prototyped using a translation of the speci�cation into
PROLOG.

|The G-Net [Deng et al. 1993] formalism extends Petri-nets with modules to
allow prototyping of complex information systems.

|Generalized Stochastic Petri-nets (GSPNs) [Donatelli et al. 1994] are pro-
posed for prototyping functionality and performance of parallel algorithms.

|The PARSE [Gorton et al. 1995] process graph notation allows to describe a
parallel system in terms of a hierarchy of interacting components. These com-
ponents are either passive function or data servers, or active control processes.

Approaches to High-Level Programming and Prototyping of Concurrent Applications � 17

Fig. 3. Animating a parallel programwith Enterprise. This is a copy of Figure 7 in Lobe, Szafron,
and Schae�er [1993].

18 � W. Hasselbring

Processes interact by message passing on designated communication paths.
Within the PARSE project, the integration of behavioral analysis techniques
involving Petri-Nets for design validation has been explored through (man-
ual) translation of process graphs into Petri-Nets to o�er a path to formal
veri�cation [Gorton et al. 1995]. Alternative architectural approaches can
be derived and expressed in the PARSE process graph notation, and perfor-
mance prototyping and formal validation tools allow various aspects of the
proposed solution to be rapidly explored [Hu and Gorton 1997].

|PROT net [Bruno and Marchetto 1986] is a high-level Petri-net formalism for
prototyping parallel systems. With PROT nets, tokens represent processes.

|The language SEGRAS [Kr�amer 1991] is based on an integration of alge-
braic speci�cations and high-level Petri-nets. Data objects are speci�ed as
abstract data types, while dynamic behavior is speci�ed graphically by means
of high-level Petri-nets. A subset of the language is executable to support
prototyping. Execution is based on term rewriting and Petri-net simulation.

(2) Animation and simulation of communicating state-transition diagrams may be
used for prototyping concurrent applications:

|Communicating Real-time State Machines (CRSMs) [Raju and Shaw 1994]
are proposed for prototyping real-time systems. Individual CRSMs are sim-
ilar to Statecharts [Harel 1987].

|For prototyping protocols, it has been proposed to translate LOTOS speci-
�cations into a set of Extended Finite State Machines (EFSMs) [Valenzano
et al. 1993].

(3) Data-
ow diagrams are a popular formalism in software engineering [Ghezzi
et al. 1991]. They are proposed for prototyping concurrent applications, as
well:

|Extended data-
ow diagrams (EDFGs) [Levy et al. 1990] are proposed to
support prototyping of distributed systems with an emphasis on client-server
applications. With EDFGs, a parallel system is described as a set of com-
municating graphs, where each graph is either a server or a client.

|Formal data-
ow diagrams (FDFDs) [Fugetta et al. 1993] with precise seman-
tics for synchronization in combination with E/R-diagrams are proposed for
prototyping parallel systems. Execution of FDFDs is based on their formal
semantics.

|Data-
ow diagrams are speci�ed in Jones, Dowdeswell, and Hintz [1990] with
IDE's Software Through Pictures tool (StP) to develop occam programs. The
occam code is generated from StP's internal data dictionary to provide a �rst
executable program for prototyping.

|The Prototype System Description Language PSDL [Luqi et al. 1988] uses
data-
ow diagrams with associated timing and control constraints to com-
pose reusable components from a software library for prototyping real-time
systems. The retrieval of reusable components is based on a term rewriting
system. The components are implemented with Ada.

(4) Similar to Enterprise, many systems for prototyping concurrent applications
use their own notation: JADE [Unger 1988], Transim [Hart and Flavell 1990],
MCSE [Calvez et al. 1994], and ProcessBuild [Weinreich and Ploesch 1995] are

Approaches to High-Level Programming and Prototyping of Concurrent Applications � 19

tools which support several graphical representations for prototyping through
simulation and animation of parallel algorithms. These graphs represent data
and control
ow in various ways.

3. TRANSFORMING PROTOTYPES INTO EFFICIENT IMPLEMENTATIONS

A Prototype may be classi�ed as throwaway, experimental or evolutionary [Floyd
1984]. A throwaway prototype describes a product designed to be used only to
help identify requirements for a new system. Experimental prototyping focuses on
the technical implementation of a development goal. In evolutionary prototyping, a
series of prototypes is produced that converges to an acceptable behavior, according
to the feedback from prototype evaluations. Once the series has converged, the
result may be turned into a software product by transformations. Evolutionary
prototyping is a continuous process for adapting the model of an application system
to changing organizational constraints.
This raises issues of software engineering: once we are satis�ed with the proto-

type, how do we transform it systematically into a production e�cient program?
Such transformations are usually accomplished manually or semi-automatically
with some kind of tool support. Some manual transformations of prototypes into
e�cient implementations are discussed in the literature:

|The Crystal [Chen et al. 1991] approach starts from a high-level functional prob-
lem speci�cation, through a sequence of optimizations tuned for particular par-
allel machines, leading to the generation of e�cient target code with explicit
communication and synchronization. This approach to automation is to design
a compiler that classi�es source programs according to the communication prim-
itives and their cost on the target machine and that maps the data structures
to distributed memory, and then generates parallel code with explicit commu-
nication commands. Regarding those classes of problems for which the default
mapping strategies of the compiler are inadequate, Crystal provides special lan-
guage constructs for incorporating domain speci�c knowledge by the programmer
and directing the compiler in its mapping.

|Nixon and Croll [1993] manually transform PAISLey prototypes into occam pro-
grams.

|The stepwise re�nement of PCN programs is discussed in [Chandy and Taylor
1992].

|In Hummel, Talla, and Brennan [1995], high-level parallel algorithm speci�cations
are re�ned within PSETL [Hummel and Kelly 1993]. High-level PSETL code is
successively transformed manually into lower-level architecture-speci�c PSETL
code.

|The manual transformation of ProSet-Linda prototypes into e�cient C-Linda
and message-passing implementations is discussed in Jodeleit [1996] and in Kirsch
[1996].

|It has been proposed to transform Standard ML prototypes into occam programs
[Wallace et al. 1992].

Some kind of tool support to assist with the transformation has also been discussed:

20 � W. Hasselbring

|In Breant [1991], occam programs are produced semi-automatically from Petri-
nets.

|Ada program skeletons are automatically derived from PROT nets, a high-level
Petri-net formalism, to assist the programmer with the transformation [Bruno
and Marchetto 1986].

|The semi-automatic re�nement system for the Proteus language [Mills et al. 1991]
is based on algebraic speci�cation techniques and category theory to transform
prototypes to implementations on speci�c architectures. For the time being, these
transformations are restricted to the data-parallel constructs of Proteus [Prins
and Palmer 1993]. Nyland, Prins, Goldberg, Mills, Reif, and Wagner [1996]
discusses the transformation of data-parallel Proteus programs to low-level data-
parallel systems and to message-passing libraries.

|Tool support for the transformation of PSDL [Luqi et al. 1988] prototypes is
discussed in [Berzins et al. 1993].

It is unlikely that fully automatical transformation tools as they are known for
parallelization of imperative sequential languages such as C and Fortran [Bacon
et al. 1994] can be built for control-parallel prototypes, but some kind of tool
support is conceivable. Before building such transformation tools, it appears to be
reasonable to get an assessment of the requirements on such tools through practical
experience and to develop a theoretical foundation for such tools. The automatic or
semi-automatic transformation of control-parallel prototypes into e�cient low-level
programs is, therefore, still an unsolved problem and subject to further research.

4. CONCLUSIONS

To develop a concurrent application, you should start with executable prototypes
to experiment with ideas (neglect the execution performance in the �rst instance).
Powerful tools are needed to make prototyping of concurrent applications feasible.
Table 1 presents an overview of the linguistic approaches and Table 2 presents an

overview of the graphical approaches surveyed in the paper. The tables classify the
surveyed approaches with respect to the process of prototyping concurrent appli-
cations. The structure of the tables corresponds to the taxonomy in Figure 1. The
information is extracted from the available literature. Note, that some approaches
belong to multiple categories. This is the case for the linguistic approaches PDC
and PROTOB which are accompanied by the graphical representations of Process-
Build and PROT nets, respectively. As we can see, most of the included approaches
have been designed for prototyping, some have methods for transformations, and
few are accompanied with tools to help with the transformation into e�cient im-
plementations.
Figure 4 illustrates the historical development of some of the surveyed linguistic

approaches. The graphical approaches are not included in this (simpli�ed) illus-
tration, because there would be no connections to the other approaches and the
dependencies among the graphical approaches already become apparent through
the structure of Table 2.
This paper surveys several approaches to high-level programming and prototyp-

ing of concurrent applications and classi�es them with respect to the prototyping
process to review and structure the state of the art in this area. The approaches

Approaches to High-Level Programming and Prototyping of Concurrent Applications � 21

intend to solve the problems in quite di�erent ways. The essential prototyping
activities are

(1) programming,

(2) evaluation and

(3) transformation of prototypes into e�cient implementations.

Linguistic approaches emphasize programming concerns. Animation and simulation
of graphical representations concentrate on evaluation concerns. The systematic
transformation of prototypes into e�cient low-level programs is still an unsolved
problem.
Performance evaluation of speci�c embedded parallel hardware systems with con-

crete real-time requirements is not covered by this survey. We restrict ourselves to
software and refer the interested reader to Jelly and Gray [1992] for the discussion
of performance evaluation approaches to prototyping parallel hardware systems.
However, several approaches which are surveyed in this paper are used for pro-
totyping concrete real-time systems on a software basis: CRSM [Raju and Shaw
1994], Durra [Barbacci and Lichota 1991], MCSE [Calvez et al. 1994], PAISLey
[Nixon et al. 1994], PSDL [Luqi et al. 1988], RAPIDE [Luckham et al. 1993], and
Transim [Hart and Flavell 1990].
Despite the large number of publications and progress made with prototyping

concurrent applications and concurrent programming in general, the techniques for
systematically engineering concurrent applications are still not fully developed. In
particular the systematic transformation of prototypes into e�cient implementa-
tions is not well understood as yet and, therefore, a subject for further research.
However, the appearance of workshops on the subject is promising [PDSE 1996;
PDSE 1997]. Prototyping is one important concern for software engineering of
concurrent applications.

REFERENCES

Agha, G. 1986. Actors: A model of concurrent computation in distributed systems. The
MIT Press.

Agha, G. 1990. Concurrent object-oriented programming. Commun. ACM 33, 9 (Sept.),
125{141.

Agha, G. 1996. Linguistic paradigms for programming complex distributed systems. ACM
Computing Surveys 28, 2 (June), 295{296.

Agha, G., Wegner, P., and Yonezawa, A. Eds. 1993. Research Directions in Concurrent
Object-Oriented Programming. The MIT Press.

Andrews, G. 1991. Concurrent Programming. Benjamin/Cummings.

Bacon, D., Graham, S., and Sharp, O. 1994. Compiler transformations for high-
performance computing. ACM Computing Surveys 26, 4 (Dec.), 345{420.

Bal, H. 1990. Programming Distributed Systems. Silicon Press.

Bal, H., Steiner, J., and Tanenbaum, A. 1989. Programming languages for distributed
computing systems. ACM Computing Surveys 21, 3 (Sept.), 261{322.

Baldassari, M., Bruno, G., and Castella, A. 1991. PROTOB: An object-oriented
CASE tool for modelling and prototyping distributed systems. Software: Practice and
Experience 21, 8 (Aug.), 823{844.

Barbacci, M. and Lichota, R. 1991. Durra: An integrated approach to software speci�ca-
tion, modeling, and rapid prototyping. In N. Kanopoulos Ed., Proc. Second International

22 � W. Hasselbring

Workshop on Rapid System Prototyping (Research Triangle Park, NC, June 1991), pp.
67{81. IEEE Computer Society Press.

Barry, B. 1989. Prototyping a real-time embedded system in Smalltalk. ACM SIGPLAN
Notices 24, 10.

Berzins, V., Luqi, and Yehudai, A. 1993. Using transformations in speci�cation-based
prototyping. IEEE Trans. Softw. Eng. 19, 5, 436{452.

Bischofberger, W. and Pomberger, G. 1992. Prototyping oriented software development
concepts and tools. Springer-Verlag.

Blelloch, G. 1996. Programming parallel algorithms. Commun. ACM 39, 3 (March), 85{
97.

Blelloch, G., Hardwick, J., Sipelstein, J., Zagha, M., and Chatterjee, S. 1994. Im-
plementation of a portable nested data-parallel language. Journal of Parallel and Dis-
tributed Computing 21, 1 (April), 4{14.

Breant, F. 1991. Rapid prototyping from Petri-Net on a loosely coupled parallel archi-
tecture. In T. S. Durrani, W. A. Sandham, J. J. Soraghan, and J. Hulskamp Eds.,
Proc. International Conference on Applications of Transputers (Glasgow, UK, 1991), pp.
644{649. IOS Press.

Bruno, G. and Marchetto, G. 1986. Process-translatable Petri Nets for the rapid proto-
typing of process control systems. IEEE Trans. Softw. Eng. 12, 2 (Feb.), 346{357.

Bucci, G. and Vicario, E. 1992. Rapid prototyping through communicating Petri nets. In
N. Kanopoulos Ed., Proc. Third International Workshop on Rapid System Prototyping
(Research Triangle Park, NC, June 1992), pp. 58{75. IEEE Computer Society Press.

Buchs, D., Flumet, J., and Racloz, P. 1992. Producing prototypes from CO-OPN spec-
i�cations. In N. Kanopoulos Ed., Proc. Third International Workshop on Rapid System
Prototyping (Research Triangle Park, NC, June 1992), pp. 77{93. IEEE Computer Society
Press.

Budde, R., Kautz, K., Kuhlenkamp, K., and Z�ullighoven, H. 1992. Prototyping | An
Approach to Evolutionary System Development. Springer-Verlag.

Budde, R., Kuhlenkamp, K., Mathiassen, L., and Z�ullighoven, H. Eds. 1984. Ap-
proaches to Prototyping. Springer-Verlag.

Calvez, J., Pasquier, O., and Herault, V. 1994. A complete toolset for prototyping
and validating multi-transputer real-time applications. In M. Becker, L. Litzler, and

M. Tr�ehel Eds., TRANSPUTERS'94 Advanced Research and Industrial Applications
(Saline Royale d'Arc et Senans, France, Sept. 1994), pp. 71{86. IOS Press.

Cao, J., de Vel, O., and Wong, K. 1993. Supporting a rapid prototyping system for
distributedalgorithmson a transputernetwork. In J. KerridgeEd., Transputer and Occam
Research: New Directions (She�eld, UK, 1993), pp. 115{130. IOS Press.

Carriero, N. and Gelernter, D. 1992. Coordination languages and their signi�cance.
Commun. ACM 35, 2 (Feb.), 96{107.

Chandy, K. and Kesselman, C. 1993. CC++: A declarative concurrent object-oriented
programming notation. In G. Agha, P. Wegner, and A. Yonezawa Eds., Research Di-
rections in Concurrent Object-Oriented Programming , pp. 281{313. The MIT Press.

Chandy, K. and Taylor, S. 1992. An Introduction to Parallel Programming. Jones and
Bartlett Publishers.

Chen, M., Choo, Y., and Li, J. 1991. Crystal: Theory and pragmatics of generating
e�cient parallel code. In B. Szymanski Ed., Parallel Functional Languages and Compilers,
Frontier Series, pp. 255{308. ACM Press.

Ciancarini, P. 1992. Parallel programming with logic languages: a survey. Computer Lan-
guages 17, 4 (April), 213{240.

Ciancarini, P. 1996. Coordination models and languages as software integrators. ACM
Computing Surveys 28, 2 (June), 300{302.

Clocksin, W. and Mellish, C. 1987. Programming in Prolog (3rd ed.). Springer-Verlag.

de Kergommenaux, J. and Codognet, P. 1994. Parallel logic programming systems.ACM
Computing Surveys 26, 3 (Sept.), 295{336.

Approaches to High-Level Programming and Prototyping of Concurrent Applications � 23

DeMarco, T. 1978. Structured Analysis and System Speci�cation. Yourdon Press.

Deng, Y., Chang, S., de Figueired, J., and Perkusich, A. 1993. Integrating software
engineering methods and Petri nets for the speci�cation and prototyping of complex infor-
mation systems. In M. Marsan Ed., Proc. 14th International Conference on Application
and Theory of Petri Nets , Volume 694 of Lecture Notes in Computer Science (Chicago, IL,
June 1993), pp. 206{223. Springer-Verlag.

Doberkat, E.-E., Franke, W., Gutenbeil, U., Hasselbring, W., Lammers, U., and Pahl,

C. 1992. ProSet | A Language for Prototyping with Sets. In N. Kanopoulos Ed.,
Proc. Third International Workshop on Rapid System Prototyping (Research Triangle
Park, NC, June 1992), pp. 235{248. IEEE Computer Society Press.

Donatelli, S., Franceschinis, G., Ribaudo, M., and Russo, S. 1994. Use of GSPNs
for concurrent software validation in EPOCA. Information and Software Technology 36, 7
(July), 443{448.

Douglas, A., Rowstron, A., and Wood, A. 1995. ISETL-Linda: parallel programming
with bags. Technical Report YCS 257 (April), University of York, Dept. Computer Science,
Heslington, York, UK.

Dubinsky, E. and Leron, U. 1993. Learning abstract algebra with ISETL. Springer-Verlag.

Floyd, C. 1984. A systematic look at prototyping. In R. Budde, K. Kuhlenkamp,

L. Mathiassen, and H. Z�ullighoven Eds., Approaches to Prototyping , pp. 1{18. Springer-
Verlag.

Foster, I. and Taylor, S. 1989. Strand: New Concepts in Parallel Programming. Prentice-
Hall.

French, J. and Viles, C. 1992. A software toolkit for prototypingdistributed applications.
Technical Report CS-92-26 (Sept.), University of Virginia, Dept. Computer Science.

Fugetta, A., Ghezzi, C., Mandrioli, D., and Morzenti, A. 1993. Executable speci�ca-
tions with data-
ow diagrams. Software: Practice and Experience 23, 6, 629{653.

Gelernter, D. 1985. Generative communication in Linda. ACM Trans. on Programm.
Lang. Syst. 7, 1 (Jan.), 80{112.

Ghezzi, C., Jazayeri, M., and Mandrioli, D. 1991. Fundamentals of Software Engineer-
ing. Prentice-Hall.

Gorton, I., Gray, J., and Jelly, I. 1995. Object based modelling of parallel programs.
IEEE Parallel and Distributed Technology 3, 2 (Summer), 52{63.

Halstead, R. 1985. Multilisp: A language for concurrent symbolic computation. ACM
Trans. on Programm. Lang. Syst. 7, 4 (Oct.), 501{538.

Harel, D. 1987. Statecharts: A visual formalism for complex systems. Science of Computer
Programming 8, 3, 231{274.

Hart, E. and Flavell, S. 1990. Prototyping transputer applications. In H. Zedan Ed.,
Real-Time Systems with Transputers (Amsterdam, 1990), pp. 241{247. IOS Press.

Hasselbring, W. 1994. Prototyping Parallel Algorithms in a Set-Oriented Language. Ph.
D. thesis, Department of Computer Science, University of Dortmund. (Published by Verlag
Dr. Kova�c, Hamburg).

Hasselbring, W. 1997. The ProSet-Linda approach to prototyping parallel systems. The
Journal of Systems and Software. (to appear).

Hasselbring, W. and Kr�ober, A. 1997. Combining OMT with a prototyping approach.
The Journal of Systems and Software. (to appear).

Heping, H. and Zedan, H. 1996. An executable speci�cation language for fast prototyping
parallel responsive systems. Computer Languages 22, 1, 1{13.

Hillis, W. and Steele, G. 1986. Data parallel algorithms. Commun. ACM 29, 12 (Dec.),
1170{1183.

Houck, C. and Agha, G. 1992. HAL: a high-level actor language and its distributed im-
plementation. In Proc. 21st International Conference on Parallel Processing (ICPP 91),
Volume II (St. Charles, IL, Aug. 1992), pp. 158{165.

Hu, L. and Gorton, I. 1997. A performance prototyping approach to designing concurrent
software architectures. In Proc. Second International Workshop on Software Engineering

24 � W. Hasselbring

for Parallel and Distributed Systems (PDSE'97) (Boston, Massachusetts, May 1997).

Hummel, S. F. and Kelly, R. 1993. A rationale for parallel programmingwith sets. Journal
of Programming Languages 1, 3, 187{207.

Hummel, S. F., Talla, S., and Brennan, J. 1995. The re�nement of high-level parallel
algorithm speci�cations. In Proc. Working Conference on Programming Models for Mas-
sively Parallel Computers (PMMP '95) (Berlin, Germany, Oct. 1995). IEEE Computer
Society Press.

Huntbach, M. and Ringwood, G. 1995. Programming in concurrent logic languages. IEEE
Software 12, 6 (Nov.), 71{82.

Jard, C., Monin, J.-F., and Groz, R. 1988. Development of V�eda, a prototyping tool
for distributed algorithms. IEEE Transactions on Software Engineering 14, 3 (March),
339{352.

Jelly, I. and Gray, J. 1992. Prototyping parallel systems: a performance evaluation ap-
proach. In Proc. International Conference on Parallel and Distributed Computing and
Systems (Pittsburgh, PA, Oct. 1992), pp. 7{12. ISSM Press.

Jodeleit, P. 1996. Implementing the Salishan and Cowichan problems based on prototype
evaluation and transformation. Master's thesis, Department of Computer Science, Univer-
sity of Dortmund. (in German).

Jones, D., Dowdeswell, S., and Hintz, T. 1990. A rapid prototyping method for par-
allel programs. In T. Bossomaier, T. Hintz, and J. Hulskamp Eds., The Transputer in
Australia (ATOUG-3) (Sydney, Australia, June 1990), pp. 121{128. IOS Press.

Jozwiak, J. 1993. Exploiting parallelism in SETL programs. Master's thesis, University of
Illinois at Urbana-Champaign, Urbana, IL.

Kirsch, M. 1996. Implementing parallel model matching algorithms for 3-D computer vi-
sion with Linda and message passing based on prototype evaluation and transformation.
Master's thesis, Department of Computer Science, University of Dortmund.

Kr�amer, B. 1991. Prototyping and formal analysis of concurrent and distributed systems.
In Proc. Sixth International Workshop on Software Speci�cation and Design (1991), pp.
60{66. IEEE Computer Society Press.

Kruchten, P., Schonberg, E., and Schwartz, J. 1984. Software prototyping using the
SETL programming language. IEEE Software 1, 4 (Oct.), 66{75.

Levy, A., van Katwijk, J., Pavlides, G., and Tolsma, F. 1990. SEPDS: A support en-
vironment for prototyping distributed systems. In P. Ng, C. Ramamoorthy, L. Seifert,
and R. Yeh Eds., Proc. First International Conference on Systems Integration (Morris-
town, NJ, April 1990), pp. 652{661. IEEE Computer Society Press.

Lobe, G., Szafron, D., and Schaeffer, J. 1993. Program design and animation in the
Enterprise parallel programming environment. Technical Report TR 93-04 (March), Uni-
versity of Alberta, Dept. Computing Science.

Luckham, D., Vera, J., Bryan, D., Augustin, L., and Belz, F. 1993. Partial orderings
of event sets and their application to prototyping concurrent timed systems. The Journal
of Systems and Software 21, 3 (June), 253{265.

Luqi, Berzins, V., and Yeh, R. T. 1988. A prototyping language for real-time software.
IEEE Trans. Softw. Eng. 14, 10 (Oct.), 1409{1423.

Matsuoka, S. and Yonezawa, A. 1993. Analysis of inheritance anomaly in object-oriented
concurrent languages. In G. Agha, P. Wegner, and A. Yonezawa Eds., Research Direc-
tions in Concurrent Object-Oriented Programming , pp. 107{150. The MIT Press.

Meyer, B. 1993. Systematic concurrent object-oriented programming. Commun.
ACM 36, 9 (Sept.), 56{80.

Meyer, B. 1997. Object-oriented Software Construction (second ed.). Prentice Hall.

Michaelson, G. and Scaife, N. 1995. Prototyping a parallel vision system in Standard
ML. Journal of Functional Programming 5, 3 (July), 345{382.

Mills, P., Nyland, L., Prins, J., Reif, J., and Wagner, R. 1991. Prototyping parallel
and distributed programs in Proteus. In Proc. Third IEEE Symposium on Parallel and
Distributed Processing (Dallas, TX, Dec. 1991), pp. 26{34.

Approaches to High-Level Programming and Prototyping of Concurrent Applications � 25

Mitchell, S. and Wellings, A. 1996. Synchronisation, concurrent object-oriented pro-
gramming and the inheritance anomaly. Computer Languages 22, 1, 15{26.

Nixon, P., Birkinshaw, C., Croll, P., and Marriot, D. 1994. Rapid prototyping of
parallel fault tolerant systems. In Proc. Euromciro Workshop on Parallel and Distributed
Systems (Malaga, Spain, 1994), pp. 202{210. IEEE Computer Scociety Press.

Nixon, P. and Croll, P. 1993. The functional speci�cation of occam programs for time
critical applications. In J. Kerridge Ed., Transputer and Occam Research: New Directions
(She�eld, UK, 1993), pp. 131{145. IOS Press.

Nyland, L., Prins, J., Goldberg, A., Mills, P., Reif, J., and Wagner, R. 1996. A
re�nement methodology for developing data-parallel applications. In EuroPar'96 Parallel
Processing, Volume 1123 of Lecture Notes in Computer Science (Lyon, France, Aug. 1996),
pp. 145{150. Springer-Verlag.

PDSE. 1996. First International Workshop on Software Engineering for Parallel and Dis-
tributed Systems (PDSE'96) (Berlin, Germany, March 1996).

PDSE. 1997. Second International Workshop on Software Engineering for Parallel and
Distributed Systems (PDSE'97) (Boston, Massachusetts, May 1997).

Prins, J. and Palmer, D. 1993. Transforming high-level data-parallel programs into vector
operations. In Proc. Fourth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (San Diego, CA, May 1993), pp. 119{128.

Purtilo, J. and Jalote, P. 1991. An environment for prototypingdistributedapplications.
Computer Languages 16, 3/4, 197{207.

Purtilo, J., Reed, D., and Grunwald, D. 1988. Environments for prototyping parallel
algorithms. Journal of Parallel and Distributed Computing 5, 4 (Aug.), 421{437.

Quinn, M. and Hatcher, P. 1990. Data-parallel programming on multicomputers. IEEE
Software 7, 5 (Sept.), 69{76.

Raju, S. and Shaw, A. 1994. A prototyping environment for specifying, executing and
checking communicating real-time state machines.Software: Practice and Experience 24, 2
(Feb.), 175{195.

Reisig, W. 1985. Petri Nets. Springer-Verlag.

Schaeffer, J., Szafron, D., Lobe, G., and Parsons, I. 1993. The Enterprise model for
developing distributed applications. IEEE Parallel and Distributed Technology 1, 3 (Aug.),
85{96.

Shapiro, E. 1989. The family of concurrent logic programming languages.ACM Computing
Surveys 21, 3 (Sept.), 412{510.

Son, S. H. and Kim, Y. 1989. A software prototypingenvironmentand its use in developing
a multiversion distributed database system. In E. Plachy and P. Kogge Eds., Proc. 1989
International Conference on Parallel Processing, Volume II (University Park, PA, Aug.
1989), pp. 81{88. Pennsylvania State University Press.

Szafron, D. and Schaeffer, J. 1996. An experiment to measure the usability of parallel
programming systems. Concurrency: Practice and Experience 8, 2, 147{166.

Szymanski, B. Ed. 1991. Parallel functional languages and compilers. Addison-Wesley.

Unger, B. 1988. Distributed software via prototyping and simulation { JADE. Technical
Report 88/300/12 (March), University of Calgary, Dept. Computer Science.

Valenzano, A., Sisto, R., and Ciminiera, L. 1993. Rapid prototyping of protocols from
LOTOS speci�cations. Software: Practice and Experience 23, 1 (Jan.), 31{54.

Wallace, A., Michaelson, G., McAndrew, P., Waugh, K., and Austin, W. 1992. Dy-
namic control and prototypingof parallel algorithms for intermediate- and high-level vision.
IEEE Computer 25, 2 (Feb.), 43{53.

Weinreich, R. and Ploesch, R. 1995. Prototyping of parallel and distributed object ori-
ented systems: The PDC model and its environment. In Proc. 28th Hawaii International
Conference on System Sciences (HICSS-28), Software Track (Maui, Hawaii, Jan. 1995).
IEEE Computer Scociety Press.

Wyatt, B., Kavi, K., and Hufnagel, S. 1992. Parallelism in object-oriented languages:
A survey. IEEE Software 9, 6 (Nov.), 56{66.

26 � W. Hasselbring

Yonezawa, A. 1990. ABCL: An Object-Oriented Concurrent System. MIT Press.

Zave, P. and Schell, W. 1986. Salient features of an executable speci�cation language
and its environment. IEEE Trans. Softw. Eng. 12, 2 (Feb.), 312{325.

Zhou, W. 1994. A rapid prototyping system for distributed information system applica-
tions. Journal of Systems and Software 24, 1 (Jan.), 3{29.

Approaches to High-Level Programming and Prototyping of Concurrent Applications � 27

Table 1. Classi�cation of the surveyed linguistic approaches with respect to prototyping concur-
rent applications

Approach Designed for
Prototyping

Methods for
Transformations

Tools for Trans-
formations

High-level Libraries

IPC FBase [Cao et al. 1993] { {

Polylith [Purtilo et al. 1988;
Purtilo and Jalote 1991]

{ {

StarLite [Son and Kim 1989] { {

VAN [French and Viles 1992] { {

Zhou [1994] { {

Set-Oriented Data Parallelism

NESL [Blelloch et al. 1994; Blelloch
1996]

{

Parallel ISETL [Jozwiak 1993] { {

Proteus [Mills et al. 1991; Prins and
Palmer 1993; Nyland et al. 1996]

PSETL [Hummel and Kelly 1993;
Hummel et al. 1995]

{

Concurrent Functional Languages

Crystal [Chen et al. 1991] {

PAISLey [Zave and Schell 1986;
Nixon and Croll 1993; Nixon
et al. 1994]

{

PSP [Heping and Zedan 1996] { {

Standard ML [Wallace et al. 1992;
Michaelson and Scaife 1995]

{ {

Concurrent Logic Languages

RGDC [Huntbach and Ringwood
1995]

{ { {

Strand [Foster and Taylor 1989] { {

V�eda [Jard et al. 1988] { {

Concurrent Object-Based Languages

ABCL [Yonezawa 1990] { { {

HAL [Houck and Agha 1992] { { {

PDC [Weinreich and Ploesch 1995] { {

PROTOB [Baldassari et al. 1991] { {

RAPIDE [Luckham et al. 1993] { {

Composition and Coordination Languages

CC++ [Chandy and Kesselman 1993] { {

Durra [Barbacci and Lichota 1991] { {

ISETL-Linda [Douglas et al. 1995] { {

PCN [Chandy and Taylor 1992] { {

ProSet-Linda [Hasselbring 1994;
Hasselbring 1997; Hasselbring and
Kr�ober 1997]

{

28 � W. Hasselbring

Table 2. Classi�cation of the surveyed graphical approaches with respect to prototyping concur-
rent applications

Approach Designed for
Prototyping

Methods for
Transformations

Tools for Trans-
formations

Based on Petri-Nets

Breant [1991]

CmPN [Bucci and Vicario 1992] { {

CO-OPN [Buchs et al. 1992] { {

G-Net [Deng et al. 1993] { {

GSPN [Donatelli et al. 1994] { {

PARSE [Gorton et al. 1995; Hu and
Gorton 1997]

{ {

PROT nets [Bruno and Marchetto
1986]

SEGRAS [Kr�amer 1991] { {

Based on State-Transition Diagrams

CRSM [Raju and Shaw 1994] { {

EFSM [Valenzano et al. 1993] { {

Based on Data-Flow Diagrams

EDFG [Levy et al. 1990] { {

FDFD [Fugetta et al. 1993] { {

IDE [Jones et al. 1990] { {

PSDL [Luqi et al. 1988; Berzins et al.
1993]

Other Notations

Enterprise [Schae�er et al. 1993;
Lobe et al. 1993; Szafron and Schaef-
fer 1996]

{ { {

JADE [Unger 1988] { {

MCSE [Calvez et al. 1994] { {

ProcessBuild [Weinreich and Ploesch
1995]

{ {

Transim [Hart and Flavell 1990] { {

Approaches to High-Level Programming and Prototyping of Concurrent Applications � 29

RGDC

PROLOG

Véda

Strand PCN

CC++

committed choice logic

Ada

Durra

SETL

ProSet-Linda

Linda

PSETL

NESL
Proteus

functional+state pure functional

ML

PSP

ISETL-Linda

Parallel ISETL

ISETL

Multilisp

Chrystal

message passing

PAISley

Actors

IPC_FBase, Polylith, Starlite, VAN, Zhou

ABCL, HAL, PDC, PROTOB, RAPIDE

Fig. 4. An illustration of the historical development of some of the approaches surveyed in the
paper. The arrows indicate dependencies.

		2002-04-03T16:59:24+0200
	Universitaetsbibliothek Dortmund - Eldorado

