22 research outputs found

    Combining Static Analysis and Targeted Symbolic Execution for Scalable Bug-finding in Application Binaries

    Get PDF
    Manual software testing is laborious and prone to human error. Yet, it is the most popular method for quality assurance. Automating the test-case generation promises better effectiveness, especially for exposing “deep” corner-case bugs. Symbolic execution is an automated technique for program analysis that has recently become practical due to advances in constraint solvers. It stands out as an automated testing technique that has no false positives, it eventually enumerates all feasible program executions, and can prioritize executions of interest. However, “path explosion”, the fact that the number of program executions is typically at least exponential in the size of the program, hinders the adoption of symbolic execution in the real world, where program commonly reaches millions of lines of code. In this thesis, we present a method for generating test-cases using symbolic execution which reach a given potentially buggy “target” statement. Such a potentially buggy program statement can be found by static program analysis or from crash-reports given by users and serve as input to our technique. The test-case generated by our technique serves as a proof of the bug. Generating crashes at the target statement have many applications including re-producing crashes, checking warnings generated by static program analysis tools, or analysis of source code patches in code review process. By constantly steering the symbolic execution along the branches that are most likely to lead to the target program statement and pruning the search space that are unlikely to reach the target, we were able to detect deep bugs in real programs. To tackle exponential growth of program paths, we propose a new scheme to manage program execution paths without exhausting memory. Experiments on real-life programs demonstrate that our tool WatSym, built on selective symbolic execution engine S2E, can generate crashing inputs in feasible time and order of magnitude better than symbolic approaches (as embodied by S2E) failed

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 30th European Symposium on Programming, ESOP 2021, which was held during March 27 until April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The 24 papers included in this volume were carefully reviewed and selected from 79 submissions. They deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems

    Towards cooperative software verification with test generation and formal verification

    Get PDF
    There are two major methods for software verification: testing and formal verification. To increase our confidence in software on a large scale, we require tools that apply these methods automatically and reliably. Testing with manually written tests is widespread, but for automatically generated tests for the C programming language there is no standardized format. This makes the use and comparison of automated test generators expensive. In addition, testing can never provide full confidence in software—it can show the presence of bugs, but not their absence. In contrast, formal verification uses established, standardized formats and can prove the absence of bugs. Unfortunately, even successful formal-verification techniques suffer from different weaknesses. Compositions of multiple techniques try to combine the strengths of complementing techniques, but such combinations are often designed as cohesive, monolithic units. This makes them inflexible and it is costly to replace components. To improve on this state of the art, we work towards an off-the-shelf cooperation between verification tools through standardized exchange formats. First, we work towards standardization of automated test generation for C. We increase the comparability of test generators through a common benchmarking framework and reliable tooling, and provide means to reliably compare the bug-finding capabilities of test generators and formal verifiers. Second, we introduce new concepts for the off-the-shelf cooperation between verifiers (both test generators and formal verifiers). We show the flexibility of these concepts through an array of combinations and through an application to incremental verification. We also show how existing, strongly coupled techniques in software verification can be decomposed into stand-alone components that cooperate through clearly defined interfaces and standardized exchange formats. All our work is backed by rigorous implementation of the proposed concepts and thorough experimental evaluations that demonstrate the benefits of our work. Through these means we are able to improve the comparability of automated verifiers, allow the cooperation between a large array of existing verifiers, increase the effectiveness of software verification, and create new opportunities for further research on cooperative verification

    Combining Model Checking and Testing

    Get PDF
    Abstract Model checking and testing have a lot in common. Over the last two decades, significant progress has been made on how to broaden the scope of model checking from finite-state abstractions to actual software implementations. One way to do this consists of adapting model checking into a form of systematic testing that is applicable to industrial-size software. This chapter presents an overview of this strand of software model checking

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Proceedings of the First NASA Formal Methods Symposium

    Get PDF
    Topics covered include: Model Checking - My 27-Year Quest to Overcome the State Explosion Problem; Applying Formal Methods to NASA Projects: Transition from Research to Practice; TLA+: Whence, Wherefore, and Whither; Formal Methods Applications in Air Transportation; Theorem Proving in Intel Hardware Design; Building a Formal Model of a Human-Interactive System: Insights into the Integration of Formal Methods and Human Factors Engineering; Model Checking for Autonomic Systems Specified with ASSL; A Game-Theoretic Approach to Branching Time Abstract-Check-Refine Process; Software Model Checking Without Source Code; Generalized Abstract Symbolic Summaries; A Comparative Study of Randomized Constraint Solvers for Random-Symbolic Testing; Component-Oriented Behavior Extraction for Autonomic System Design; Automated Verification of Design Patterns with LePUS3; A Module Language for Typing by Contracts; From Goal-Oriented Requirements to Event-B Specifications; Introduction of Virtualization Technology to Multi-Process Model Checking; Comparing Techniques for Certified Static Analysis; Towards a Framework for Generating Tests to Satisfy Complex Code Coverage in Java Pathfinder; jFuzz: A Concolic Whitebox Fuzzer for Java; Machine-Checkable Timed CSP; Stochastic Formal Correctness of Numerical Algorithms; Deductive Verification of Cryptographic Software; Coloured Petri Net Refinement Specification and Correctness Proof with Coq; Modeling Guidelines for Code Generation in the Railway Signaling Context; Tactical Synthesis Of Efficient Global Search Algorithms; Towards Co-Engineering Communicating Autonomous Cyber-Physical Systems; and Formal Methods for Automated Diagnosis of Autosub 6000

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access two-volume set constitutes the proceedings of the 26th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The total of 60 regular papers presented in these volumes was carefully reviewed and selected from 155 submissions. The papers are organized in topical sections as follows: Part I: Program verification; SAT and SMT; Timed and Dynamical Systems; Verifying Concurrent Systems; Probabilistic Systems; Model Checking and Reachability; and Timed and Probabilistic Systems. Part II: Bisimulation; Verification and Efficiency; Logic and Proof; Tools and Case Studies; Games and Automata; and SV-COMP 2020

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access two-volume set constitutes the proceedings of the 27th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2021, which was held during March 27 – April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The total of 41 full papers presented in the proceedings was carefully reviewed and selected from 141 submissions. The volume also contains 7 tool papers; 6 Tool Demo papers, 9 SV-Comp Competition Papers. The papers are organized in topical sections as follows: Part I: Game Theory; SMT Verification; Probabilities; Timed Systems; Neural Networks; Analysis of Network Communication. Part II: Verification Techniques (not SMT); Case Studies; Proof Generation/Validation; Tool Papers; Tool Demo Papers; SV-Comp Tool Competition Papers
    corecore