581,988 research outputs found

    Movement and Song Idiom Traditional to Enhance Early Mathematical Skills: Gelantram Audio-visual Learning Media

    Get PDF
    Many studies have shown a link between being competent in early mathematics and achievement in school. Early math skills have the potential to be the best predictors of later performance in reading and mathematics. Movement and songs are activities that children like, making it easier for teachers to apply mathematical concepts through this method. This study aims to develop audio-visual learning media in the form of songs with a mixture of western and traditional musical idioms, accompanied by movements that represent some of the teaching of early mathematics concepts. The stages of developing the ADDIE model are the basis for launching new learning media products related to math and art, and also planting the nation's cultural arts from an early age. These instructional media products were analyzed by experts and tested for their effectiveness through experiments on five children aged 3-4 years. The qualitative data were analyzed using transcripts of field notes and observations and interpreted in a descriptive narrative. The quantitative data were analyzed using gain score statistics. The results showed that there was a significant increase in value for early mathematical understanding of the concepts of geometry, numbers and measurement through this learning medium. The results of the effectiveness test become the final basis of reference for revision and complement the shortcomings of this learning medium. Further research can be carried out to develop other mathematical concepts through motion and song learning media, and to create experiments with a wider sample.  Keywords: Early Mathematical Skills, Movement and Song Idiom Traditional, Audio-visual Learning Media References An, S. A., & Tillman, D. A. (2015). Music activities as a meaningful context for teaching elementary students mathematics: a quasi-experiment time series design with random assigned control group. European Journal of Science and Mathematics Education, 3(1), 45–60. https://doi.org/10.1038/srep15999 An, S., Capraro, M. M., & Tillman, D. A. (2013). Elementary Teachers Integrate Music Activities into Regular Mathematics Lessons: Effects on Students’ Mathematical Abilities. Journal for Learning through the Arts: A Research Journal on Arts Integration in Schools and Communities, 9(1). https://doi.org/10.21977/d99112867 Austin, A. M. B., Blevins-Knabe, B., Ota, C., Rowe, T., & Lindauer, S. L. K. (2011). Mediators of preschoolers’ early mathematics concepts. Early Child Development and Care, 181(9), 1181–1198. https://doi.org/10.1080/03004430.2010.520711 Barrett, J. E., Cullen, C., Sarama, J., Miller, A. L., & Rumsey, C. (2011). Children ’ s unit concepts in measurement : a teaching experiment spanning grades 2 through 5. 637–650. https://doi.org/10.1007/s11858-011-0368-8 Basco, R. O. (2020). Effectiveness of Song, Drill and Game Strategy in Improving Mathematical Performance. International Educational Research, 3(2), p1. https://doi.org/10.30560/ier.v3n2p1 Bausela Herreras, E. (2017). Risk low math performance PISA 2012: Impact of assistance to Early Childhood Education and other possible cognitive variables. Acta de Investigación Psicológica, 7(1), 2606–2617. https://doi.org/10.1016/j.aipprr.2017.02.001 Buchoff, R. (2015). Childhood Education. January. https://doi.org/10.1080/00094056.1995.10521830 Clements, D. H. (2014). Geometric and Spatial Thinking in Young Children. In Science of Advanced Materials (Vol. 6, Issue 4). National Science Foundation. https://doi.org/10.1166/sam.2014.1766 Clements, D. H., Baroody, A. J., Joswick, C., & Wolfe, C. B. (2019). Evaluating the Efficacy of a Learning Trajectory for Early Shape Composition. XX(X), 1–22. https://doi.org/10.3102/0002831219842788 Clements, D. H., Swaminathan, S., Anne, M., & Hannibal, Z. (2016). Young Children ’ s Concepts of Shape. 30(2), 192–212. Cross, C. T., Woods, T., & Schweingruber, H. (2009). Mathematics Learning in Early Chidhood Paths Toward Excellence and Equity. The National Academies Press. Geary, D. C. (2011). Cognitive predictors of achievement growth in mathematics: A 5-year longitudinal study. Developmental Psychology, 47(6), 1539–1552. https://doi.org/10.1037/a0025510 Geary, D. C. (2012). Learning Disabilities and Persistent Low Achievement in Mathematics. J Dev Behav Pediatr., 32(3), 250–263. https://doi.org/10.1097/DBP.0b013e318209edef.Consequences Gejard, G., & Melander, H. (2018). Mathematizing in preschool : children ’ s participation in geometrical discourse. 1807. https://doi.org/10.1080/1350293X.2018.1487143 Harususilo, Y. E. (2020). Skor PISA Terbaru Indonesia, Ini 5 PR Besar Pendidikan pada Era Nadiem Makarim. https://pusmenjar.kemdikbud.go.id/ Hsiao, T. (1999). Romanticism with Deep Affection: Selected Articles About the Music of Hsiao Tyzen (Hengzhe Lin (ed.)). Wang Chun Feng Wen Hua Fa Xing. Kasuya-Ueba, Y., Zhao, S., & Toichi, M. (2020). The Effect of Music Intervention on Attention in Children: Experimental Evidence. Frontiers in Neuroscience, 14(July), 1–15. https://doi.org/10.3389/fnins.2020.00757 Kołodziejski, M., Králová, P. D. E., & Hudáková, P. D. J. (2014). Music and Movement Activities and Their Impact on Musicality and Healthy Development of a Child. Journal of Educational Revies, 7(4). Kristanto, W. (2020). Javanese Traditional Songs for Early Childhood Character Education. 14(1), 169–184. Litkowski, E. C., Duncan, R. J., Logan, J. A. R., & Purpura, D. J. (2020). When do preschoolers learn specific mathematics skills? Mapping the development of early numeracy knowledge. Journal of Experimental Child Psychology, 195, 104846. https://doi.org/10.1016/j.jecp.2020.104846 Logvinova, O. K. (2016). Socio-pedagogical approach to multicultural education at preschool. Procedia - Social and Behavioral Sciences, 233(May), 206–210. https://doi.org/10.1016/j.sbspro.2016.10.203 Lopintsova, O., Paloniemi, K., & Wahlroos, K. (2012). Multicultural Education through Expressive Methods in Early Childhood Education. Ludwig, M. ., Marklein, M. ., & Song, M. (2016). Arts Integration: A Promising Approach to Improving Early Learning. American Institutes for Research. Macdonald, A., & Lowrie, T. (2011). Developing measurement concepts within context : Children ’ s representations of length. 27–42. https://doi.org/10.1007/s13394-011-0002-7 Mans, M. (2002). Playing The Music- Comparing Perfomance of Children’s Song and dance in Traditional and Contemporary Namibian Education. In The Arts in Children’s Live (pp. 71–86). Kluwer Academic Publishers. Maričić, S. M., & Stamatović, J. D. (2017). The Effect of Preschool Mathematics Education in Development of Geometry Concepts in Children. 8223(9), 6175–6187. https://doi.org/10.12973/eurasia.2017.01057a Missall, K., Hojnoski, R. L., Caskie, G. I. L., & Repasky, P. (2015). Home Numeracy Environments of Preschoolers: Examining Relations Among Mathematical Activities, Parent Mathematical Beliefs, and Early Mathematical Skills. Early Education and Development, 26(3), 356–376. https://doi.org/10.1080/10409289.2015.968243 Moreno, S., Bialystok, E., Barac, R., Schellenberg, E. G., Cepeda, N. J., & Chau, T. (2011). Short-term music training enhances verbal intelligence and executive function. Psychological Science, 22(11), 1425–1433. https://doi.org/10.1177/0956797611416999 Nketia, J. H. K. (1982). Developing Contemporary Idioms out of Traditional Music. Studia Musicologica Academiae Scientiarum Hungaricae, 24, 81. https://doi.org/10.2307/902027 Nyota, S., & Mapara, J. (2008). Shona Traditional Children ’ s Games and Play : Songs as Indigenous Ways of Knowing. English, 2(4), 189–203. Östergren, R., & Träff, U. (2013). Early number knowledge and cognitive ability affect early arithmetic ability. Journal of Experimental Child Psychology, 115(3), 405–421. https://doi.org/10.1016/j.jecp.2013.03.007 Pantoja, N., Schaeffer, M. W., Rozek, C. S., Beilock, S. L., & Levine, S. C. (2020). Children’s Math Anxiety Predicts Their Math Achievement Over and Above a Key Foundational Math Skill. Journal of Cognition and Development, 00(00), 1–20. https://doi.org/10.1080/15248372.2020.1832098 Papadakis, Stamatios, Kalogiannakis, M., & Zaranis, N. (2017). Improving Mathematics Teaching in Kindergarten with Realistic Mathematical Education. Early Childhood Education Journal, 45(3), 369–378. https://doi.org/10.1007/s10643-015-0768-4 Papadakis, Stamatios, Kalogiannakis, M., & Zaranis, N. (2018). The effectiveness of computer and tablet assisted intervention in early childhood students’ understanding of numbers. An empirical study conducted in Greece. Education and Information Technologies, 23(5), 1849–1871. https://doi.org/10.1007/s10639-018-9693-7 Papadakis, Stamatis, Kalogiannakis, M., & Zaranis, N. (2016). Comparing Tablets and PCs in teaching Mathematics: An attempt to improve Mathematics Competence in Early Childhood Education. Preschool and Primary Education, 4(2), 241. https://doi.org/10.12681/ppej.8779 Paul, T. (2019). Mathematics and music : loves and fights To cite this version. PISA worldwide ranking; Indonesia’s PISA results show need to use education resources more efficiently, (2016). Phyfferoen, D. (2019). The Dagbon Hiplife Zone in Northern Ghana Contemporary Idioms of Music Making in Tamale. 1(2), 81–104. Purpura, D. J., Napoli, A. R., & King, Y. (2019). Development of Mathematical Language in Preschool and Its Role in Learning Numeracy Skills. In Cognitive Foundations for Improving Mathematical Learning (1st ed., Vol. 5). Elsevier Inc. https://doi.org/10.1016/b978-0-12-815952-1.00007-4 Ribeiro, F. S., & Santos, F. H. (2020). Persistent Effects of Musical Training on Mathematical Skills of Children With Developmental Dyscalculia. Frontiers in Psychology, 10(January), 1–15. https://doi.org/10.3389/fpsyg.2019.02888 Roa, R., & IA, C. (2020). Learning Music and Math, Together as One: Towards a Collaborative Approach for Practicing Math Skills with Music. In I. T. (eds) Nolte A., Alvarez C., Hishiyama R., Chounta IA., Rodríguez-Triana M. (Ed.), Collaboration Technologies and Social Computing. Col (Vol. 26, Issue 5, pp. 659–669). https://doi.org/https://doi.org/10.1007/978-3-030-58157-2_10 Sarama, J., & Clements, D. H. (2006a). Mathematics, Young Students, and Computers: Software, Teaching Strategies and Professional Development. The Mathematics Educato, 9(2), 112–134. Sarama, J., & Clements, D. H. (2006b). Mathematics in early childhood. International Journal of Early Childhood, 38(1). https://doi.org/10.1007/bf03165980 Sarkar, J., & Biswas, U. (2015). The role of music and the brain development of children. 4(8), 107–111. Sheridan, K. M., Banzer, D., Pradzinski, A., & Wen, X. (2020). Early Math Professional Development: Meeting the Challenge Through Online Learning. Early Childhood Education Journal, 48(2), 223–231. https://doi.org/10.1007/s10643-019-00992-y Silver, A. M., Elliott, L., & Libertus, M. E. (2021). When beliefs matter most: Examining children’s math achievement in the context of parental math anxiety. Journal of Experimental Child Psychology, 201, 104992. https://doi.org/10.1016/j.jecp.2020.104992 Sterner, G., Wolff, U., & Helenius, O. (2020). Reasoning about Representations: Effects of an Early Math Intervention. Scandinavian Journal of Educational Research, 64(5), 782–800. https://doi.org/10.1080/00313831.2019.1600579 Temple, B. A., Bentley, K., Pugalee, D. K., Blundell, N., & Pereyra, C. M. (2020). Using dance & movement to enhance spatial awareness learning. Athens Journal of Education, 7(2), 153–167. https://doi.org/10.30958/aje.7-2-2 Thippana, J., Elliott, L., Gehman, S., Libertus, K., & Libertus, M. E. (2020). Parents’ use of number talk with young children: Comparing methods, family factors, activity contexts, and relations to math skills. Early Childhood Research Quarterly, 53, 249–259. https://doi.org/10.1016/j.ecresq.2020.05.002 Tsai, Y. (2017). Taiwanese Traditional Musical Idioms Meet Western Music Composition: An Analytical and Pedagogical Approach to Solo Piano Works by Tyzen Hsiao. http://aquila.usm.edu/dissertations/1398 Upadhyaya, D. (2017). Benefits of Music and Movement in young children. Furtados School of Music. https://www.linkedin.com/pulse/benefits-music-movement-young-children-dharini-upadhyaya Vennberg, H., Norqvist, M., Bergqvist, E., Österholm, M., Granberg, C., & Sumpter, L. (2018). Counting on: Long Term Effects of an Early Intervention Programme. 4, 355–362. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-148101 Verdine, B. N., Lucca, K. R., Golinkoff, R. M., Hirsh-, K., & Newcombe, N. S. (2015). The Shape of Things : The Origin of Young Children ’ s Knowledge of the Names and Properties of Geometric Forms. 8372(October). https://doi.org/10.1080/15248372.2015.1016610 Wakabayashi, T., Andrade-Adaniya, F., Schweinhart, L. J., Xiang, Z., Marshall, B. A., & Markley, C. A. (2020). The impact of a supplementary preschool mathematics curriculum on children’s early mathematics learning. Early Childhood Research Quarterly, 53, 329–342. https://doi.org/10.1016/j.ecresq.2020.04.002 Wardani, I. K., Djohan, & Sittiprapaporn, P. (2018). The difference of brain activities of musical listeners. 1st International ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering, ECTI-NCON 2018, 181–184. https://doi.org/10.1109/ECTI-NCON.2018.8378307 Winter, E., & Seeger, P. (2015). The Important Role of Music in Early Childhood Learning. Independent School. Zaranis, N., Kalogiannakis, M., & Papadakis, S. (2013). Using Mobile Devices for Teaching Realistic Mathematics in Kindergarten Education. Creative Education, 04(07), 1–10. https://doi.org/10.4236/ce.2013.47a100

    The unexplored potential of virtual reality for cultural learning

    Full text link
    [EN] Educational technology tools that improve learning and foster engagement are constantly sought by teachers and researchers. In the domain of Computer-Assisted Language Learning a variety of tools, for instance blogs and podcasts, have been used to promote language and cultural learning (Shih, 2015). More recently, virtual reality has been identified as a technology with great potential for the creation of meaningful and contextualized learning experiences. Despite the  learning affordances of virtual reality, in language education most of the literature has focused on the low-immersive version, whereas research investigating highly immersive virtual environments has only emerged in recent years (e.g., Berti, 2019; Blyth, 2018). In other fields, the use of highly immersive virtual reality has been compared to traditional pedagogical resources and demonstrated that students’ learning improved with the use of virtual environments as compared to two-dimensional video and textbook learning conditions (Allcoat & von Mühlenen, 2018). Considering the potential learning benefits of this technology, this paper argues that longitudinal empirical research in language education is strongly needed to investigate its potential unexplored impact on language and cultural learning.Berti, M. (2021). The unexplored potential of virtual reality for cultural learning. The EuroCALL Review. 29(1):60-67. https://doi.org/10.4995/eurocall.2021.12809OJS6067291Allcoat, D., & von Mühlenen, A. (2018). Learning in virtual reality: Effects on performance, emotion, and engagement. Research in Learning Technology, 26, 1-13. https://doi.org/10.25304/rlt.v26.2140Barab, S. A., Hay, K. E., & Duffy, T. M. (1998). Grounded constructions and how technology can help. TechTrends, 43(2), 15-23. https://doi.org/10.1007/BF02818171Berti, M. (2019). Italian open education: virtual reality immersions for the language classroom. New Case Studies of Openness in and beyond the Language Classroom, Research-publishing. net, 37-47. https://doi.org/10.14705/rpnet.2019.37.965Blyth, C. (2018). Immersive technologies and language learning. Foreign Language Annals, 51(1), 225-232. https://doi.org/10.1111/flan.12327Chen, C. J. (2009). Theoretical bases for using virtual reality in education. Themes in Science and Technology Education, 2(1-2), 71-90.Dawley, L., & Dede, C. (2014). Situated learning in virtual worlds and immersive simulations. In J. M. Spector, M. D. Merrill, J. Elen, & M. J. Bishop (Eds.), Handbook of research on educational communications and technology (pp. 723-734). New York: Springer. https://doi.org/10.1007/978-1-4614-3185-5_58Fowler, C. (2015). Virtual reality and learning: Where is the pedagogy? British Journal of Educational Technology, 46(2), 412-422. https://doi.org/10.1111/bjet.12135Freina, L., & Ott, M. (2015). A literature review on immersive virtual reality in education: State of the art and perspectives. eLearning & Software for Education, 1, 133-141.Huang, H. M., Rauch, U., & Liaw, S. S. (2010). Investigating learners' attitudes toward virtual reality learning environments: Based on a constructivist approach. Computers & Education, 55(3), 1171-1182. https://doi.org/10.1016/j.compedu.2010.05.014Jacobson, J. (2017). Authenticity in immersive design. In D., Liu, C., Dede, R., Huang, & J., Richards (Eds.), Virtual, augmented, and mixed realities in education (pp. 35-54). New York: Springer. https://doi.org/10.1007/978-981-10-5490-7_3Lin, T. J., & Lan, Y. J. (2015). Language learning in virtual reality environments: Past, present, and future. Journal of Educational Technology & Society, 18(4), 486-497.Liu, D., Bhagat, K. K., Gao, Y., Chang, T., & Huang, R. (2017). The potentials and trends of virtual reality in education. In D., Liu, C., Dede, R., Huang, & J., Richards (Eds.), Virtual augmented, and mixed realities in education (pp. 105-130). New York: Springer. https://doi.org/10.1007/978-981-10-5490-7_7Lloyd, A., Rogerson, S., & Stead, G. (2017). Imagining the potential for using virtual reality technologies in language learning. In M. Carrier, R. M. Damerow, & K. M. Bailey (Eds.), Digital language learning and teaching: Research, theory, and practice (pp. 222-234). Abingdon: Routledge. https://doi.org/10.4324/9781315523293-19Sadler, R. (2017). Virtual worlds and language education. In S. L. Thorne & S. May (Eds.), Language, education and technology (pp. 375-388). New York: Springer International Publishing. https://doi.org/10.1007/978-3-319-02237-6_29Schott, C., & Marshall, S. (2018). Virtual reality and situated experiential education: A conceptualization and exploratory trial. Journal of Computer Assisted Learning, 34(6), 843-852. https://doi.org/10.1111/jcal.12293Schwienhorst, K. (2002a). The state of VR: A meta-analysis of virtual reality tools in second language acquisition. Computer Assisted Language Learning, 15(3), 221-239. https://doi.org/10.1076/call.15.3.221.8186Schwienhorst, K. (2002b). Why virtual, why environments? Implementing virtual reality concepts in computer-assisted language learning. Simulation & Gaming, 33(2), 196-209. https://doi.org/10.1177/1046878102033002008Scrivner, O., Madewell, J., Buckley, C., & Perez, N. (2019). Best practices in the use of augmented and virtual reality technologies for SLA: Design, implementation, and feedback. In M. L. Carrió-Pastor (Ed.), Teaching language and teaching literature in virtual environments (pp. 55-72). New York: Springer. https://doi.org/10.1007/978-981-13-1358-5_4Shih, Y. C. (2015). A virtual walk-through London: Culture learning through a cultural immersion experience. Computer Assisted Language Learning, 28(5), 407-428. https://doi.org/10.1080/09588221.2013.851703Shih, Y. C. (2018). Contextualizing language learning with street view panoramas. In Y. Qian (Ed.), Integrating multi-user virtual environments in modern classrooms (pp. 74-91). Hershey: IGI Global. https://doi.org/10.4018/978-1-5225-3719-9.ch004Slater, M. & Wilbur, S. (1996). A framework for immersive virtual environments (FIVE): Speculations on the role of presence in virtual environments. Presence: Teleoperators and Virtual Environments, 6(6), 603- 616. https://doi.org/10.1162/pres.1997.6.6.60

    Desarrollo de habilidades relacionadas con el uso de los ordenadores como herramienta para resolver problemas en el primer curso de física para ingeniería

    Full text link
    [ES] Es usual encontrar tres asignaturas en el primer año de las carreras de ingenierías técnicas, es decir: cálculo, física general y programación. Como la física se encuentra en la base de conocimiento de las ingenierías técnicas, es naturalmente apropiada la introducción del Cálculo y la Programación como valiosas herramientas en el contexto de un problema de Física. Esto se puede lograr trasladando algunas Clases Prácticas de Física (dedicadas a la solución de problemas) hacia el laboratorio de ordenadores y por medio de una reformulación del problema, de modo que sea más adecuado para este tipo de situaciones computacionales. En este entorno, los estudiantes logran reunir, por ejemplo, herramientas de programación y métodos numéricos, junto con las leyes de la Física, con el objetivo de abordar modelos más realistas, diferentes de los que usualmente se tratan comúnmente en el pizarrón. Este tipo de problema computacional de Física incrementa la motivación de los estudiantes de ingeniería por medio de una imbibición en escenarios cuyos modelos son más cercanos a los problemas reales que ellos enfrentarán luego en el desempeño profesional y científico. Este hecho es particularmente relevante para el primer año de las carreras de ingeniería donde el desarrollo de habilidades profesionales es obviado y relegado para años superiores. En el presente trabajo ilustraremos estas ideas a través del conocido problema del "Movimiento del un cuerpo sujeto a la fuerza de arrastre del aire". Las ideas básicas de este trabajo han sido experimentadas en el curso de física de primer año de la carrera de telecomunicaciones y electrónica de la Universidad de Pinar del Río, Cuba en el año 2010.[EN] Usually one can find three subjects in the first year of the syllabus of any technical engineering career, namely, calculus, general physics and programming. Being physics a matter lying on the grounds of technical engineering it becomes naturally appropriate to introduce the use of calculus and programming as useful tools in the context of a physics problem. This can be accomplished by moving some Practical Classes of Physics (problem solving) into the computer pool and by reformulating the physics problems in order to make them more appropriate for this kind of approach. In this environment, students put together, for instance, programming tools and numerical methods, along with the physical laws in order to address more realistic models, diferent from those which can usually be treated on the blackboard. This kind of computational physics problems increases the motivation of the engineering students by embedding them into sceneries whose models are closer to those real problems they will be facing later in their professional and scientific life. This is particularly relevant for the first year of the engineering careers when the development of this kind of professional skills is usually skipped. In the present work we will illustrate these ideas by means of the known problem of "The motion of a body subject to air drag force". The basic ideas of this work have been experienced in the physics course of first year undergraduate students of telecommunication and electronics engineering of Pinar del Río University, Cuba in 2010.We would like to thank the Department of physics of Pinar del R´ıo University, Cuba for the application of this problem in its teaching process. This work has been partially supported by the Universitat Polit`ecnica de Val`encia under APICID funds and by the Ministerio de Ciencia e Innovación (Spain) under the grant DPI2008- 02953. This work has been developed is collaboration with the Teaching Innovation Group e-MACAFI from the Universitat Politècnica de ValènciaCastro-Palacio, J.; Velázquez Abad, L.; Crespo Madera, E.; Monsoriu Serra, JA. (2011). Developing computer use skills for problem solving in engineering students from the rst year physics course. Revista Brasileira de Ensino de Física. 33(3):1-11. https://doi.org/10.1590/S1806-11172011000300013S111333Riera, J., Giménez, M. H., Vidaurre, A., & Monsoriu, J. A. (2002). Digital simulation of wave motion. Computer Applications in Engineering Education, 10(3), 161-166. doi:10.1002/cae.10025Vidaurre, A., Riera, J., Giménez, M. H., & Monsoriu, J. A. (2002). Contribution of digital simulation in visualizing physics processes. Computer Applications in Engineering Education, 10(1), 45-49. doi:10.1002/cae.10016Monsoriu, J. A., Villatoro, F. R., Marín, M. J., Urchueguía, J. F., & Córdoba, P. F. de. (2005). A transfer matrix method for the analysis of fractal quantum potentials. European Journal of Physics, 26(4), 603-610. doi:10.1088/0143-0807/26/4/005Smith, R. C., & Taylor, E. F. (1995). Teaching physics on line. American Journal of Physics, 63(12), 1090-1096. doi:10.1119/1.18014Froese, T., Zhu, D., & Bhat, S. (2001). WWW courseware in applied science: Cases and lessons. Computer Applications in Engineering Education, 9(2), 63-77. doi:10.1002/cae.1007Mandal, P., Wong, K. K., & Love, P. E. D. (2000). Internet-supported flexible learning environment for teaching system dynamics to engineering students. Computer Applications in Engineering Education, 8(1), 1-10. doi:10.1002/(sici)1099-0542(2000)8:13.0.co;2-oKaw, A., & Ho, S. (2006). On introducing approximate solution methods in theory of elasticity. Computer Applications in Engineering Education, 14(2), 120-134. doi:10.1002/cae.20070Kuester, F., & Hutchinson, T. C. (2007). A virtualized laboratory for earthquake engineering education. Computer Applications in Engineering Education, 15(1), 15-29. doi:10.1002/cae.20091Sieres, J., & Fernández-Seara, J. (2006). Simulation of compression refrigeration systems. Computer Applications in Engineering Education, 14(3), 188-197. doi:10.1002/cae.20075Johnson, M. (2001). Facilitating high quality student practice in introductory physics. American Journal of Physics, 69(S1), S2-S11. doi:10.1119/1.1286094Castro Palacio, J. C., Rubayo-Soneira, J., Lombardi, A., & Aquilanti, V. (2008). Molecular dynamics simulations and hyperspherical mode analysis of NO in Kr crystals with the use of ab initio potential energy surfaces for the Kr-NO complex. International Journal of Quantum Chemistry, 108(10), 1821-1830. doi:10.1002/qua.21620Castro Palacio, J. C., Velazquez Abad, L., Lombardi, A., Aquilanti, V., & Rubayo Soneíra, J. (2007). Normal and hyperspherical mode analysis of NO-doped Kr crystals upon Rydberg excitation of the impurity. The Journal of Chemical Physics, 126(17), 174701. doi:10.1063/1.2730786Abu-Mulaweh, H. I., & Mueller, D. W. (2008). The use of LabVIEW and data acquisition unit to monitor and control a bench-top air-to-water heat pump. Computer Applications in Engineering Education, 16(2), 83-91. doi:10.1002/cae.20122Rebolj, D., Menzel, K., & Dinevski, D. (2008). A virtual classroom for information technology in construction. Computer Applications in Engineering Education, 16(2), 105-114. doi:10.1002/cae.20129Orquín, I., García-March, M.-Á., de Córdoba, P. F., Urcheguía, J. F., & Monsoriu, J. A. (2007). Introductory quantum physics courses using a LabVIEW multimedia module. Computer Applications in Engineering Education, 15(2), 124-133. doi:10.1002/cae.20100Garrett, S. L. (2004). Resource Letter: TA-1: Thermoacoustic engines and refrigerators. American Journal of Physics, 72(1), 11-17. doi:10.1119/1.1621034Monsoriu, J. A., Villatoro, F. R., Marín, M. J., Pérez, J., & Monreal, L. (2006). Quantum fractal superlattices. American Journal of Physics, 74(9), 831-836. doi:10.1119/1.2209242Timberlake, T. (2004). A computational approach to teaching conservative chaos. American Journal of Physics, 72(8), 1002-1007. doi:10.1119/1.1764559Gillies, A. D., Sinclair, B. D., & Swithenby, S. J. (1996). Feeling physics: computer packages for building concepts and understanding. Physics Education, 31(6), 362-368. doi:10.1088/0031-9120/31/6/016Galili, I., Kaplan, D., & Lehavi, Y. (2006). Teaching Faraday’s law of electromagnetic induction in an introductory physics course. American Journal of Physics, 74(4), 337-343. doi:10.1119/1.2180283Wilson, J. M., & Redish, E. F. (1989). Using Computers in Teaching Physics. Physics Today, 42(1), 34-41. doi:10.1063/1.881202Coulter, B. L., & Adler, C. G. (1979). Can a body pass a body falling through the air? American Journal of Physics, 47(10), 841-846. doi:10.1119/1.1162

    Herramientas digitales para la modelización matemática colaborativa en línea

    Full text link
    [EN] To enable collaborative modeling activities online digital tools are essential. In this paper we present a holistic and adaptable concept for the development and implementation of modeling activities – which could especially be fruitful in times of homeschooling and distance learning. The concept is based on two digital tools: Jupyter Notebooks and a communication platform with video conferences.We carried out this concept in the context of two types of modeling activities: guided modeling days, where the students work on previously prepared and didactically developed digital learning material, and modeling weeks, in which the students work on open problems from research and industry very freely. In this paper the usage of Jupyter Notebook in modeling activities is presented and illustrated with the example of the optimization of a solar power plant. On top, we share our experiences in online modeling activities with high-school students in Germany.[ES] Para facilitar las actividades de modelización colaborativa en línea, las herramientas digitales son esenciales. En este trabajo presentamos un concepto holístico y adaptable para el desarrollo y la implementación de actividades de modelización – que podría ser especialmente provechoso en tiempos de educación a distancia. El concepto se basa en dos herramientas digitales: Jupyter Notebooks y una plataforma de comunicación con videoconferencia. Realizamos este concepto en el contexto de dos tipos de actividades de modelización matemática: días de modelización guiada, en los que los alumnos trabajan con material de aprendizaje digital previamente preparado y desarrollado didácticamente, y semanas de modelización, en las que los alumnos trabajan en problemas abiertos de la investigación o de la industria de forma libre. Se presenta el uso de Jupyter Notebook en las actividades de modelización y se ilustra con el ejemplo de la optimización de una planta solar. Además, compartimos nuestras experiencias en actividades de modelización en línea con estudiantes de secundaria en Alemania.Schönbrodt, S.; Wohak, K.; Frank, M. (2022). Digital Tools to Enable Collaborative Mathematical Modeling Online. Modelling in Science Education and Learning. 15(1):151-174. https://doi.org/10.4995/msel.2022.16269OJS151174151Blum, W. (2015). Quality Teaching of Mathematical Modelling: What Do We Know, What Can We Do? In S. J. Cho (Ed.), The Proceedings of the 12th International Congress on Mathematical Education (pp. 73-96). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-12688-3_9Blum, W., & Borromeo Ferri, R. (2009). Mathematical Modelling: Can it Be Taught and Learnt? Journal of Mathematical Modelling and Application, 1 (1), 45-58.Blum, W., Galbraith, P., Henn, H.-W., & Niss, M. (2007). Modelling and Applications in Mathematics Education. New York: Springer. https://doi.org/10.1007/978-0-387-29822-1Blum, W., & Lei, D. (2007). How do students and teachers deal with modelling problems? In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical Modelling (ICTMA 12): Education, Engineering and Economics (pp. 222-231). Chichester: Horwood Publishing. https://doi.org/10.1533/9780857099419.5.221Borromeo Ferri, R. (2006, 04). Theoretical and empirical differentiations of phases in the modeling process. ZDM, 38(2), 86-95. doi: 10.1007/BF02655883 https://doi.org/10.1007/BF02655883Bruffee, K. (1995). Sharing Our Toys: Cooperative Learning versus Collaborative Learning. Change, 27 (1), 12-18. https://doi.org/10.1080/00091383.1995.9937722Computer-Based Maths. (n.d.). The Computational Thinking Process Poster. www.computationalthinking.org/helix. (accessed: 2021-01-23)Frank, M., Richter, P., Roeckerath, C., & Schönbrodt, S. (2018). Wie funktioniert eigentlich GPS? - Ein Computergestützter Modellierungsworkshop [How does GPS actually work? - A Computer-Supported Modeling Workshop]. In Greefrath, G. and Siller, S. (Ed.), Digitale Werkzeuge, Simulationen und mathematisches Modellieren [Digital tools, simulations and mathematical modeling] (pp. 137-163). Wiesbaden: Springer-Verlag. https://doi.org/10.1007/978-3-658-21940-6_7Frey, K. (2012). Die Projektmethode: Der Weg zum bildenden Tun [The project method: the path to educational action] (12th ed.; U. Schäfer, Ed.). Weinheim: Beltz.Gerhard, M., Hattebuhr, M., Schönbrodt, S., & Wohak, K. (2021). Aufbau und Einsatzmöglichkeiten des Lehr- und Lernmaterials [Structure and possible applications of the teaching and learning material]. In M. Frank & C. Roeckerath (Eds.), Neue Materialien für einen realitätsbezogenen Mathematikunterricht 9 [New materials for reality-based mathematics teaching 9]. Springer Spektrum.Greefrath, G., & Siller, H.-S. (2018). Digitale Werkzeuge, Simulationen und mathematisches Modellieren [Digital tools, simulations and mathematical modeling]. In Greefrath, G. and Siller, S. (Ed.), Digitale Werkzeuge, Simulationen und mathematisches Modellieren [Digital tools, simulations and mathematical modeling] (pp. 3-22). Wiesbaden: Springer-Verlag. https://doi.org/10.1007/978-3-658-21940-6_1Golub, J. (1988). Focus on Collaborative Learning. Urbana, Illinois: National Council of Teachers of English.Johnson, D., & Johnson, R. (1989). Cooperation and Competition: Theory and Research. Interaction Book Company.Johnson, D., & Johnson, R. (2014). Using technology to revolutionize cooperative learning: An opinion. Frontiers in Psychology, 5 , 1-3. https://doi.org/10.3389/fpsyg.2014.01156Panitz, T. (1999a). Collaborative versus cooperative learning: A comparison of the two concepts which will help us understand the underlying nature of interactive learning. ERIC Document Reproduction Service No. ED448443.Panitz, T. (1999b). The Motivational Benefits of Cooperative Learning. New directions for teaching and learning, 78. https://doi.org/10.1002/tl.7806Roberts, T. (2004). Preface. In T. Robert (Ed.), Online Collaborative Learning. Hershey, London: Information Science Publishing.Nason R. and Woodruff E. (2004). Online Collaborative Learning in Mathematics: Some Necessary Innovations. Online Collaborative Learning. Robert T.S (Ed.) pp 103-131 Information Science Publishing, Hershey (London) https://doi.org/10.4018/978-1-59140-174-2.ch005Siller, H.-S., & Greefrath, G. (2010). Mathematical Modelling in Class regarding to Technology. In Proceedings of the 6th CERME conference (pp. 2136-2145). (CERME-Proceedings)Greefrath G.and Siller H-St (2018). Digitale Werkzeuge, Simulationen und mathematisches Modellieren (Digital tools, simulations and mathematical modeling). Digitale Werkzeuge, Simulationen und mathematisches Modellieren (Digital tools, simulations and mathematical modeling). Greefrath G. and Siller S. (Eds.) pp. 3-22. Springer-Verlag (Wiesbaden) https://doi.org/10.1007/978-3-658-21940-6_1Hänze, M., Schmidt-Weigand, F., & Staudel, L. (2010). Gestufte Lernhilfen [Staggered learning aids]. In S. Boller & R. Lau (Eds.), Innere Differenzierung in der Sekundarstufe II. Ein Praxishandbuch für Lehrer/innen [Inner differentiation in upper secondary education. A practical handbook for teachers] (pp. 63-73). Weinheim: Beltz.Kaiser, G., & Schwarz, B. (2010). Authentic Modelling Problems in Mathematics Education - Examples and Experiences. Journal fur Mathematik-Didaktik, 31 , 51-76. https://doi.org/10.1007/s13138-010-0001-3Krajcik J.S. and Blumenfeld Ph.C. (2005). Project-Based Learning. The Cambridge Handbook of the Learning Sciences. Sawyer, R. Keith (Ed.) pp 317-334. Cambridge Handbooks in Psychology. Cambridge University Press (Cambridge) doi:10.1017/CBO9780511816833.020 https://doi.org/10.1017/CBO9780511816833.020Ludwig, M. (1997). Projekte im Mathematikunterricht des Gymnasiums [Projects in mathematics lessons of the high school] (phdthesis). Julius-Maximilians-Universitöt Würzburg. https://doi.org/10.1007/BF03338857Maaß, K. (2010). Classifiation Scheme for Modelling Tasks. Journal fur Mathematik-Didaktik, 31 (2), 285-311. doi: 10.1007/s13138-010-0010-2 https://doi.org/10.1007/s13138-010-0010-2Bock, W., & Bracke, M. (2015). Applied School Mathematics - Made in Kaiserslautern. In H. Neuntzer & D. Prätzel-Wolters (Eds.), Currents in industrial mathematics: From concepts to research to education (pp. 403-437). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-662-48258-2Kronberg, R., York-Barr, J., Arnold, K., Gombos, S., Truex, S., Vallejo, B., & Stevenson, J. (1997). Differentiated Teaching & Learning in Heterogeneous Classrooms: Strategies for Meeting the Needs of All Students. Washington D.C.: ERIC Clearinghouse. Retrieved from https://eric.ed.gov/?id=ED418538Stahl, G., Koschmann, T., & Suthers, D. (2006). Computer-supported collaborative learning: An historical perspective. In R. Sawyer (Ed.), Cambridge handbook of the learning sciences (pp. 409-426). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511816833.025Niss, M. (1992). Applications and modelling in school mathematics - directions for future development. Roskilde: IMFUFA Roskilde Universitetscenter.Schmidt, L. (2019). Machine Learning: automatische Bilderkennung mit Mathematik?! - Ein Lehr-Lern- Modul im Rahmen eines mathematischen Modellierungstages für Schülerinnen und Schüler der Sekundarstufe II [Machine Learning: automatic image recognition with mathematics?! - A teaching-learning module in the context of a mathematical modeling day for high school students]. www.cammp.online Masterthesis4druck.pdf. (Master's thesis, RWTH Aachen, accessed: 2021-02-23)Schönbrodt, S., & Frank, M. (2020). Schüler/innen forschen zu erneuerbaren Energien - Optimierung eines Solarkraftwerks [Students research on renewable energies - Optimization of a solar power plant]. In H.-S. Siller, W. Weigel, & J. F. Worler (Eds.), Beiträge zum Mathematikunterricht [Contributions to mathematics education] (pp. 1534-1534). Münster: WTM-Verlag.Schönbrodt, S. (2019). Maschinelle Lernmethoden für Klassifizierungsprobleme - Perspektiven für die mathematische Modellierung mit Schülerinnen und Schülern [Machine learning methods for classification problems - perspectives for mathematical modeling with students]. Wiesbaden: Springer Spektrum. https://doi.org/10.1007/978-3-658-25137-6Vos, P. (2011). What is 'authentic' in the teaching and learning of mathematical modelling? In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in Teaching and Learning of Mathematical Modelling, ICTMA 14 (pp. 713-722). Dordrecht: Springer. https://doi.org/10.1007/978-94-007-0910-2_68Winter, H. (1995). Mathematikunterricht und Allgemeinbildung [Mathematics education and general education]. Mitteilungen der Gesellschaft für Didaktik der Mathematik, 61 , 37-46. Retrieved 23 January, 2021, from https://ojs.didaktik-der-mathematik.de/index.php/mgdm/article/view/69/80Wohak, K., & Frank, M. (2019). Complex Modeling: Insights into our body through computer tomography - perspectives of a project day on inverse problems. In U. T. Jankvist, M. van den Heuvel-Panhuizen, & M. Veldhuis (Eds.), Eleventh Congress of the European Society for Research in Mathematics Education (pp. 4815-4822). Utrecht: Freudenthal Group.Wohak, K., Sube, M., Schönbrodt, S., Frank, M., & Roeckerath, C. (2021). Authentische und relevante Modellierung mit Schülerinnen und Schülern an nur einem Tag?! [Authentic and relevant modeling with students in just one day?!]. In M. Bracke, M. Ludwig, & K. Vorhölter (Eds.), Modellierungsprojekte mit Schülerinnen und Schülern. Realitätsbezüge im Mathematikunterricht [Modeling projects with students. Reality references in mathematics lessons] (pp. 37-50). Wiesbaden: Springer Spektrum. https://doi.org/10.1007/978-3-658-33012-5_4Vorholter K. and Freiwald J. (2022). Concept and structure of the Hamburg Modeling Days Modelling in Science Education and Learning. (In this issue).Hattebuhr M. and Frank M. (2022). Compartment models to study human impact on climate change Modelling in Science Education and Learning. (In this issue)

    Learning to communicate computationally with Flip: a bi-modal programming language for game creation

    Get PDF
    Teaching basic computational concepts and skills to school children is currently a curricular focus in many countries. Running parallel to this trend are advances in programming environments and teaching methods which aim to make computer science more accessible, and more motivating. In this paper, we describe the design and evaluation of Flip, a programming language that aims to help 11–15 year olds develop computational skills through creating their own 3D role-playing games. Flip has two main components: 1) a visual language (based on an interlocking blocks design common to many current visual languages), and 2) a dynamically updating natural language version of the script under creation. This programming-language/natural-language pairing is a unique feature of Flip, designed to allow learners to draw upon their familiarity with natural language to “decode the code”. Flip aims to support young people in developing an understanding of computational concepts as well as the skills to use and communicate these concepts effectively. This paper investigates the extent to which Flip can be used by young people to create working scripts, and examines improvements in their expression of computational rules and concepts after using the tool. We provide an overview of the design and implementation of Flip before describing an evaluation study carried out with 12–13 year olds in a naturalistic setting. Over the course of 8 weeks, the majority of students were able to use Flip to write small programs to bring about interactive behaviours in the games they created. Furthermore, there was a significant improvement in their computational communication after using Flip (as measured by a pre/post-test). An additional finding was that girls wrote more, and more complex, scripts than did boys, and there was a trend for girls to show greater learning gains relative to the boys

    Hiding in Plain Sight: Identifying Computational Thinking in the Ontario Elementary School Curriculum

    Get PDF
    Given a growing digital economy with complex problems, demands are being made for education to address computational thinking (CT) – an approach to problem solving that draws on the tenets of computer science. We conducted a comprehensive content analysis of the Ontario elementary school curriculum documents for 44 CT-related terms to examine the extent to which CT may already be considered within the curriculum. The quantitative analysis strategy provided frequencies of terms, and a qualitative analysis provided information about how and where terms were being used. As predicted, results showed that while CT terms appeared mostly in Mathematics, and concepts and perspectives were more frequently cited than practices, related terms appeared across almost all disciplines and grades. Findings suggest that CT is already a relevant consideration for educators in terms of concepts and perspectives; however, CT practices should be more widely incorporated to promote 21st century skills across disciplines. Future research would benefit from continued examination of the implementation and assessment of CT and its related concepts, practices, and perspectives

    Computer Programming Effects in Elementary: Perceptions and Career Aspirations in STEM

    Full text link
    The development of elementary-aged students’ STEM and computer science (CS) literacy is critical in this evolving technological landscape, thus, promoting success for college, career, and STEM/CS professional paths. Research has suggested that elementary- aged students need developmentally appropriate STEM integrated opportunities in the classroom; however, little is known about the potential impact of CS programming and how these opportunities engender positive perceptions, foster confidence, and promote perseverance to nurture students’ early career aspirations related to STEM/CS. The main purpose of this mixed-method study was to examine elementary-aged students’ (N = 132) perceptions of STEM, career choices, and effects from pre- to post-test intervention of CS lessons (N = 183) over a three-month period. Findings included positive and significant changes from students’ pre- to post-tests as well as augmented themes from 52 student interviews to represent increased enjoyment of CS lessons, early exposure, and its benefits for learning to future careers
    corecore