44,467 research outputs found

    A Model-Driven Architecture Approach to the Efficient Identification of Services on Service-oriented Enterprise Architecture

    No full text
    Service-Oriented Enterprise Architecture requires the efficient development of loosely-coupled and interoperable sets of services. Existing design approaches do not always take full advantage of the value and importance of the engineering invested in existing legacy systems. This paper proposes an approach to define the key services from such legacy systems effectively. The approach focuses on identifying these services based on a Model-Driven Architecture approach supported by guidelines over a wide range of possible service types

    Approximations from Anywhere and General Rough Sets

    Full text link
    Not all approximations arise from information systems. The problem of fitting approximations, subjected to some rules (and related data), to information systems in a rough scheme of things is known as the \emph{inverse problem}. The inverse problem is more general than the duality (or abstract representation) problems and was introduced by the present author in her earlier papers. From the practical perspective, a few (as opposed to one) theoretical frameworks may be suitable for formulating the problem itself. \emph{Granular operator spaces} have been recently introduced and investigated by the present author in her recent work in the context of antichain based and dialectical semantics for general rough sets. The nature of the inverse problem is examined from number-theoretic and combinatorial perspectives in a higher order variant of granular operator spaces and some necessary conditions are proved. The results and the novel approach would be useful in a number of unsupervised and semi supervised learning contexts and algorithms.Comment: 20 Pages. Scheduled to appear in IJCRS'2017 LNCS Proceedings, Springe

    Data mining technology for the evaluation of learning content interaction

    Get PDF
    Interactivity is central for the success of learning. In e-learning and other educational multimedia environments, the evaluation of interaction and behaviour is particularly crucial. Data mining – a non-intrusive, objective analysis technology – shall be proposed as the central evaluation technology for the analysis of the usage of computer-based educational environments and in particular of the interaction with educational content. Basic mining techniques are reviewed and their application in a Web-based third-level course environment is illustrated. Analytic models capturing interaction aspects from the application domain (learning) and the software infrastructure (interactive multimedia) are required for the meaningful interpretation of mining results

    Highly Granular Calorimeters: Technologies and Results

    Full text link
    The CALICE collaboration is developing highly granular calorimeters for experiments at a future lepton collider primarily to establish technologies for particle flow event reconstruction. These technologies also find applications elsewhere, such as detector upgrades for the LHC. Meanwhile, the large data sets collected in an extensive series of beam tests have enabled detailed studies of the properties of hadronic showers in calorimeter systems, resulting in improved simulation models and development of sophisticated reconstruction techniques. In this proceeding, highlights are included from studies of the structure of hadronic showers and results on reconstruction techniques for imaging calorimetry. In addition, current R&D activities within CALICE are summarized, focusing on technological prototypes that address challenges from full detector system integration and production techniques amenable to mass production for electromagnetic and hadronic calorimeters based on silicon, scintillator, and gas techniques.Comment: 11 pages, 16 figures, the proceeding for the overview talk presented at the conference Instrumentation for Colliding Beam Physics 2017 (INSTR17), Novosibirsk, Russia, 27 February - 3 March 2017, to be published in JINS

    Improved description and monitoring of near surface hazardous infiltrate complexes by shear waves for effective containment reponse

    Get PDF
    Among numerous causes of fluid releases and infiltration in near surface, resurgence in such anthropic activities associated with unconventional resource developments have brought about a resounding concern. Apart from the risk of an immediate chemical hazard, a long term possible recurrent geo-environmental risk since can also be envisaged as for various prevalent stake holders and broader initiatives. Urgency and exactness for spatiotemporal containment and remediation promotes the devising of efficient methods for monitoring near subsurface flow complexes caused by such spills. Swave (Shear waves) spectral imaging results, in relevant context, of a controlled immiscible fluid displacement monitoring experimental study are analysed and inferred. Against the prospective method as well evaluated, Swave diffraction associated spectral peculiarities are examined, importantly, given background medium characteristics definitions invoking fresh insights of microscale significance alongside macroscale potential

    Physics of windblown particles

    Get PDF
    A laboratory facility proposed for the Space Station to investigate fundamental aspects of windblown particles is described. The experiments would take advantage of the environment afforded in earth orbit and would be an extension of research currently being conducted on the geology and physics of windblown sediments on earth, Mars, and Venus. Aeolian (wind) processes are reviewed in the planetary context, the scientific rational is given for specific experiments to be conducted, the experiment apparatus (the Carousel Wind Tunnel, or CWT) is described, and a plan presented for implementing the proposed research program
    • 

    corecore