64,990 research outputs found

    TagBook: A Semantic Video Representation without Supervision for Event Detection

    Get PDF
    We consider the problem of event detection in video for scenarios where only few, or even zero examples are available for training. For this challenging setting, the prevailing solutions in the literature rely on a semantic video representation obtained from thousands of pre-trained concept detectors. Different from existing work, we propose a new semantic video representation that is based on freely available social tagged videos only, without the need for training any intermediate concept detectors. We introduce a simple algorithm that propagates tags from a video's nearest neighbors, similar in spirit to the ones used for image retrieval, but redesign it for video event detection by including video source set refinement and varying the video tag assignment. We call our approach TagBook and study its construction, descriptiveness and detection performance on the TRECVID 2013 and 2014 multimedia event detection datasets and the Columbia Consumer Video dataset. Despite its simple nature, the proposed TagBook video representation is remarkably effective for few-example and zero-example event detection, even outperforming very recent state-of-the-art alternatives building on supervised representations.Comment: accepted for publication as a regular paper in the IEEE Transactions on Multimedi

    Finding More Relevance: Propagating Similarity on Markov Random Field for Image Retrieval

    Full text link
    To effectively retrieve objects from large corpus with high accuracy is a challenge task. In this paper, we propose a method that propagates visual feature level similarities on a Markov random field (MRF) to obtain a high level correspondence in image space for image pairs. The proposed correspondence between image pair reflects not only the similarity of low-level visual features but also the relations built through other images in the database and it can be easily integrated into the existing bag-of-visual-words(BoW) based systems to reduce the missing rate. We evaluate our method on the standard Oxford-5K, Oxford-105K and Paris-6K dataset. The experiment results show that the proposed method significantly improves the retrieval accuracy on three datasets and exceeds the current state-of-the-art retrieval performance

    Combining Language and Vision with a Multimodal Skip-gram Model

    Full text link
    We extend the SKIP-GRAM model of Mikolov et al. (2013a) by taking visual information into account. Like SKIP-GRAM, our multimodal models (MMSKIP-GRAM) build vector-based word representations by learning to predict linguistic contexts in text corpora. However, for a restricted set of words, the models are also exposed to visual representations of the objects they denote (extracted from natural images), and must predict linguistic and visual features jointly. The MMSKIP-GRAM models achieve good performance on a variety of semantic benchmarks. Moreover, since they propagate visual information to all words, we use them to improve image labeling and retrieval in the zero-shot setup, where the test concepts are never seen during model training. Finally, the MMSKIP-GRAM models discover intriguing visual properties of abstract words, paving the way to realistic implementations of embodied theories of meaning.Comment: accepted at NAACL 2015, camera ready version, 11 page

    Semantic multimedia modelling & interpretation for annotation

    Get PDF
    The emergence of multimedia enabled devices, particularly the incorporation of cameras in mobile phones, and the accelerated revolutions in the low cost storage devices, boosts the multimedia data production rate drastically. Witnessing such an iniquitousness of digital images and videos, the research community has been projecting the issue of its significant utilization and management. Stored in monumental multimedia corpora, digital data need to be retrieved and organized in an intelligent way, leaning on the rich semantics involved. The utilization of these image and video collections demands proficient image and video annotation and retrieval techniques. Recently, the multimedia research community is progressively veering its emphasis to the personalization of these media. The main impediment in the image and video analysis is the semantic gap, which is the discrepancy among a user’s high-level interpretation of an image and the video and the low level computational interpretation of it. Content-based image and video annotation systems are remarkably susceptible to the semantic gap due to their reliance on low-level visual features for delineating semantically rich image and video contents. However, the fact is that the visual similarity is not semantic similarity, so there is a demand to break through this dilemma through an alternative way. The semantic gap can be narrowed by counting high-level and user-generated information in the annotation. High-level descriptions of images and or videos are more proficient of capturing the semantic meaning of multimedia content, but it is not always applicable to collect this information. It is commonly agreed that the problem of high level semantic annotation of multimedia is still far from being answered. This dissertation puts forward approaches for intelligent multimedia semantic extraction for high level annotation. This dissertation intends to bridge the gap between the visual features and semantics. It proposes a framework for annotation enhancement and refinement for the object/concept annotated images and videos datasets. The entire theme is to first purify the datasets from noisy keyword and then expand the concepts lexically and commonsensical to fill the vocabulary and lexical gap to achieve high level semantics for the corpus. This dissertation also explored a novel approach for high level semantic (HLS) propagation through the images corpora. The HLS propagation takes the advantages of the semantic intensity (SI), which is the concept dominancy factor in the image and annotation based semantic similarity of the images. As we are aware of the fact that the image is the combination of various concepts and among the list of concepts some of them are more dominant then the other, while semantic similarity of the images are based on the SI and concept semantic similarity among the pair of images. Moreover, the HLS exploits the clustering techniques to group similar images, where a single effort of the human experts to assign high level semantic to a randomly selected image and propagate to other images through clustering. The investigation has been made on the LabelMe image and LabelMe video dataset. Experiments exhibit that the proposed approaches perform a noticeable improvement towards bridging the semantic gap and reveal that our proposed system outperforms the traditional systems
    • …
    corecore