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TagBook: A Semantic Video Representation
Without Supervision for Event Detection

Masoud Mazloom, Xirong Li, and Cees G. M. Snoek, Senior Member, IEEE

Abstract—We consider the problem of event detection in video
for scenarios where only a few, or even zero, examples are available
for training. For this challenging setting, the prevailing solutions
in the literature rely on a semantic video representation obtained
from thousands of pretrained concept detectors. Different from
existing work, we propose a new semantic video representation
that is based on freely available social tagged videos only, without
the need for training any intermediate concept detectors. We
introduce a simple algorithm that propagates tags from a video’s
nearest neighbors, similar in spirit to the ones used for image
retrieval, but redesign it for video event detection by including
video source set refinement and varying the video tag assignment.
We call our approach TagBook and study its construction,
descriptiveness, and detection performance on the TRECVID 2013
and 2014 multimedia event detection datasets and the Columbia
Consumer Video dataset. Despite its simple nature, the proposed
TagBook video representation is remarkably effective for few-
example and zero-example event detection, even outperforming
very recent state-of-the-art alternatives building on supervised
representations.

Index Terms—Event detection, video search, video tagging.

I. INTRODUCTION

THE goal of this paper is to detect events such as dog show,
felling a tree, and wedding dance in arbitrary video con-

tent (Fig. 1). The topic of event detection has a long tradition
in the discipline of multimedia, see [1]–[3] for recent surveys.
Early works considered knowledge-intensive approaches using
relatively little video data, e.g. [4]–[7]. The state-of-the-art is
to exploit big video data sets, such as the Columbia Consumer
Video collection [8] and the TRECVID Multimedia event detec-
tion corpus [9], and to learn an event classifier from dozens of
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Fig. 1. Example videos for the events dog show, felling a tree, and wedding
dance. Despite the challenging diversity in visual appearance, each event main-
tains specific semantics in a consistent fashion. This paper studies whether an
event representation based on tags assigned from the video’s nearest neighbors
can be an effective semantic representation for few- and zero-example event
detection.

carefully labeled examples, e.g. [10]–[13]. However, as events
become more specific, the harder it will be to find sufficient
relevant examples for learning, even on the socially-tagged web
[14]–[16]. Different from the dominant strategy in the event
detection literature, we consider in this paper event detection
scenarios where video examples of the event are scarce, and
even completely absent.

The key to event detection is to have a discriminative video
representation. Traditional video representations for event de-
tection rely on low-level audiovisual features. Often combining
bag-of-words derived from SIFT descriptors, MFCC audio fea-
tures and space-time interest points [11], [17]–[22], or by local-
izing temporal evidence by formulating the problem of video
event detection as multiple instance learning in a low-level fea-
ture space [23]–[25]. Oneata et al. demonstrate the effectiveness
and robustness of the improved dense trajectories with a Fisher
vector encoding [12], [26]. Based on the great success in image
recognition [27], learned representations derived from convo-
lutional neural network (CNN) layers are becoming popular
for video event detection as well, e.g. [13], [28]–[30]. Since
most low-level representations have a high feature vector di-
mensionality, they reach good performance in the presence of
sufficient positive training examples per event. However, the
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applicability of the low-level representation is limited when
only a few positive event examples are available [31]–[34]. Es-
pecially in event detection scenarios where only a description of
an event is available, i.e. without any video training example, the
low-level representations by themselves are more or less use-
less. To tackle the scarcity of positive examples, video samples
which do not precisely describe an event but are still relevant to
help detect the event are exploited in [33]. A novel joint training
protocol is developed in [34] to simultaneously conduct event
detection and recounting, where the recounting model assists
detection by filtering out noisy irrelevant information. We take
a direction orthogonal to these works, aiming to find a semantic
video representation capable of detecting events in the presence
of few examples and even zero examples.

Others have also studied semantic video representations in the
context of few-example [14], [31], [32], [35] and zero-example
[15], [16], [35]–[37] event detection. All these works build a
semantic representation on top of concept detectors such as
‘dog’, ‘tree’ and ‘groom’. Such an approach has become feasible
to some extent thanks to the availability of thousand of concept
annotations as part of the TRECVID benchmark [38], [39] and
the ImageNet challenge [40], as well as social-tagged image
and video resources [14]–[16], [41]. While this allows for few-
example event detection indeed, the need for event examples
has effectively been substituted for the even bigger problem
of acquiring appropriate concept examples. Not to mention the
computational demand for training the individual detectors. In
contrast, we propose a new semantic video representation that
is based only on freely available social tagged videos, without
the need for training any concept detectors. Before detailing
our approach on how to arrive at the new video representation,
we first discuss in more detail related work on semantic video
representations.

II. RELATED WORK

A. Representations From Supervised Concepts

There are good efforts for achieving a semantic represen-
tation by automatically recognizing concepts in a video’s au-
diovisual content. The standard approaches attempt to train a
classifier per concept and use the corresponding classifier con-
fidence values as the building block for a video representation,
which in turn is leveraged for event detection, e.g. [42]–[50].
In [42] for example, Ebadollahi et al. employ 39 pre-defined
concepts from the large scale concept ontology [39] for de-
tecting events in broadcast news footage. Mazloom et al. [46]
introduce a feature selection algorithm that learns the best con-
cept representation for an event from a large bank of more
than thousand concept detectors trained on ImageNet [40] and
TRECVID [51]. Bhattacharya et al. [49] leverage the tempo-
ral dynamics of concept detector scores in their representation
using linear dynamical system models. Naturally, a semantic
representation can be mixed with a low-level one, as success-
fully shown by Ma et al. [52]. All these works rely on care-
fully annotated images or video fragments to arrive at their
concept detectors. Since it is hard to determine a priori what

concepts will be needed, we prefer a more flexible video rep-
resentation that builds its representation by learning from many
weakly annotated web videos, e.g., YouTube videos with social
tags.

B. Representations From Weakly Supervised Concepts

Weakly supervised web resources have been explored by oth-
ers as well. In [14], Habibian et al. harvest YouTube videos
as a resource on which they base their representation. To ac-
commodate for the ambiguity of the video descriptions they
define a set of initial filters on the video collection, covering
grammar and visualness of the descriptions, to assure the most
reliable descriptions remain. To further alleviate the ambiguity
an algorithm is proposed that learns an embedding of the joint
video-description space. The embedding essentially groups sev-
eral terms into topics to allow for a robust visual predictor, while
maintaining descriptiveness. Rather than obtaining a semantic
representation by training concepts over web video examples,
Mazloom et al. [28] propose an algorithm that learns a set of
relevant frames as the concept prototypes, without the need
for frame-level annotations. Since the concept prototypes are a
frame-level representation of concepts, they offer the ability of
mapping each frame of a video into the concept prototype space,
which can be leveraged for both few-example and zero-example
event detection. Wu et al. [16] leverage off-the-shelf detectors
as well as various video and image collections that come with
textual descriptions to learn a large set of concept detectors
using various multimedia features. To allow for zero-example
detection, both the event description and concept detectors are
mapped into the same textual space, in which their similarity is
computed using the cosine distance. Chen et al. [15] also start
from a set of events and their textual descriptions. They first
extract tags deemed relevant for the events. After verifying that
the tags are meaningful and visually detectable, each tag is used
as query on a photo sharing website. By doing so the authors
harvest 400,000 image examples to build a representation con-
taining a total of 2,000 concept detectors. Similar to Chen et al.
[15] we rely on social tagged media, be it that we focus on tagged
videos as also used by Habibian et al. [14] and Mazloom et al.
[28]. However, rather than building concept detectors from the
tagged videos [14]–[16], [28], we prefer to use the tags directly
for video representation.

C. Representations From Tags

We are inspired by recent progress in socially tagged im-
age retrieval [53], where many have demonstrated the value of
tags for image retrieval. While it is well known that tags are
often ambiguous, faulty, and incomplete, these limitations can
be overcome to some extent by clever algorithms. Two rep-
resentative and good performing [53] algorithms are neighbor
voting by Li et al. [54] and TagProp by Guillaumin et al. [55].
Given an image, the neighbor voting algorithm first retrieves its
nearest neighbors from a source set in terms of low-level visual
similarity. To determine the relevance of each tag of the input
image, the algorithm then simply counts the tag’s occurrence in
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annotations of the top-k most similar images. Apart from tag
refinement, the algorithm can also be leveraged for tag assign-
ment. In this scenario the tags from the neighbors are sorted in
descending order in terms of their occurrence frequency, and
the top ranked tags are propagated to the input image. Differ-
ent from the neighbor voting algorithm which considers the
neighbors equally important, TagProp assigns rank-based or
distance-based weights to the individual neighbors such that
tags from neighbors closer to the input image will be enhanced
in the tag propagation process. Our solution is grounded on tag
propagation similar to [54], [55], but takes two steps further to
make it more suited for video event detection. One, instead
of frame-level tag propagation as a straightforward applica-
tion of [54], [55] to the video domain, we conduct video-level
tag propagation. Since the number of videos is much smaller
than the number of video frames, this design ensures good
scalability of our solution to deal with large-scale video sets.
Two, we conduct tag refinement on the weakly labeled train-
ing video set before using it as a resource for tag propagation.
This resolves to some extent the inaccuracy and the incom-
pleteness of social tags assigned to the source videos. As a
consequence, more relevant tags will be propagated to the input
video.

Propagating tags between videos has been studied in the
context of tag recommendation [56], [57]. There, tags are
meant to be used by end users, mainly for video browsing
and retrieval. In contrast, we propagate tags for the purpose
of using them as video representation for computing (cross-
media) relevance between an unlabeled video and a specific
event.

D. Contributions

Our work makes the following contributions. First of all, we
propose a new semantic video representation for event detection
using social tags that can be associated to videos. To the best of
our knowledge, no method currently exists in the literature able
to represent a video for event detection using just its tags, other
than our previous conference paper [58]. It should be noted that
[58] proposes a language model on top of the representation
for video retrieval using query by zero, one or multiple positive
examples. Here we prefer the parameter-free cosine distance
for zero-shot event detection and exploit a support vector ma-
chine (SVM) for the scenario where a few positive and many
negative video examples are available to learn an event clas-
sifier. In addition, we introduce source set refinement, which
differentiates between the tags of neighbor videos in advance
to tag propagation. Consequently, we obtain an improved bag
of tags per video by considering source set refinement and mul-
tiple tag assignment functions. We show the merit of our pro-
posal by performing several experiments on more than 1,000
h of arbitrary Internet videos from the TRECVID Multimedia
Event Detection task 2013, 2014 and the Columbia Consumer
Video dataset. We call our approach TagBook, and detail its
construction for few-example and zero-example event detection
next.

III. TAGBOOK-BASED VIDEO EVENT DETECTION

A. Problem Formalization

Given a user specified event, video event detection is to re-
trieve videos showing the event from a large set of unlabeled
videos. For the ease of consistent description, we use e to in-
dicate the given event, v be a video, and V = {v1 , . . . , vn} a
test set of n videos. We aim to construct a real-valued function
f(v, e) which produces the relevance score between the video
and the event. By sorting V according to f(v, e) in descending
order, videos most relevant with respect to the event will be
obtained.

LetVl = {(vl,1 , y1), . . . , (vl,p , yp)} be a set of p labeled video
samples available for a specific event, where yi = 1 means pos-
itive samples and yi = −1 for negative samples. The difficulty
in constructing f(v, e) largely depends on the size of Vl . Here
the amount of positive samples is our concern, as the occurrence
of a specific event in a video collection tends to be rare, making
the acquisition of positive samples much more expensive than
obtaining negative samples. In practice, even finding a single
sample could be tricky, and one has no other choice than to
express the event in words.

We now describe more formally the two scenarios of video
event detection, in an order of increasing difficulty:

1) few-example video event detection: finding videos rele-
vant to a specific event e from V , given |Vl | >= 1. Typi-
cally Vl has a handful of positive examples; and

2) zero-example video event detection: finding videos rele-
vant to a specific event e from V , given Vl = ∅. In this
case, the event is described by a natural language sen-
tence q.

The scarcity of video samples combined with the high di-
mensionality of low-level visual features makes it nontrivial
to construct f(v, e) effectively. Moreover, in the zero-example
scenario, the visual features are inapplicable to compute cross-
media similarity between a video and a description. To resolve
these difficulties, we present TagBook, a compact and seman-
tic representation of an entire video, which works for both
scenarios.

The key idea of TagBook is to represent an unlabeled
video v by a fixed-length tag vector, denoted as b(v). Let
T = {t1 , . . . , tm} be a vocabulary of m distinct tags used in
the TagBook. Each dimension of the tag vector uniquely cor-
responds to a specific tag, where b(v, i) is the relevance score
between the tag ti and the video v. Hence, TagBook essentially
embeds a video into an m-dimensional tag space.

Next, we show in Section III-B how to tackle video event
detection using TagBook, followed by a solution to implement
this representation in Section III-C. For the ease of reference,
Table I lists the main notation used throughout this work.

B. Two Scenarios for Video Event Detection Using TagBook

We explain how a specific event e can be represented as a
TagBook. Let b(e) be the tag vector of an event. The relevance
between this event and a video boils down to computing the
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TABLE I
MAIN NOTATIONS DEFINED IN THIS WORK

Notation Definition

v a video
e a video event
t a tag
b(v ) a tag vector of a given video
b(e) a tag vector of a given event
b f e w (e) few-example version of b(e)
bz e r o (e) zero-example version of b(e)
f (v , e) a relevance function computed as cosine(b(v ), b(e))
T a vocabulary of m tags
V a set of unlabeled test videos
Vl a set of labeled video samples of a given event
Vs a set of socially tagged videos for tag propagation
s(v , v ′) visual similarity between two videos
[[vs , t]] a binary function indicating if vs ∈ Vs is labeled with t

r(vs , t) the relevance score between vs ∈ Vs and tag t

cosine similarity between the two tag vectors. That is

f(v, e) := cosine(b(v),b(e)). (1)

Notice that we have also investigated other similarity metrics in-
cluding the Euclidean distance, the Spearman rank correlation,
the Jensen–Shannon divergence, the χ2 distance, histogram in-
tersection, and the Earth Mover’s Distance. Among them, the
cosine similarity strikes the best balance between effectiveness
and efficiency. We use bfew (e) and bzero(e) to indicate two
variants corresponding to the few-example and zero-example
scenarios, respectively.

In the few-example scenario, the event e is expressed in terms
of p labeled video samples. Some of these samples could be
more important than others for modeling the event. Hence, we
consider the tag vector of the event as a weighted combination
of its samples. In particular, we define

bfew (e) :=
p∑

i=1

αiyib(vl,i) (2)

where {αi} are weight parameters. Notice that (2) bears high
resemble to the decision function of a linear SVM. Hence, we
optimize the weights by a linear SVM solver [59].

In the zero-example scenario, a textual description q of the
event is provided. Using the classical bag-of-words model, q is
converted to a tag vector. Accordingly, bzero(e, i) is 1 if ti is in
q, and 0 otherwise.

With b(e) in (1) replaced by bfew (e) and bzero(e) separately,
we have the relevance functions ffew (x, e) and fzero(x, e) for
each of the two scenarios.

C. TagBook Construction by Content-Based Tag Propagation

We propose to construct the TagBook representation of an
unlabeled video by propagating tags from a large set of N
socially tagged videos, denoted by Vs = {vs,1 , . . . , vs,N }. Each
video vs ∈ Vs is assigned with a limited number of social tags.
For each tag t ∈ T , we use a binary labeling function [[vs, t]],
which outputs 1 if vs is labeled with t, and 0 otherwise. Due

to the subjective nature of social tagging, some of the assigned
tags could be irrelevant with respect to the visual content of vs .

With the hypothesis that visually similar images shall have
similar tags, content-based tag propagation has been exploited in
the context of image auto-tagging [54], [55]. Tags are propagated
from neighbor images which are visually close to a test image,
where the neighbors are treated either equally [54] or weighted
in terms of their visual distance to the test image [55]. In our
context, let {v̂s,1 , . . . , v̂s,k} be the k nearest neighbor videos
retrieved from Vs by a predefined video similarity s(v, v′). A
general formula of tag propagation can be expressed as

b(v, i) =
1
k

k∑

j=1

s(v, v̂s,j ) · r(v̂s,j , ti) (3)

where r(vs, t) measures the relevance of a specific tag t with
respect to a specific video vs ∈ Vs . To simplify our notation, we
abuse s(v, v′) to let it also indicate the contribution of a neighbor
video in the tag propagation process. For instance, in a hard as-
signment mode, the output of s(v, v′) will be binary, producing
1 if the rank of the neighbor is within k, and 0 otherwise. Tags
of higher occurrence in Vs are more likely to be propagated.
In order to reduce such an effect, we subtract b(v, i) by a term
related to tag occurrence, i.e.

b(v, i) =
1
k

k∑

j=1

s(v, v̂s,j ) · r(v̂s,j , ti)

− 1
N

N∑

j=1

s(v, vs,j ) · r(vs,j , ti). (4)

Concerning r(vs, t), a straightforward choice is to instantiate
it using the labeling function [[vs, t]]. As aforementioned, this
choice is questionable due to the inaccuracy and sparseness of
social tags. We therefore conduct tag refinement on the source
set Vs before using it for TagBook construction. Again, tag
propagation is employed, computing r(vs, t) by

r(vs, t) =
1
kr

kr∑

j=1

s(vs, ṽs,j ) · [[ṽs,j , t]]

− 1
N

N∑

j=1

s(vs, vs,j ) · [[vs,j , t]] (5)

where {ṽs,1 , . . . , ṽs,k} are the kr nearest neighbors of vs re-
trieved from the source set. Both k and kr are empirically set to
be 500.

Concerning the content-based similarity between two videos
s(v, v′), we use CNN features for their well recognized perfor-
mance. In particular, we train the AlexNet [27] for over 15k
ImageNet classes, each having at least 50 positive examples.
Given a video, we extract its frames uniformly with a time in-
terval of two seconds. The second fully connected layer (FC2) is
used, representing each frame with a 4,096-dimensional feature
vector. The video-level feature vector is obtained by average
pooling over all the frame-level vectors. The video similarity
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Fig. 2. Conceptual framework for generating a TagBook representation for
an unlabeled video. From a source set of web videos annotated by online users,
we propagate tags from the visually similar video neighbors of the input video.
Depending on how the neighbors are weighted and whether the tags of the source
set are refined, we derive three variants of TagBook, i.e., TagBook-hard (equal
neighbors and raw tags), TagBook-soft (weighted neighbors and raw tags), and
TagBook-refine (weighted neighbors and refined tags).

s(v, v′) is computed as the cosine similarity between the corre-
sponding CNN feature vectors.

Depending on how the weights of the neighbors and r(vs, t)
are implemented, we present three variants of TagBook’s tag
assignment, namely:

1) TagBook-hard: neighbor videos are assigned with binary
weights, i.e., 1 if the rank of the neighbor is within k, and
0 otherwise, and r(vs, t) as [[vs, t]];

2) TagBook-soft: neighbor videos are weighted in terms of
their similarity scores, and r(vs, t) as [[vs, t]]. TagBook-
soft corresponds to the representation used in [58]; and

3) TagBook-refine: neighbor videos are weighted in terms of
their similarity scores, and r(vs, t) as (5).

Fig. 2 illustrates the TagBook generation process. Next, we
evaluate TagBook-hard, TagBook-soft, and TagBook-refine for
video event detection on three benchmark datasets.

IV. EVALUATION

A. Datasets

Source set. As our social-tagged video collectionVs , we adopt
the VideoStory46K dataset from Habibian et al. [14] which con-
tains 46k videos from YouTube. Every video has a short caption

provided by the person who uploaded the video. From the cap-
tions we remove stop words and words not visually detectable
such as God (we used the visualness filter from [14]) and finally
obtain a vocabulary T of 19,159 unique tags.

Test datasets 1 and 2: TRECVID MED 2013 and MED 2014
[9]. The MED corpus contains user-generated web videos with a
large variation in quality, length and content of real-world events
including life events, instructional events, sport events, etc. Both
the 2013 and 2014 corpus consist of several partitions with
ground truth annotation at video-level for 30 event categories,
with 10 of those events overlapping in both 2013 and 2014.
For the few-example scenario, we follow the TRECVID 10Ex
evaluation procedure [51]. That is, for each event its training data
Vl contains 10 positive video samples from the Event Kit training
data, and 5 K negative video samples from the Background
training data. In the zero-example scenario, we rely only on the
TRECVID provided textual definition of a test event. For both
scenarios we report results on the MED 2013 test set and the
MED 2014 test set, each containing 27K videos.

Test dataset 3: Columbia CV [8]. This corpus consists of 9,317
YouTube videos, and crowd-sourced ground truth with respect
to 20 visual concepts. Fifteen of the concepts correspond to
specific events such as Ice skating, Birthday, and Music perfor-
mance, so only these event-related concepts are considered in
our experiments. We start from the official data partition, i.e.,
a training set of 4,625 videos and a test set of 4,637 videos.
For few-example event detection, similar to Habibian et al. [14]
we down-sample the training set to have at most 10 positive
training examples per event, obtained based on the alphabet-
ical order of the video names. Different from the TRECVID
datasets, the Columbia CV dataset does not provide textual def-
inition of events. So we do not perform zero-example video
event detection on this dataset.

In what follows, we first use the MED 2013 dataset to find a
good implementation of TagBook, achieved by evaluating varied
choices including refining annotations of the source set, visual
neighbor re-weighting, and the TagBook size. To study whether
a more complex model with higher non-linear capability would
help improve the accuracy of event detection, we compare in the
few-example setting the linear model and a non-linear variant,
reporting both speed and accuracy. To assess how the learned
implementation generalizes to new test data, we evaluate it using
the other two test sets, with a comparison to several state-of-the-
art video representations.

As performance metrics, average precision (AP) per event
and mean average precision (MAP) per dataset are reported.

B. Experiment 1: Finding a Good TagBook

Table II gives the performance of TagBook-hard, TagBook-
soft, and TagBook-refine on the MED 2013 test set. TagBook-
soft performs better than TagBook-hard, with 0.079 versus 0.068
for zero-example video event detection and 0.174 versus 0.148
in the few-example scenario. TagBook-refine performs the best,
scoring MAP of 0.091 and 0.198 in zero-example and few-
example, respectively. Recall that the only difference between
TagBook-hard and TagBook-soft is that the latter re-weights
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TABLE II
COMPARING THREE VARIANTS OF TAGBOOK ON TRECVID MED 2013

Zero-example Few-example

Event TagBook-hard TagBook-soft TagBook-refine TagBook-hard TagBook-soft TagBook-refine

Birthday party 0.028 0.051 0.065 0.099 0.136 0.149
Changing a vehicle tire 0.081 0.108 0.125 0.278 0.402 0.466
Flash mob gathering 0.145 0.194 0.221 0.294 0.372 0.399
Getting a vehicle unstuck 0.198 0.211 0.235 0.499 0.547 0.587
Grooming an animal 0.046 0.066 0.095 0.101 0.165 0.201
Making a sandwich 0.019 0.021 0.036 0.038 0.040 0.076
Parade 0.192 0.201 0.204 0.210 0.228 0.230
Parkour 0.094 0.100 0.109 0.229 0.308 0.334
Repairing an appliance 0.200 0.277 0.298 0.256 0.376 0.381
Working on a sewing project 0.034 0.031 0.027 0.087 0.066 0.072
Attempting a bike trick 0.029 0.067 0.087 0.083 0.146 0.199
Cleaning an appliance 0.008 0.004 0.019 0.016 0.009 0.028
Dog show 0.125 0.084 0.091 0.232 0.121 0.143
Giving directions to a location 0.003 0.006 0.006 0.006 0.008 0.009
Marriage proposal 0.002 0.002 0.003 0.005 0.007 0.009
Renovating a home 0.008 0.010 0.013 0.023 0.028 0.044
Rock climbing 0.043 0.021 0.026 0.124 0.084 0.098
Town hall meeting 0.094 0.071 0.077 0.182 0.165 0.177
Winning a race without a vehicle 0.011 0.055 0.071 0.171 0.232 0.275
Working on a metal crafts project 0.003 0.006 0.007 0.014 0.050 0.067

MAP 0.068 0.079 0.091 0.148 0.174 0.198

Full-size TagBooks are used. For each scenario, top performers per event are highlighted in bold font.

neighbor videos in terms of their visual similarity to a test video,
and the only difference between TagBook-soft and TagBook-
refine is that the latter uses enriched annotations of the source
set. The result shows the joint use of source set refinement
and neighbor re-weighting is beneficial for extracting a better
TagBook representation from unlabeled videos.

We make a further comparison between the three variants of
TagBook to see how well they describe a video. Given a test
video, its TagBook based description is automatically gener-
ated by sorting tags in terms of their b(v, i) and keeping the
top κ ranked tags. We report the result of video description
generation on the positive videos of each event class for which
expert-provided descriptions are available. Following the proto-
col of [14], we use ROUGE-1, a performance metric computing
the recall of the ground truth words in the generated description,
thus increasing along with κ. The performance curve is shown
in Fig. 3, with real examples in Fig. 4. Both figures demonstrate
that TagBook-refine generates more accurate video descriptions.

To assess the effect of the TagBook size on video event de-
tection performance, we investigate three dimension reduction
methods. The first and the most straightforward method is to pre-
serve the top frequent tags in the source set. We term it Frequent
tags. The second is the classical Principal Component Analysis
(PCA). The last is Conceptlet [46], a state-of-the-art concept
selection algorithm, aiming for the best subset of concepts per
event by considering correlations between concepts. Notice that
PCA and Conceptlet require positive video examples, making
them inapplicable in the zero-example scenario. As shown in
Fig. 5, for all the three methods, size-reduced TagBooks score
higher MAP than the full-sized TagBook. In particular, peak
performance is reached at the size of 2,000 for the few-example
case, and 2,500 for the one-example case. In the remaining part

Fig. 3. TagBook-refine versus Other TagBooks for video description genera-
tion, tested on TRECVID MED 2013. TagBook-refined generates more accurate
descriptions.

of the evaluation, we use TagBook-refine reduced by the Fre-
quent tags method, for its good performance, simplicity, and
applicability for both scenarios.

Finally, we also assessed the scenario where TagBook-refine
relies on a non-linear χ2 feature embedding [60] rather than
a linear kernel. As Table III shows, few-example event detec-
tion with TagBook-refine profits from a non-linear kernel at the
expense of an increased computation time. The mean average
precision tends to be about 10% higher for the non-linear ker-
nel, but computation is also about ten times as much. In the
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Fig. 4. Video examples along with their expert-provided description for the
events birthday party (top) and grooming an animal (bottom). Tags predicted
by TagBook-refine (left), TagBook-soft (middle), and TagBook-hard (right) are
summarized as tag clouds. Tags generated by TagBook-refine tend to result in
the best overlap with the ground truth (see Fig. 3).

remaining few-example event detection experiments we rely on
the linear kernel for its good accuracy and efficiency tradeoff.

C. Experiment 2: TagBook Versus Others

We compare TagBook with several state-of-the-art video rep-
resentations for event detection.

1. CNN-FC2. This representation has been described in Sec-
tion III for finding similar videos.

2. ConceptVec-15k. For each sampled frame of a specific
video, instead of the CNN-FC2 layer we adopt the output of the
AlexNet’s softmax layer. The output is a nonnegative vector,
where each dimension corresponds to one of the 15k ImageNet
concepts and its value is a probabilistic estimation of the concept
present in the frame. Average pooling is used to obtain the video-
level representation.

3. ConceptVec-2k. As aforementioned, the TagBook is essen-
tially constructed by neighbor voting based on tag propagation.
One might consider using more advanced mode-based tech-
niques such as SVMs. To address this concern, for each of the
top 2k most frequent tags in our source set, we learn a separate
linear SVMs classifier with CNN-FC2 as the underlying feature.
A video in the source set is taken as positive training examples
if its caption contains the tag, and used as negatives otherwise.
By applying the classifiers, each video is represented by a 2k
vector of concept detector outputs.

4. VideoStory [14]. This video event representation strives
to embed the caption of a video and its visual features in a
joint space by grouping tags. We follow the author suggested
implementation [14], which encodes each video as a Fisher
vector over MBH descriptors along the motion trajectories. We
learn the joint embedding from the source set with an optimal
target dimensionality of 2,048.

Fig. 5. Influence of the TagBook size on (a) few-example and (b) zero-example
video event detection. Compared to the full-sized TagBook, TagBooks con-
sisting of around 2000 most frequent tags yield the best performance on the
TRECVID MED 2013 test set. Since Conceptlet and PCA require visual exam-
ples, they are inapplicable in the zero-example scenario.

TABLE III
LINEAR VERSUS NON-LINEAR KERNEL, USING TAGBOOK-REFINE

WITH VARYING SIZES, FOR FEW-EXAMPLE EVENT DETECTION

ON TRECVID MED 2013

Linear Nonlinear

TagBook size MAP Training time Test time MAP Training time Test time

1,000 0.209 9.01 6.00 0.224 55.11 39.89
1,500 0.219 9.88 7.12 0.235 81.00 69.00
2,000 0.225 14.02 8.98 0.244 114.03 85.98
2,500 0.218 16.01 10.99 0.247 141.86 116.14

We report the time needed for training models and testing them for all events, measured in
seconds on Intel Xeon Processor E5-2690. The non-linear kernel is more effective at the
expense of an almost ten-fold increase in computation time on average.
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TABLE IV
TAGBOOK VERSUS OTHERS ON TRECVID MED 2013

Few-example Zero-example

VideoStory Concept Concept
Event CNN-FC2 ConceptVec-15k ConceptVec-2k [14] Prototypes [28] TagBook ConceptVec-15k ConceptVec-2k Prototypes [28] TagBook

Birthday party 0.137 0.114 0.156 0.118 0.188 0.182 0.022 0.075 0.154 0.155
Changing a vehicle tire 0.391 0.388 0.411 0.103 0.464 0.560 0.099 0.181 0.320 0.337
Flash mob gathering 0.405 0.347 0.421 0.535 0.439 0.317 0.104 0.178 0.271 0.174
Getting a vehicle unstuck 0.334 0.323 0.456 0.319 0.418 0.602 0.107 0.201 0.406 0.312
Grooming an animal 0.084 0.108 0.149 0.151 0.154 0.247 0.019 0.101 0.095 0.201
Making a sandwich 0.031 0.074 0.087 0.074 0.131 0.108 0.021 0.031 0.164 0.099
Parade 0.171 0.109 0.271 0.452 0.303 0.279 0.094 0.135 0.240 0.185
Parkour 0.330 0.309 0.378 0.721 0.326 0.467 0.020 0.131 0.112 0.215
Repairing an appliance 0.169 0.127 0.261 0.184 0.244 0.395 0.078 0.157 0.213 0.211
Working on a sewing project 0.058 0.071 0.107 0.151 0.109 0.126 0.016 0.036 0.089 0.098
Attempting a bike trick 0.054 0.030 0.123 0.061 0.144 0.200 0.017 0.067 0.061 0.066
Cleaning an appliance 0.021 0.019 0.035 0.078 0.055 0.038 0.006 0.019 0.026 0.023
Dog show 0.232 0.134 0.254 0.354 0.313 0.243 0.003 0.155 0.011 0.200
Giving directions to a location 0.012 0.005 0.011 0.004 0.022 0.013 0.004 0.004 0.008 0.005
Marriage proposal 0.002 0.002 0.009 0.004 0.004 0.007 0.004 0.002 0.005 0.003
Renovating a home 0.019 0.024 0.046 0.051 0.033 0.053 0.017 0.011 0.026 0.018
Rock climbing 0.070 0.063 0.127 0.100 0.110 0.097 0.003 0.020 0.036 0.026
Town hall meeting 0.268 0.201 0.200 0.118 0.290 0.236 0.008 0.087 0.035 0.148
Winning a race without a vehicle 0.150 0.126 0.153 0.217 0.182 0.245 0.012 0.045 0.101 0.099
Working on a metal crafts project 0.054 0.068 0.099 0.118 0.144 0.079 0.002 0.005 0.014 0.002

MAP 0.150 0.132 0.188 0.196 0.204 0.225 0.032 0.081 0.119 0.129

TABLE V
TAGBOOK VERSUS OTHERS ON TRECVID MED 2014

Few-example Zero-example

Event CNN-FC2 ConceptVec-15k ConceptVec-2k TagBook ConceptVec-15k ConceptVec-2k TagBook

Attempting a bike trick 0.057 0.127 0.134 0.139 0.016 0.042 0.075
Cleaning an appliance 0.022 0.062 0.072 0.119 0.014 0.071 0.080
Dog show 0.215 0.361 0.271 0.312 0.016 0.162 0.157
Giving directions to a location 0.013 0.051 0.030 0.032 0.003 0.004 0.006
Marriage proposal 0.003 0.005 0.008 0.008 0.008 0.005 0.005
Renovating a home 0.022 0.050 0.050 0.083 0.016 0.046 0.047
Rock climbing 0.066 0.061 0.101 0.089 0.005 0.008 0.020
Town hall meeting 0.268 0.212 0.204 0.228 0.008 0.102 0.120
Winning a race without a vehicle 0.126 0.121 0.130 0.175 0.017 0.087 0.063
Working on a metal crafts project 0.038 0.037 0.082 0.072 0.003 0.006 0.005
Beekeeping 0.410 0.525 0.461 0.502 0.062 0.003 0.009
Wedding shower 0.074 0.044 0.072 0.117 0.021 0.012 0.035
Non-motorized vehicle repair 0.228 0.407 0.415 0.398 0.003 0.074 0.265
Fixing musical instrument 0.077 0.085 0.097 0.114 0.008 0.003 0.009
Horse riding competetion 0.390 0.280 0.344 0.392 0.124 0.075 0.118
Felling a tree 0.030 0.100 0.086 0.118 0.006 0.021 0.072
Parking a vehicle 0.111 0.231 0.088 0.119 0.198 0.011 0.035
Playing fetch 0.007 0.033 0.031 0.055 0.005 0.020 0.035
Tailgating 0.110 0.149 0.136 0.176 0.005 0.003 0.006
Tuning musical instrument 0.040 0.079 0.055 0.079 0.022 0.006 0.009

MAP 0.115 0.151 0.141 0.166 0.028 0.038 0.059

5. Concept Prototypes [28]. Video event representation that
learns a set of relevant frames as the concept prototypes and uses
the prototypes for representing a video. We follow the author
suggested implementation [28], which first encodes each video
frame as CNN-FC2, and maps it to a concept prototype space
learned for 479 concepts.

Except for CNN-FC2, all video representations are semantic
and can therefore be used in both few-example and zero-example

scenarios. For fair comparisons, the same event modeling tech-
nique, i.e., (2), is used, making the choice of video representa-
tion the only variable. This setting allows us to precisely identify
which representation is the best.

The performance of video event detectors built on the varied
representations is summarized in Tables IV-C, V and VI, corre-
sponding to TRECVID MED 2013, TRECVID MED 2014, and
CCV, respectively. We directly cite AP scores from the original
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TABLE VI
TAGBOOK VERSUS OTHERS ON COLUMBIA CONSUMER VIDEO

Event CNN-FC2 ConceptVec-15k ConceptVec-2k VideoStory TagBook

Basketball 0.466 0.515 0.547 0.553 0.633
Baseball 0.551 0.608 0.563 0.299 0.594
Soccer 0.507 0.504 0.546 0.505 0.574
Ice skating 0.580 0.700 0.769 0.675 0.722
Skiing 0.745 0.794 0.796 0.671 0.796
Swimming 0.719 0.665 0.755 0.764 0.762
Biking 0.435 0.435 0.507 0.561 0.621
Graduation 0.261 0.295 0.278 0.121 0.290
Birthday 0.330 0.292 0.502 0.257 0.492
Wedding reception 0.214 0.174 0.161 0.117 0.196
Wedding ceremony 0.463 0.412 0.439 0.324 0.454
Wedding dance 0.399 0.296 0.423 0.521 0.503
Music performance 0.291 0.317 0.289 0.201 0.385
Non-music 0.188 0.240 0.226 0.282 0.289

performance
Parade 0.487 0.354 0.512 0.634 0.521

MAP 0.442 0.440 0.487 0.432 0.522

papers whenever applicable. Consequently, the results of
VideoStory and Concept Prototypes are only partially available.

TagBook outperforms its competitors on all the three test
datasets. In particular, as TagBook is built on top of CNN-FC2,
its superior performance shows that TagBook is a more compact
yet more semantic enriched video representation than the CNN
feature.

For the model-based video representations, we observe that
ConceptVec-2k is better than ConceptVec-15k in general. The
main reason is that the ImageNet classes emphasize image ob-
jects, many of which are fine-grained classes of animals and
plants. They are not meant for describing video events. By con-
trast, the source set from [14] was collected from YouTube us-
ing event-like descriptions as queries. Learned from such data,
ConceptVec-2k is more suited than ConceptVec-15k for video
event detection.

TagBook is better than ConceptVec-2k, although they use
the same source set and the same visual feature as their start-
ing point. The main technical difference between TagBook and
ConceptVec-2k is that the former is built in a model-free man-
ner while the latter is model-based. User tags are known to be
subjective and ambiguous, meaning large divergence in their im-
agery. Model-free approaches as neighbor voting can figure out
a decision boundary much more complex than linear classifiers,
making it more suited for addressing subjective tags. Besides,
model-based approaches are more sensitive to noise. Because of
these reasons, model-free approaches like neighbor voting are
more effective for learning from user-tagged video data.

TagBook also compares favorably against VideoStory [14]
and Concept Prototypes [28]. Recall that they all use the
VideoStory46K dataset as their source set. Both VideoStory
and Concept Prototypes trust the (weak) annotations and learn
their representation directly on top of the dataset. TagBook, in
contrast, enriches the source set first by suppressing noise and
generating more relevant tags per video. Moreover, TagBook
considers a weight per tag, rather than a binary presence or
absence value.

TABLE VII
SYSTEM-LEVEL COMPARISON TO THE STATE-OF-ART FOR ZERO-EXAMPLE

VIDEO EVENT DETECTION ON TRECVID MED 2013

System MAP

Chen et al. [15] 0.024
Habibian et al. [35] 0.063
Ye et al. [29] 0.089
Chang et al. [37] 0.096
Jiang et al. [36] 0.101
Mazloom et al. [28] 0.119

This paper 0.129

We also compared against our previous work [58], which
relies on TagBook-soft and a language model for retrieval. For
fair comparison we use the same CNN features and the same
source set. On TRECVID MED 2013, TagBook-refine improves
over [58] for few-example event detection from 0.221 to 0.225
and for zero-example from 0.113 to 0.129.

Finally, we make a system level comparison between the
proposed TagBook based system and several state-of-the-art al-
ternatives for zero-example video event detection. The results
shown in Table VII again confirms the effectiveness of the Tag-
Book as a new video representation for event detection. In the
most recent TRECVID MED evaluations from 2014 and 2015,
other approaches have proven effective for few-example and
zero-example event detection as well [61], [62]. In [61] the In-
formedia team from Carnegie Mellon University showed how
a mixture of multimodal features, concepts and fusion schemes
leads to state-of-the-art few-example event detection results.
In addition, they have repeatedly demonstrated that pseudo-
relevance feedback improves zero-example event detection [63].
In [62] the MediaMill team from the University of Amsterdam
proposed a better CNN video feature by enriched pretraining,
leading to state-of-the-art results for few-example event detec-
tion. The PROGRESS set used in the TRECVID MED bench-
mark is for blind testing by NIST only, so we cannot compare
directly, but we note that TagBook will profit from more discrim-
inative and multimodal representations as well and is orthogonal
to pseudo-relevance feedback.

V. CONCLUSION

This paper proposes TagBook, a new semantic video repre-
sentation for video event detection. TagBook is based on freely
available socially tagged videos, without the need for training
any intermediate concept detectors. We introduce an algorithm
that propagates tags to unlabeled videos from many socially
tagged videos. The algorithm is inspired by image neighbor
voting, but is improved by refining the source set, i.e., removing
existing noisy tags and generating new tags, before tag propaga-
tion. Experiments on the TRECVID 2013 and 2014 multimedia
event detection datasets and the Columbia Consumer Video
dataset show that TagBook outperforms the current state-of-
the-art semantic video representations for both zero- and few-
example video event detection.
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