46,163 research outputs found

    Solving Differential-Algebraic Equations in Power Systems Dynamics with Quantum Computing

    Full text link
    Power system dynamics are generally modeled by high dimensional nonlinear differential-algebraic equations due to a large number of generators, loads, and transmission lines. Thus, its computational complexity grows exponentially with the system size. In this paper, we aim to evaluate the alternative computing approach, particularly the use of quantum computing algorithms to solve the power system dynamics. Leveraging a symbolic programming framework, we convert the power system dynamics' DAEs into an equivalent set of ordinary differential equations (ODEs). Their data can be encoded into quantum computers via amplitude encoding. The system's nonlinearity is captured by Taylor polynomial expansion and the quantum state tensor whereas state variables can be updated by a quantum linear equation solver. Our results show that quantum computing can solve the dynamics of the power system with high accuracy whereas its complexity is polynomial in the logarithm of the system dimension.Comment: 6 pages, 8 figures, conference pape

    Algebra, coalgebra, and minimization in polynomial differential equations

    Full text link
    We consider reasoning and minimization in systems of polynomial ordinary differential equations (ode's). The ring of multivariate polynomials is employed as a syntax for denoting system behaviours. We endow this set with a transition system structure based on the concept of Lie-derivative, thus inducing a notion of L-bisimulation. We prove that two states (variables) are L-bisimilar if and only if they correspond to the same solution in the ode's system. We then characterize L-bisimilarity algebraically, in terms of certain ideals in the polynomial ring that are invariant under Lie-derivation. This characterization allows us to develop a complete algorithm, based on building an ascending chain of ideals, for computing the largest L-bisimulation containing all valid identities that are instances of a user-specified template. A specific largest L-bisimulation can be used to build a reduced system of ode's, equivalent to the original one, but minimal among all those obtainable by linear aggregation of the original equations. A computationally less demanding approximate reduction and linearization technique is also proposed.Comment: 27 pages, extended and revised version of FOSSACS 2017 pape

    A Krylov subspace algorithm for evaluating the phi-functions appearing in exponential integrators

    Full text link
    We develop an algorithm for computing the solution of a large system of linear ordinary differential equations (ODEs) with polynomial inhomogeneity. This is equivalent to computing the action of a certain matrix function on the vector representing the initial condition. The matrix function is a linear combination of the matrix exponential and other functions related to the exponential (the so-called phi-functions). Such computations are the major computational burden in the implementation of exponential integrators, which can solve general ODEs. Our approach is to compute the action of the matrix function by constructing a Krylov subspace using Arnoldi or Lanczos iteration and projecting the function on this subspace. This is combined with time-stepping to prevent the Krylov subspace from growing too large. The algorithm is fully adaptive: it varies both the size of the time steps and the dimension of the Krylov subspace to reach the required accuracy. We implement this algorithm in the Matlab function phipm and we give instructions on how to obtain and use this function. Various numerical experiments show that the phipm function is often significantly more efficient than the state-of-the-art.Comment: 20 pages, 3 colour figures, code available from http://www.maths.leeds.ac.uk/~jitse/software.html . v2: Various changes to improve presentation as suggested by the refere

    Adaptive rational Krylov methods for exponential Runge--Kutta integrators

    Full text link
    We consider the solution of large stiff systems of ordinary differential equations with explicit exponential Runge--Kutta integrators. These problems arise from semi-discretized semi-linear parabolic partial differential equations on continuous domains or on inherently discrete graph domains. A series of results reduces the requirement of computing linear combinations of φ\varphi-functions in exponential integrators to the approximation of the action of a smaller number of matrix exponentials on certain vectors. State-of-the-art computational methods use polynomial Krylov subspaces of adaptive size for this task. They have the drawback that the required Krylov subspace iteration numbers to obtain a desired tolerance increase drastically with the spectral radius of the discrete linear differential operator, e.g., the problem size. We present an approach that leverages rational Krylov subspace methods promising superior approximation qualities. We prove a novel a-posteriori error estimate of rational Krylov approximations to the action of the matrix exponential on vectors for single time points, which allows for an adaptive approach similar to existing polynomial Krylov techniques. We discuss pole selection and the efficient solution of the arising sequences of shifted linear systems by direct and preconditioned iterative solvers. Numerical experiments show that our method outperforms the state of the art for sufficiently large spectral radii of the discrete linear differential operators. The key to this are approximately constant rational Krylov iteration numbers, which enable a near-linear scaling of the runtime with respect to the problem size

    On the complexity of solving ordinary differential equations in terms of Puiseux series

    Full text link
    We prove that the binary complexity of solving ordinary polynomial differential equations in terms of Puiseux series is single exponential in the number of terms in the series. Such a bound was given by Grigoriev [10] for Riccatti differential polynomials associated to ordinary linear differential operators. In this paper, we get the same bound for arbitrary differential polynomials. The algorithm is based on a differential version of the Newton-Puiseux procedure for algebraic equations

    Safety verification of nonlinear hybrid systems based on invariant clusters

    Get PDF
    In this paper, we propose an approach to automatically compute invariant clusters for nonlinear semialgebraic hybrid systems. An invariant cluster for an ordinary differential equation (ODE) is a multivariate polynomial invariant g(u→, x→) = 0, parametric in u→, which can yield an infinite number of concrete invariants by assigning different values to u→ so that every trajectory of the system can be overapproximated precisely by the intersection of a group of concrete invariants. For semialgebraic systems, which involve ODEs with multivariate polynomial right-hand sides, given a template multivariate polynomial g(u→, x→), an invariant cluster can be obtained by first computing the remainder of the Lie derivative of g(u→, x→) divided by g(u→, x→) and then solving the system of polynomial equations obtained from the coefficients of the remainder. Based on invariant clusters and sum-of-squares (SOS) programming, we present a new method for the safety verification of hybrid systems. Experiments on nonlinear benchmark systems from biology and control theory show that our approach is efficient
    • …
    corecore