
Safety Verification of Nonlinear Hybrid Systems
Based on Invariant Clusters

Hui Kong
IST Austria

Klosterneuburg, Austria
hui.kong@ist.ac.at

Sergiy Bogomolov
Australian National University

Canberra, Australia
sergiy.bogomolov@anu.edu.au

Christian Schilling
University of Freiburg
Freiburg, Germany

schillic@informatik.uni-
freiburg.de

Yu Jiang
Tsinghua University, Beijing
Henan University, Kaifeng

China
jy1989@mail.tsinghua.edu.cn

Thomas A. Henzinger
IST Austria

Klosterneuburg, Austria
tah@ist.ac.at

ABSTRACT
In this paper, we propose an approach to automatically
compute invariant clusters for nonlinear semialgebraic hy-
brid systems. An invariant cluster for an ordinary differen-
tial equation (ODE) is a multivariate polynomial invariant
g(~u, ~x) = 0, parametric in ~u, which can yield an infinite num-
ber of concrete invariants by assigning different values to ~u
so that every trajectory of the system can be overapprox-
imated precisely by the intersection of a group of concrete
invariants. For semialgebraic systems, which involve ODEs
with multivariate polynomial right-hand sides, given a tem-
plate multivariate polynomial g(~u, ~x), an invariant cluster
can be obtained by first computing the remainder of the
Lie derivative of g(~u, ~x) divided by g(~u, ~x) and then solv-
ing the system of polynomial equations obtained from the
coefficients of the remainder. Based on invariant clusters
and sum-of-squares (SOS) programming, we present a new
method for the safety verification of hybrid systems. Exper-
iments on nonlinear benchmark systems from biology and
control theory show that our approach is efficient.

CCS Concepts
•General and reference → Verification; •Theory of
computation→Timed and hybrid models; •Software
and its engineering→ Formal methods; Model check-
ing;

Keywords
hybrid system; nonlinear system; semialgebraic system; in-
variant; safety verification; SOS programming
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1. INTRODUCTION
A hybrid system [17] is a dynamical system that exhibits

both discrete and continuous behaviors. In this paper, we
consider the safety verification problem for hybrid systems.
In other words, we want to automatically check whether a
set of bad states can be reached from a set of initial states.
For systems described by nonlinear differential equations
this task is particularly complicated as computing the exact
reachable set is usually infeasible. Existing approaches are
mainly based on approximate reachable set computation [2,
9, 4, 6] and abstraction [33, 1, 11, 13, 5, 8, 7].

An invariant is a special kind of overapproximation for the
reachable set of a system. Since invariants do not involve
direct computation of the reachable set, they are especially
suitable for dealing with nonlinear hybrid systems. However,
automatically and efficiently generating sufficiently strong
invariants is challenging [26, 12, 28, 24, 20, 27, 16, 29, 18].

In this work, we propose an approach to automatically
compute invariant clusters for a class of nonlinear semial-
gebraic systems whose trajectories are algebraic, i.e., every
trajectory of the system is essentially a subset of the intersec-
tion of zero level sets of a group of multivariate polynomials.
An invariant cluster for a semialgebraic system is a param-
eterized multivariate polynomial invariant g(~u, ~x) = 0, with
parameter ~u, which can yield an infinite number of concrete
invariants by assigning different values to ~u so that every
trajectory of the system can be overapproximated precisely
by the intersection of a group of concrete invariants.

We roughly describe the idea of computing invariant clus-
ters. A sufficient condition for a trajectory of a semialgebraic
system to start from and to always stay in the zero level set
of a multivariate polynomial g(~x) (i.e., {~x ∈ Rn | g(~x) = 0})
is that the Lie derivative L~fg of g(~x) on the vector flow ~f can

be divided exactly by g(~x) (i.e., the remainder of L~fg w.r.t.

g(~x) must be identical to 0). Therefore, if some g(~x) satisfies
this condition, g(~x) = 0 is an invariant of the system. Given
a template polynomial g(~u, ~x) with ~u as its coefficients, we
can compute the remainder r(~u, ~x) of L~fg w.r.t. g(~u, ~x) sym-

bolically. Moreover, r(~u, ~x) ≡ 0 implies that all the coeffi-
cients ai(~u) of the monomials in ~x in r(~u, ~x) are equal to 0;
thus we can set up a system P of polynomial equations in
~u from the coefficients ai(~u). By solving P we get a set C
of constraints on ~u. For those elements in C that are linear
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in ~u, the corresponding parameterized polynomial equations
g(~u, ~x) = 0 form an infinite set of invariants, which we call
invariant clusters. Based on invariant clusters and sum-of-
squares (SOS) programming, we propose a new method for
the safety verification of hybrid systems.

The main contributions of this paper are as follows: 1) We
propose to generate invariant clusters for nonlinear semialge-
braic systems based on computing the remainder of the Lie
derivative of a template polynomial g(~u, ~x) w.r.t. g(~u, ~x) and
solving the system of polynomial equations obtained from
the coefficients of the remainder. 2) We present a method
to overapproximate trajectories precisely by using invariant
clusters. 3) We apply invariant clusters to the safety verifi-
cation of semialgebraic hybrid systems based on SOS pro-
gramming. 4) We implemented a prototype tool to perform
the aforementioned steps automatically. Experiments show
that our approach is effective and efficient.

The paper is organized as follows. Section 2 is devoted to
the preliminaries. In Section 3, we introduce the approach to
computing invariant clusters and using them to characterize
trajectories. In Section 4, we present a method to verify
safety properties for semialgebraic continuous and hybrid
systems based on invariant clusters. In Section 5, we present
our experimental results. In Section 6, we introduce some
related works. Finally, we conclude our paper in Section 7.

2. PRELIMINARIES
In this section, we recall some concepts used throughout

the paper. We first clarify some notation conventions. If not
specified otherwise, we decorate vectors~·, we use the symbol
K for a field, R for the real number field and N for the set of
natural numbers, and we consider multivariate polynomials,
e.g., elements of the ring K[~x], where the components of ~x
act as indeterminates. In addition, for all the polynomials
g(~u, ~x), we denote by ~u the vector composed of all the ui
and denote by ~x the vector composed of all the remaining
variables that occur in the polynomial.

Definition 1 (Ideal). [10] A subset I of K[~x], is called
an ideal if 1) 0 ∈ I; 2) if p, q ∈ I, then p+ q ∈ I; and 3) if
p ∈ I and q ∈ K[~x], then pq ∈ I.

Definition 2 (Generated ideal). [10] Let g1, . . . , gs
be polynomials in K[~x]. The ideal generated by {g1, . . . , gs}
is

〈g1, . . . , gs〉
def
=

{ s∑
i=1

higi | h1, . . . , hs ∈ K[~x]

}
.

Definition 3 (Algebraic variety). Let K be an al-
gebraically closed field and I ⊂ K[~x] be an ideal. We define
the algebraic variety of I as

V(I)
def
= {~x ∈ Kn | f(~x) = 0 for f ∈ I}.

Next, we present the notation of the Lie derivative, which
is widely used in the discipline of differential geometry. Let
~f : Rn → Rn be a continuous vector field such that ẋi =
fi(~x) where ẋi is the time derivative of xi(t).

Definition 4 (Lie derivative). For a given polyno-
mial p ∈ K[~x] over ~x = (x1, . . . , xn) and a continuous sys-

tem ~̇x = ~f , where ~f = (f1, . . . , fn), the Lie derivative of
p ∈ K[~x] along f of order k is defined as follows.

Lk~fp
def
=

{
p, k = 0∑n
i=1

∂Lk−1
~f

p

∂xi
· fi, k ≥ 1

Essentially, the k-th order Lie derivative of p is the k-th
derivative of p w.r.t. time, i.e., reflects the change of p over
time. We write L~fp for L1

~f
p.

We also use the following theorem for deciding the exis-
tence of a real solution of a system of polynomial constraints.

Theorem 1 (Real Nullstellensatz). [32] The sys-
tem of multivariate polynomial equations and inequalities
p1(~x) = 0, . . . , pm1(~x) = 0, q1(~x) ≥ 0, . . . , qm2(~x) ≥ 0,
r1(~x) > 0, . . . , rm3(~x) > 0 either has a solution in Rn, or
there exists the following polynomial identity

m1∑
i=1

βipi +
∑

v∈{0,1}m2

δv

m2∏
j=1

q
vj
j +

m3∏
k=1

r
dk
k +

∑
v∈{0,1}m3

ηv

m3∏
k=1

r
vk
k + s = 0

(1)
where dk ∈ N and pi, qj , rk, βi are polynomials and δv, ηv, s
are SOS (sum-of-squares) polynomials in R[~x].

Remark 1. Theorem 1 enables efficient decision if a sys-
tem of polynomial constraints has a real solution. By moving
the term s in equation (1) to the right-hand side and denot-
ing the remaining terms by R(~x, ~y), we have −R(~x, ~y) = s,
which means that −R(~x, ~y) is SOS. Hence finding a set of
polynomials βj , rk, δv, ηv, s and some dk’s that make −R(~x, ~y)
SOS is sufficient to prove that the system has no real solu-
tion, which can be done efficiently by SOS programming [25].

In this paper, we focus on semialgebraic continuous and
hybrid systems; we define them in the following.

Definition 5 (Semialgebraic system). A semialge-

braic system is a triple M
def
= 〈X, ~f,X0 〉, where

1. X ⊆ Rn is the state space of the system M ,

2. ~f ∈ R[~x]n is a locally Lipschitz continuous polynomial
vector field function, and

3. X0 ⊆ X is the initial set, which is semialgebraic [32].

The local Lipschitz continuity guarantees the existence

and uniqueness of the differential equation ~̇x = ~f locally. A
trajectory of a semialgebraic system is defined as follows.

Definition 6 (Trajectory). Given a semialgebraic
system M , a trajectory originating from a point ~x0 ∈ X0 to
time T > 0 is a continuous and differentiable function ~x(t) :
[0, T ) → Rn such that 1) ~x(0) = ~x0, and 2) ∀τ ∈ [0, T ):
d~x
dt

∣∣
t=τ

= ~f(~x(τ)). T is assumed to be within the maximal
interval of existence of the solution from ~x0.

Definition 7 (Safety). Given an unsafe set XU ⊆
X, a semialgebraic system M = 〈X, ~f,X0 〉 is said to be
safe if no trajectory ~x(t) of M satisfies both ~x(0) ∈ X0 and
∃τ ∈ R≥0 : ~x(τ) ∈ XU .

Definition 8 (Hybrid System). A hybrid system is

described by a tuple H def
= 〈L,X,E,G,R, I, F 〉, where

• L is a finite set of locations (or modes),

• X ⊆ Rn is the continuous state space. The hybrid state
space of the system is denoted by X = L × X and a
state is denoted by (l, ~x) ∈ X ,
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• E ⊆ L×L is a set of discrete transitions, together with
a guard mapping G : E → 2X and a reset mapping
R : E ×X → 2X ,

• I : L→ 2X is an invariant mapping, and

• F : L×X → Rn is a vector field mapping that assigns

to each location l a vector field ~f .

The transition and dynamic structure of the hybrid sys-
tem defines a set of trajectories. A trajectory is a sequence
originating from a state (l0, ~x0) ∈ X0, where X0 ⊆ X is an
initial set, and consisting of a series of interleaved contin-
uous flows and discrete transitions. During the continuous
flows, the system evolves following the vector field F (l) at
some location l ∈ L as long as the invariant condition I(l) is
not violated. At some state (l, ~x), if there is a discrete tran-
sition (l, l′) ∈ E such that (l, ~x) ∈ G(l, l′) (we write G(l, l′)
for G((l, l′))), the discrete transition can be taken and the
system state can be reset to R((l, l′), ~x). The problem of
safety verification of a hybrid system is to prove that an
unsafe set XU cannot be reached from an initial set X0 .

3. COMPUTING INVARIANT CLUSTERS
In this section, we introduce the invariant cluster and

show how to compute a set of invariant clusters and use it to
overapproximate all trajectories of a semialgebraic system.

3.1 Invariants and invariant clusters
Given a semialgebraic system M , if we can find a multi-

variate polynomial g(~x) ∈ R[~x] such that for any trajectory
~x(t) of M , g(~x(0)) ∼ 0 implies g(~x(t)) ∼ 0 for all t > 0,
where ∼ ∈ {<,≤,=,≥, >}, then g(~x) ∼ 0 is an invariant of
the system. We call g(~x) an invariant polynomial of M . A
trajectory ~x(t) is said to be algebraic if there exists a nonzero
polynomial invariant g(~x) = 0 for ~x(t). Next we present a
sufficient condition for g(~x) to be an invariant polynomial.

Proposition 1. Let M = 〈X, ~f,X0 〉 be a semialgebraic
system and g(~x) ∈ R[~x]. Then g ∼ 0 is an invariant of M
for every ∼ ∈ {<,≤,=,≥, >} if g(~x) satisfies

L~fg ∈ 〈g〉 (2)

Proposition 1 states that all the polynomial equations and
inequalities g ∼ 0 are invariants of M if the Lie derivative of
g belongs to the ideal 〈g〉. Note that every invariant satisfy-
ing condition (2) defines an enclosed region for trajectories,
that is, no trajectory can enter or leave the region.

For a semialgebraic system whose trajectories are alge-
braic, the trajectories can usually be divided into several
groups, and in each group all trajectories show similar curves.
Essentially, these similar curves can be described identi-
cally by a unique parameterized polynomial equation that
we characterize as an invariant cluster. The computation
method of invariant clusters is presented in Subsection 3.2.

Definition 9 (Invariant cluster). An invariant
cluster C of a semialgebraic system is a set of invariants
that can be uniformly described as C = {g(~u, ~x) = 0 | ~u ∈
RK \ {~0}}, where g(~u, ~x) =

∑M
i=1 ci(~u)Xi satisfies L~fg ∈

〈g〉 and ci(~u) ∈ R[~u] are fixed linear polynomials in ~u =
(u1, · · · , uK), Xi are monomials in ~x = (x1, · · · , xn), and
M,K ∈ N.

(a) (b)

Figure 1: (a) Example 2. Curve defined by invariant
cluster of Class(C∗, ~x0) for ~x0 = (4, 2). (b) Example 6.
X0 : (x+15)2+(y−17)2 ≤ 1, XU : (x1−11)2+(y1−16.5)2 ≤ 1.

Note that by requiring ~u 6= ~0 in Definition 9 as well as
other related definitions, we exclude the trivial invariant 0 =
0. Given an invariant cluster, by varying the parameter ~u
we may obtain an infinite set of concrete invariants for the
system. To be intuitive, we present a running example to
demonstrate the related concepts throughout the paper.

Example 1 (running example). Consider the semi-
algebraic system M1 described by [ẋ, ẏ] =

[
y2, xy

]
. The set

C∗ = {u1 − u3(x2 − y2) = 0 | (u1, u3) ∈ R2 \ {~0}} is an
invariant cluster. It is easy to verify that the polynomial
u1−u3(x2− y2) satisfies condition (2) for all (u1, u3) ∈ R2.

Definition 10 (Invariant class). Given a semialge-
braic system M with an initial point ~x0 and an invariant
cluster C = {g(~u, ~x) = 0 | ~u ∈ RK\{~0}} of M , where K ∈ N,
an invariant class of C at ~x0, denoted by Class(C, ~x0), is

the set {g(~u, ~x) = 0 | g(~u, ~x0) = 0, ~u ∈ RK \ {~0}}.

Given an invariant cluster C, by substituting a specific
point ~x0 for ~x in g(~u, ~x) = 0 we get a constraint g(~u, ~x0) = 0
on ~u, which yields a subset Class(C, ~x0) of C. Apparently,
every member of Class(C, ~x0) is an invariant for the trajec-
tory originating from ~x0.

Example 2 (running example). For the given invari-
ant cluster C∗ in Example 1 and a given initial point ~x0 =
(4, 2), we get the invariant class Class(C∗, ~x0) = {u1 −
u3(x2 − y2) = 0 | u1 − 12u3 = 0, (u1, u3) ∈ R2 \ {~0}}. Every
member of Class(C∗, ~x0) is an invariant for the trajectory
of M1 originating from ~x0. The algebraic variety defined by
Class(C∗, ~x0) is shown in Figure 1(a).

An invariant class has the following important properties.

Theorem 2. Given an n-dimensional semialgebraic sys-
tem M and an invariant class D = {g(~u, ~x) = 0 | g(~u, ~x0) =

0, ~u ∈ RK \ {~0}} of M at a specified point ~x0, let Dg be the
set of all invariant polynomials occurring in D and π~x0 be
the trajectory of M originating from ~x0. Then,

1. π~x0 ⊆ V(Dg);

2. there exists a subset B of Dg consisting of m members
such that 〈Dg〉 = 〈B〉, where m is the dimension of the
hyperplane g(~u, ~x0) = 0 in terms of ~u in RK and 〈Dg〉
and 〈B〉 denote the ideal generated by the members of
Dg and B, respectively.
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Algorithm 1: Computation of invariant clusters

input : f : n-dimensional polynomial vector field;
N : upper bound for invariant polynomial degree

output: CFamily: a set of invariant clusters

1 CFamily ← ∅;
2 for i← 1 to N do
3 g~u,~x ← generate parameterized polynomial over ~x of

degree i;
4 Lfg ← compute the Lie derivative of g~u,~x;
5 foreach monomial order O of ~x do
6 R~u,~x ← compute remainder of Lfg w.r.t. g by O;
7 Coeffs← collect coefficients of ~x in R~u,~x;
8 Solution← solve system Coeffs on ~u;
9 CFamily ← CFamily ∪ Solution;

Remark 2. The first property in Theorem 2 reveals that
a trajectory π~x0 is always contained in the intersection of
all the invariants in the invariant class D of ~x0. The second
property asserts that the invariant class can be generated by
a finite subset B of D if it consists of an infinite number
of invariants. The algebraic variety V(B) (which is equiva-
lent to V(Dg)) forms an overapproximation for π~x0 and the
quality of the overapproximation depends largely on the di-
mension m of V(B) (the lower the better). In the ideal case
m = 1, V(B) shrinks to an algebraic curve and hence some
part matches the trajectory precisely. In the case of m > 1,
V(B) is usually a hypersurface. To make the overapproxi-
mation less conservative, we may take the union of multiple
invariant classes from different invariant clusters (if they
exist) to reduce the dimension of the algebraic variety.

3.2 Invariant cluster computation
According to Proposition 1, if we can find a polynomial

g(~x) such that L~fg ∈ 〈g〉, which is equivalent to that the re-

mainder of L~fg w.r.t. g(~x) is identical to 0, then g(~x) = 0 is
an invariant of M . The idea is as follows. We first establish
a template g(~u, ~x) for g(~x) with parameter ~u and then com-
pute the remainder r(~u, ~x) of L~fg w.r.t. g(~u, ~x). According

to the procedure of polynomial division [10], r(~u, ~x) must be

of the form
∑K
i=1

bi(~u)

ud
j

Xi, where d ∈ N, bi(~u) are homoge-

neous polynomials of degree d+1 over ~u, uj is the coefficient
of the leading term of g(~u, ~x) by some specified monomial
order of ~x, and Xi are monomials in ~x. Since r(~u, ~x) ≡ 0
implies uj 6= 0 and bi(~u) = 0 for all i = 1, . . . ,K, we obtain
a system C of homogeneous polynomial equations in ~u plus
uj 6= 0 from the coefficients of r(~u, ~x). Solving C may yield
a set of invariant clusters of M if it exists. Note that all
the aforementioned steps can be performed automatically
in mathematical software such as Maple. Pseudocode for
computing invariant clusters is shown in Algorithm 1. The
motivation for the loop in line 5 is that the remainder may
vary from the monomial order of ~x and produce different
solutions. Using multiple orders helps to get more solutions.

Remark 3. In Algorithm 1, the key steps are comput-
ing the remainder in line 4 and solving the system of equa-
tions on ~u in line 8. The former takes only linear time
and hence is very efficient. The latter involves solving a
system of homogeneous polynomial equations, which is NP-
complete [3]. In our implementation in Maple, we use the

command solve, a sophisticated solver that combines a num-
ber of algorithms, including Gröbner basis and the elimina-
tion method based on resultants, and selects the best algo-
rithm on the fly. In our experiments on nonlinear (para-
metric) systems of dimensions ranging from 2 to 8 the solver
quickly determines whether a solution exists in most cases.

Like most invariant generation approaches our approach is
limited. Essentially, an invariant cluster could be an infinite
set of Darboux polynomials and first integrals, which means
that our approach applies only to integrable systems [14].

Example 3 (running example). According to Algo-
rithm 1, the steps for computing the invariant clusters of
degree 2 are as follows:

1. Generate the template polynomial of degree 2:

g2(~u, ~x) = u6x
2 + u5xy + u4x+ u3y

2 + u2y + u1

2. Compute the Lie derivative L~fg2 using Definition 4:

L~fg2 =
∂g2
∂x

ẋ+
∂g2
∂y

ẏ

= u5x
2y + (2u3 + 2u6)xy2 + u2xy + y3u5 + u4y

2

3. Compute the remainder of L~fg2 w.r.t. g2 by graded

reverse lexicographic ( grevlex) order of (x, y). Using
this order, the leading term of L~fg2 and g2 is u5x

2y

and u6x
2, respectively. Then:

r(~u, ~x) = L~fg2 −
u5y

u6
g2 =

((
2u3u6 − u2

5 + 2u2
6

)
xy2

+ (u2u6 − u4u5)xy + (−u3u5 + u5u6) y3

+ (−u2u5 + u4u6) y2 − u1u5y

)
1

u6

4. Collect the coefficients of r(~u, ~x):

S :=

{
u2u6 − u4u5

u6
,
−u3u5 + u5u6

u6
,
−u2u5 + u4u6

u6
,

2u3u6 − u2
5 + 2u2

6

u6
,−u1u5

u6

}
5. Solve the system formed by S. To save space, we just

present one of the six solutions we obtained:

C6 = {u6 = −u3, u2 = u4 = u5 = 0, u3 = u3, u1 = u1}

6. Substitute the above solution C6 for ~u in g2(~u, ~x). We
get the following parameterized invariant polynomial:

g2(~u, ~x) = −u3x
2 + u3y

2 + u1

The other five solutions obtained in step 5. are in fact the
products of the invariant polynomials {u2y, u1(x+y), u1(x−
y)} that were obtained when initially computing the invari-
ants of degree 1. Hence they cannot increase the expressive
power of the set of invariant clusters and should be dropped.
The above solution is the one we have given in Example 1.

3.3 Overapproximating trajectories by
invariant classes

In this section, we address how to overapproximate tra-
jectories precisely by using invariant classes.
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Algorithm 2: Computation of invariant classes

input : CFamily: set of invariant clusters;
~x0: an initial point

output: ICls: list of invariant classes

1 ICls ← ∅;
2 foreach C ∈ CFamily do
3 D← Class(C, ~x0);
4 if D 6= ∅ then
5 m← dimension of the hyperplane g(~u, ~x0) = 0

defining D;
6 if m ≥ 1 then
7 Basis← basis {u1, . . . , um} of g(~u, ~x0) = 0;
8 D← {g(~u1, ~x), . . . , g(~um, ~x)}, ui ∈ Basis;

9 ICls← ICls ∪ D;

Invariant clusters can be divided into two categories ac-
cording to the number of invariant classes that they can yield
by varying the parameter ~u. 1) finite invariant cluster:
This kind of invariant cluster can yield only one invariant
class no matter how ~u changes. For example, {u1(x−y) = 0 |
u1 ∈ R \ {0}} is such an invariant cluster for the running
example. The trajectories covered by this invariant class are
very limited. Moreover, the overapproximation is conserva-
tive due to the high dimension of the algebraic variety de-
fined by the invariant class. 2) infinite invariant cluster:
One such invariant cluster C can yield an infinite number of
invariant classes Class(C, ~x0) as the initial point ~x0 varies,
e.g., the invariant cluster C∗ in Example 1. For the trajec-
tory π~x0 , the overapproximating precision of Class(C, ~x0)
depends largely on the dimension m of the algebraic variety
defined by Class(C, ~x0). In the best case m = 1 we have a
curve-to-curve match in part for the trajectory.

Next we introduce how to identify the invariant classes for
a given point ~x0 from a set of invariant clusters and how to
get a finite representation. To be intuitive, we first present
a 3-dimensional system and a set of invariant clusters for it.

Example 4. Consider the following semialgebraic system
M2: [ẋ, ẏ, ż] = [yz, xz, xy]. We obtain a set of invariant
clusters consisting of 7 elements. Here we only present the
infinite invariant cluster due to the page limit.

C7 = {g7(~u, ~x) = (−u5 − u6)x2 + u5y
2 + u6z

2 + u0

= 0 | ~u ∈ R3 \ {~0}}

The invariant clusters are capable of overapproximating all
the trajectories of the system M2. For any given initial
state, how can we identify the invariant classes from the set
of invariant clusters? Suppose we want to find the invari-
ant classes that can overapproximate the trajectory from
the state ~x0 = (1, 2, 3). According to Theorem 2, we have
Algorithm 2 for this purpose.

Remark 4. In Algorithm 2, we enumerate the invariant
clusters to find out which one can provide a non-empty in-
variant class Class(C, ~x0) for ~x0. For a Class(C, ~x0) to be
nonempty, the corresponding hyperplane g(~u, ~x0) = 0 must

have at least one solution to ~u ∈ RK \ {~0}, which is equiv-
alent to that its dimension must be at least 1. For a hyper-
plane in RK , its dimension is equal to K − 1. Therefore,

(a) (b)

Figure 2: (a) 3D vector field of Example 4. (b) The
intersection of the invariants y2 − x2 − 3 = 0 (blue)
and z2 − x2 − 8 = 0 (orange) overapproximates the
trajectory originating from ~x0 = (1, 2, 3) (green ball).

Class(C, ~x0) must be nonempty if K > 1 and the basis of
the hyperplane can be obtained through a basic linear alge-
braic computation (which will be illustrated in what follows).
However, in case g(~u, ~x0) evaluates to 0, the hyperplane de-

generates to the space RK \{~0} and the dimension will be K.
Therefore, an invariant class with K = 1 is nonempty iff
g(~u, ~x0) evaluates to 0. For example, given an invariant
cluster C0 = {u1(x − y) = 0 | u1 ∈ R \ {0}} and a point
~x0 = (x0, y0), Class(C0, ~x0) is equal to C0 if x0 = y0, and
otherwise Class(C0, ~x0) is empty.

Example 5. We continue from Example 4. For the given
point ~x0 = (1, 2, 3), according to Algorithm 2, we find that
only Class(C7, ~x0) = {g7(~u, x, y, z) = 0 | 3u5 + 8u6 + u0 =

0, ~u ∈ R3 \ {~0}} is nonempty. The dimension of the hyper-
plane H : 3u5 + 8u6 + u0 = 0 is 2. Since u0 = −3u5 − 8u6,
to get the basis of H, we can write (u0, u5, u6) = (−3u5 −
8u6, u5, u6) = u5(−3, 1, 0) + u6(−8, 0, 1). Hence we have the
basis {(−3, 1, 0), (−8, 0, 1)} for H. As a result, we get a fi-
nite representation B = {y2 − x2 − 3 = 0, z2 − x2 − 8 = 0}
for Class(C7, ~x0). It is easy to check by the Maple function
HilbertDimension that dim(B) = 1. Thus we obtain an al-
gebraic variety V(B) that provides in part a curve-to-curve
match to the trajectory π~x0 . The 3-D vector field and the
algebraic curve V(B) are shown in Figure 2.

4. SAFETY VERIFICATION

4.1 Safety Verification of Continuous Systems
In this subsection, we show how to verify a safety property

for a nonlinear system based on invariant clusters.
In Section 3, we have seen that a trajectory can be over-

approximated by an invariant class. Since an invariant class
is determined uniquely by a single hyperplane g(~u, ~x0) = 0
in RK for an initial point ~x0, and a hyperplane without con-
stant term (which holds for g(~u, ~x0) = 0) is uniquely deter-
mined by its normal vector, we can verify that two states do
not lie on the same trajectory using the following theorem.

Theorem 3.Given a semialgebraic system M= 〈X, ~f,X0 〉
and an invariant cluster C = {g(~u, ~x) = 0 | ~u = (u1, · · · , uK)

∈ RK\{~0}} of M with K > 1, where g(~u, ~x) =
∑K
i=1 ψi(~x)ui

and ψi(~x) ∈ R[~x], an initial set X0 , and an unsafe set XU ,
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if there exists a pair of states (~x1, ~x2) ∈ X0 × XU such that
~x1 and ~x2 lie on the same trajectory, one of the following
two formulae must hold:

(i) ∃k ∈ R\{0} : kψi(~x1) = ψi(~x2), i = 1, . . . ,K (3)

(ii) ψi(~x1) = ψi(~x2) = 0, i = 1, . . . ,K (4)

Moreover, if some ψi(~x) ≡ 1, i.e., g(~u, ~x) contains a con-
stant term ui, then formula (3) simplifies to

ψi(~x1) = ψi(~x2), i = 1, . . . ,K (5)

Remark 5. Instead of computing the invariants explic-
itly, Theorem 3 provides an alternative way to verify that
two states ~x1, ~x2 do not lie on the same trajectory by check-
ing the difference between the normal vectors of g(~u, ~x1) = 0
and g(~u, ~x2) = 0. Let us take Example 4 for illustration.
We think of C7 as a hyperplane over ~u ∈ R3: u0 + (y2 −
x2)u5 + (z2 − x2)u6 = 0, hence the corresponding normal

vector is ~N (~x) = (1, y2 − x2, z2 − x2). Given two random
points ~x1 = (1, 2, 3) and ~x2 = (5,

√
27,
√

34), it is easy to

verify that ~N (~x1) 6= ~N (~x2), which means that ~x1 and ~x2 are
not on the same trajectory. Alternatively, we can argue that
the invariant class of ~x1 is {y2−x2−3 = 0, z2−x2−8 = 0}
and ~x2 does not belong to its solution set.

Now we demonstrate how to verify a safety property of
semialgebraic systems. Assume X0 and XU can be writ-
ten as semialgebraic sets, i.e., X0 = {~x1 ∈ Rn | pi1(~x1) =
0, qj1(~x1) ≥ 0, rk1(~x1) > 0, i1 = 1, . . . , l1, j1 = 1 . . .m1, k1 =
1, . . . , n1} and XU = {~x2 ∈ Rn | pi2(~x2) = 0, qj2(~x2) ≥ 0,
rk2(~x2) > 0, i2 = l1+1, . . . , l1+l2, j2 = m1+1, . . . ,m1+m2,
k2 = n1 + 1, . . . , n1 + n2}. Then we have the following the-
orem for deciding the safety of a semialgebraic system.

Theorem 4.Given a semialgebraic system M= 〈X, ~f,X0 〉
and invariant cluster C = {g(~u, ~x) = 0 | ~u ∈ RK \ {~0}} of
M with K ≥ 2, suppose the normal vector of the hyperplane
g(~u, ~x) = 0 over ~u is (1, ψ1(~x), . . . , ψK(~x)). Then the system
M is safe if there exists the following polynomial identity

K∑
k=1

γk(ψk(~x1)− ψk(~x2)) +

l1+l2∑
i=1

βipi +
∑

v∈{0,1}m1+m2

δv

m1+m2∏
j=1

q
vj
j

(6)

+
∑

v∈{0,1}n1+n2

ηv

n1+n2∏
k=1

r
vk
k +

n1+n2∏
k=1

r
dk
k + s = 0

where dk ∈ N and βi, γk are polynomials and δv, ηv, s are
SOS polynomials in R[~x1, ~x2].

Remark 6. Theorem 4 transforms the safety verification
problem into a decision problem about the existence of a real
solution of a system of polynomial equations and inequalities.
As noted in Remark 1, this decision problem can be solved
by SOS programming. Our implementation uses the efficient
tool SOSTOOLS [25].

In Theorem 4, we deal with a general semialgebraic sys-
tem where the initial set and the unsafe set are represented
by a set of polynomial equations and inequalities. However,
if the system is described by much simpler set representa-
tions such as a single polynomial equation or inequality, the
programming problem can be simplified correspondingly. If,
e.g., both sets can be represented or overapproximated by a

Algorithm 3: Safety verification

input : ~ψ: the K-dimensional normal vector of an
invariant cluster;
I(~x1): the initial set; U(~x2): the unsafe set;
N : the maximum degree of programming

polynomials ~α, β, θ
output : IsSafe: whether the system is safe

1 IsSafe← False;
2 for i← 1 to N do
3 ~α← generate a vector of polynomials of degree i;
4 β ← generate a polynomial of degree i for I(~x1);
5 θ ← generate a polynomial of degree i for U(~x2);

6 P ←
∑K
j=1 αj(

~ψj(~x1)− ~ψj(~x2)) + βI+θU −1;

7 Solution← perform SOS programming on P ;
8 if Solution is found then
9 IsSafe← True;

10 break;

single polynomial equation I(~x1) = 0 and U(~x2) = 0, respec-
tively, then the programming problem simplifies to (see [32])

K∑
j=1

αj(ψj(~x1)− ψj(~x2)) + βI + θU − 1 is an SOS (7)

where (ψ1(~x), . . . , ψK(~x)) is the same as in Theorem 4 and
αj , β, θ ∈ R[~x1, ~x2]. Algorithm 3 summarizes safety verifica-
tion based on the condition (7).

Example 6 (running example 2). Given the semial-
gebraic system M3 by [ẋ, ẏ] =

[
y2, xy

]
and the initial set

X0 = {(x, y) ∈ R2 | I(x, y) = (x+ 15)2 + (y− 17)2− 1 ≤ 0},
verify that the unsafe set XU = {(x, y) ∈ R2 | U(x, y) = (x−
11)2+(y−16.5)2−1 ≤ 0} cannot be reached. The parameter
space of C∗ = {g(~u, ~x) = u1 − u3(x2 − y2) = 0 | (u1, u3) ∈
R2 \ {~0}} has dimension 1 and hence can provide an invari-
ant class for every state in X0 and XU . The normal vector
of the hyperplane g(~u, ~x) = 0 is (1, ψ1(x, y)) = (1, y2 − x2).
Let ϕ(x1, y1, x2, y2) = ψ1(x1, y1)−ψ1(x2, y2). By Theorem 4
we only need to verify whether the following system of equa-
tions has no real solution.

I(x1, y1) = (x1 + 15)2 + (y1 − 17)2 − 1 = 0

U(x2, y2) = (x2 − 11)2 + (y2 − 16.5)2 − 1 = 0

ϕ(x1, y1, x2, y2) = y21 − x21 − (y22 − x22) = 0

Note that we substitute (x1, y1), (x2, y2) for (x, y) in I(x, y)
and U(x, y), respectively, to denote the different points in
X0 and XU . To prove that the system is safe, we need to
find αi ∈ R[x1, y1, x2, y2], i = 1, 2, 3 such that Prog = α1I +
α2U + α3ϕ− 1 is SOS. We find three polynomials of degree
2 for αi, respectively, hence the system is safe. Observe
that the relative position of XU is very close to the reachable
set from X0 (see Figure 1(b)). We failed to find a barrier
certificate for this system using the methods in [20, 24].

In Theorem 4, we presented a sufficient condition for de-
ciding if a semialgebraic system is safe. The theory orig-
inated from the fact that the system is safe if there is no
invariant class intersecting both the initial and the unsafe
set, which is equivalent to that the formula (6) holds. To
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verify the latter, we need to find a set of witness polyno-
mials by SOS programming. However, as the dimension of
the system increases, the number of parametric polynomials
involved increases correspondingly, which also leads to an
increase in computational complexity. In what follows, we
present a new method for safety verification that avoids this
problem. The new method is based on Proposition 1, i.e.,
for any polynomial g(~x) satisfying L~fg ∈ 〈g〉, g(x) ∼ 0 is an

invariant for any ∼ ∈ {<,≤,=,≥, >}.

Proposition 2. Given a semialgebraic system M =

〈X, ~f,X0 〉 and an invariant cluster C = {g(~u, ~x) = 0 | ~u ∈
RK \ {~0}} of M , let X0 and XU be the initial set and the
unsafe set, respectively. Then, the system is safe if there
exists a ~u∗ ∈ RK \ {~0} such that

∀~x ∈ X0 : g(~u∗, ~x) ≥ 0 (8)

∀~x ∈ XU : g(~u∗, ~x) < 0 (9)

According to Proposition 2, to verify the safety property,
it suffices to find a ~u∗ ∈ RK \ {~0} which satisfies the con-
straints (8) and (9). There are some constraint solving meth-
ods available, e.g, SMT solvers. However, the high complex-
ity of SMT theories limits the applicability. In the following,
we transform the above constraint-solving problem into an
SOS programming problem, which can be solved efficiently.
We write ~P (~x) � ~0 to denote pi(~x) ≥ 0, i = 1, . . . ,m for a

polynomial vector ~P (~x) = (p1(~x), . . . , pm(~x)).

Proposition 3. Given a semialgebraic system M =

〈X, ~f,X0 〉 and an invariant cluster C = {g(~u, ~x) = 0 |
~u ∈ RK \ {~0}} of M and a constant ε ∈ R>0, let X0 =

{~x ∈ Rn | ~I � ~0, ~I ∈ R[~x]m1} and XU = {~x ∈ Rn | ~U �
~0, ~U ∈ R[~x]m2}. Then, the system is safe if there exist a

~u∗ ∈ RK \{~0} and two SOS polynomial vectors ~µ1 ∈ R[~x]m1 ,
~µ2 ∈ R[~x]m2 such that the following are SOS polynomials.

g(~u∗, ~x)− ~µ1 · ~I (10)

− g(~u∗, ~x)− ~µ2 · ~U − ε (11)

Similar to Theorem 4, Proposition 3 also reduces to an
SOS programming problem. However, the ideas behind the
theories are different. By Theorem 4 we attempt to prove no
invariant class overapproximating the trajectory can inter-
sect both X0 and XU , while by Proposition 3 we mean to find
a hypersurface that can separate the reachable set from XU .
Apparently, there must exist no invariant class intersecting
both X0 and XU if there exists such a hypersurface, but not
vice versa. Hence the latter is more conservative than the
former, but it is also more efficient in theory because it usu-
ally involves less unknown polynomials. For example, for an
n-dimensional system with X0 and XU defined by a single
polynomial inequality, respectively, we usually need n + 1
unknown polynomials for the former method, however, we
need only 2 for the latter. We omit the algorithm based on
Proposition 3, which is similar to Algorithm 3.

4.2 Safety Verification of Hybrid Systems
A hybrid system consists of a set of locations and a set of

discrete transitions between locations. In general, different
locations have different continuous dynamics and hence cor-
respond to different invariant clusters. An invariant for the
hybrid system can be synthesized from the set of invariant

clusters of all locations. The idea is to pick a polynomial
gl(~u

∗
l , ~x) from the respective invariant cluster Cl for each

location l such that gl(~u
∗
l , ~x) ≥ 0 is an invariant for the lo-

cation l and all the invariants coupled together through the
constraints at the discrete transitions form a hybrid invari-
ant for the hybrid system.

Proposition 4. Given an n-dimensional hybrid system
H = 〈L,X,E,G,R, I, F 〉 and a set of invariant clusters

{Cl, l = 1, . . . , n}, where Cl = {gl(~ul, ~x) = 0 | ~ul ∈ RKl\{~0}}
with Kl > 1 is an invariant cluster for location l, the system
is safe if there exists a set S~u = {~u∗l ∈ RKl\{~0}, l = 1, . . . , n}
such that, for all l ∈ L and (l, l′) ∈ E, the following formulae
hold:

∀~x ∈ Init(l) : gl(~u
∗
l , x) ≥ 0 (12)

∀~x ∈ G(l, l′), ∀~x′ ∈ R((l, l′), ~x) :

gl(~u
∗
l , ~x) ≥ 0 =⇒ gl′(~u

∗
l′ , ~x

′) ≥ 0
(13)

∀~x ∈ I(l) ∩Uns(l) : gl(~u
∗
l , ~x) < 0 (14)

where Init(l) and Uns(l) denote respectively the initial set
and the unsafe set at location l.

Similar to Proposition 2, we further transform the prob-
lem into an SOS programming problem. Consider a semial-
gebraic hybrid system H = 〈L,X,E,G,R, I, F 〉, where the
mappings G, R, and I are defined in terms of polynomial
inequalities as follows:

G : (l, l′) 7→ {~x ∈ Rn | ~Gll′ � 0, ~Gll′ ∈ R[~x]mll′ }

R : ((l, l′), ~x) 7→ {~x ∈ Rn | ~Rll′~x � 0, ~Rll′~x ∈ R[~x]nll′ }

I : l 7→ {~x ∈ Rn | ~Il � 0, ~Il ∈ R[~x]pl}

and the mappings of the initial and the unsafe set are defined
as follows:

Init : l 7→ {~x ∈ Rn | ~Initl � 0, ~Initl ∈ R[~x]rl}

Uns : l 7→ {~x ∈ Rn | ~Unsl � 0, ~Unsl ∈ R[~x]sl}

where mll′ , nll′ , rl, pl and sl are the dimensions of the poly-
nomial vector spaces. Then we have the following proposi-
tion for safety verification of H.

Proposition 5. Let the hybrid system H, the initial set
mapping Init, and the unsafe set mapping Uns be defined as
above. Given a set of invariant clusters {Cl, l = 1, . . . , n}
of H where Cl = {gl(~ul, ~x) = 0 | ~ul ∈ RKl \ {~0}} with
Kl > 1 is an invariant cluster for location l, a set Sγ =
{γll′ ∈ R≥0, (l, l

′) ∈ E} of constants, and a constant vector
~ε ∈ Rn>0, the system is safe if there exists a set Su = {~u∗l ∈
RKl \ {~0}, l = 1, . . . , n} and five sets of SOS polynomial

vectors {~θl ∈ R[~x]sl , l ∈ L}, {~κll′ ∈ R[~x]pll′ , (l, l′) ∈ E},
{~σll′ ∈ R[~x]qll′ , (l, l′) ∈ E}, {~ηl ∈ R[~x]tl , l ∈ L}, and {~νl ∈
R[~x]wl , l ∈ L} such that the following polynomials are SOS
for all l ∈ L and (l, l′) ∈ E:

gl(~u
∗
l , ~x)− ~θl · ~Initl (15)

gl′(~u
∗
l′ , ~x

′)− γll′gl(~u∗l , ~x)− ~κll′ ·Gll′ − ~σll′ ·Rll′~x (16)

− ~νl · Il − ~ηl · ~Unsl − gl(~u∗l , ~x)− εl (17)

The algorithm for computing invariants for semialgebraic
hybrid systems based on Proposition 5 is very similar to Al-
gorithm 3 for semialgebraic continuous systems except that
it involves more SOS constraints on discrete transitions.
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5. IMPLEMENTATION & EXPERIMENTS
Based on the approach presented in this paper, we imple-

mented a prototype tool in Maple and Matlab, respectively.
In Maple, we implemented the tool for computing invariant
clusters and identifying invariant classes based on remainder
computation. In Matlab, we implemented the tool for safety
verification based on the SOS programming tool package
SOSTOOLS. Currently, we manually transfer the invariant
clusters computed in Maple to Matlab for safety verification.

Now we present the experimental results on nonlinear
benchmark systems, run on a laptop with a 3.1GHz Intel
Core i7 CPU and 8 GB memory.

5.1 Longitudinal Motion of an Airplane
In this experiment, we study the 6th order longitudinal

equations of motion that capture the vertical motion (climb-
ing, descending) of an airplane [31, Chapter 5]. Let g denote
the gravity acceleration, m the total mass of an airplane, M
the aerodynamic and thrust moment w.r.t. the y axis, (X,Z)
the aerodynamics and thrust forces w.r.t. axis x and z, and
Iyy the second diagonal element of its inertia matrix. Then
the motion of the airplane is described as follows.

v̇ =
X

m
− g sin(θ)− qw, ẇ =

Z

m
+ g cos(θ) + qv,

ẋ = w sin(θ) + v cos(θ), ż = −v sin(θ) + w cos(θ),

θ̇ = q, q̇ =
M

Iyy
,

where the meanings of the variables are as follows: v: axial
velocity, w: vertical velocity, x: range, z: altitude, q: pitch
rate, θ: pitch angle.

To transform the above system into a semialgebraic sys-
tem, we first introduce two additional variables d1, d2 such
that d1 = sin(θ), d2 = cos(θ) and then substitute d1 and
d2 respectively for sin(θ) and cos(θ) in the model. In addi-

tion, we get two more constraints ḋ1 = qd2 and ḋ2 = −qd1.
As a result, the dimension of the system rises to 8. For
this system, using the method in [12], Ghorbal et al. spent
1 hour finding three invariant polynomials of degree 3 on a
laptop with a 1.7GHz Intel Core i5 CPU and 4 GB memory.
Using our method, we spent only 0.484 seconds obtaining
an invariant cluster g9(~u, ~x) = 0 of degree 3. By applying
the constraint d21 + d22 = 1, we reduce the normal vector of
the hyperplane g9(~u, ~x) = 0 in ~u to (1, ψ1, ψ2, ψ3), where
ψ1, ψ2, ψ3 are defined as follows.

ψ1 =
Mmz

Iyy Z
+
gmθ

Z
+
(mqv
Z

+ 1
)

sin (θ)

+

(
X

Z
− mqw

Z

)
cos (θ)

ψ2 = − Xz

Z
+ x− gIyy Xθ

ZM
− Iyy

(
Xqv

ZM
+
qw

M

)
sin(θ)

+ Iyy

(
Xqw

ZM
− qv

M
− X2 + Z2

ZMm

)
cos(θ)

ψ3 = q2 − 2
Mθ

Iyy

Given a symbolic initial point ~x0 = (v0, w0, x0, z0, θ0, q0,
d01, d

0
2), we have verified that our invariant cluster defines the

same algebraic variety as defined by the invariants in [12]
by comparing their Gröbner bases. However, our method

is much more efficient. Moreover, we also obtained the in-
variant clusters of higher degrees (4 − 6) quickly. The ex-
perimental result is shown in Table 1. The first column is
the degree of the invariants, the second column is the vari-
ables to be decided, the third column is the computing time
in seconds, and the last column is the number of invariant
clusters generated. As can be seen, in the most complicated
case, where the number of the indeterminates reaches up to
3003, we spent only 200.9 seconds to discover an invariant
cluster of degree 6. However, we found that these higher or-
der invariant clusters have the same expressive power as the
invariant cluster of degree 3 in terms of algebraic variety.

5.2 Looping particle
Consider a heavy particle on a circular path of radius r

whose motion is described by the following differential equa-
tion ẋẏ

ω̇

 =

 r ˙cos(θ)

r ˙sin(θ)

− g cos(θ)
r

 =

−r sin(θ)θ̇

r cos(θ)θ̇

− g(r cos(θ))
r2

 =

−yωxω
− gx
r2


Note that the above is a parameterized system with grav-

ity acceleration g and radius r as parameters. Our tool
finds the following invariant cluster consisting of a para-
metric polynomial of degree 2: {g(~u, ~x) = 0 | g(~u, ~x) =

u5x
2 + u5y

2 + u2ω
2 + 2u2g

r2
y + u0, ~u ∈ R3 \ {~0}}. Given an

arbitrary point (x0, y0, ω0) = (2, 0, ω0), we get the invariant
class {g(~u, ~x) = 0 | (x20 +y20)u5 +(ω2

0 + 2g
r2
y0)u2 +u0 = 0, ~u ∈

R3 \ {~0}}. According to Algorithm 2, the algebraic variety
representing the trajectory originating from (x0, y0, ω0) is
{(x, y, ω) ∈ R3 | x2+y2−x20−y20 = 0, ω2+ 2g

r2
y−ω2

0− 2g
r2
y0 =

0}. The results in [26] and [29] are special cases of our result
when setting (r, g) = (2, 10) and (r, g, x0, y0) = (2, 10, 2, 0),
respectively. Therefore, our method is more powerful in find-
ing parameterized invariants for parameterized systems. See
Table 1 for detailed experimental results.

5.3 Coupled spring-mass system
Consider a system with two springs of weights w1, w2.

ẋ1
v̇1
ẋ2
v̇2

 =


v1

− k1
m1
x1 − k2

m1
(x1 − x2)

v2
− k2
m2

(x2 − x1)


One spring, having spring constant k1, is attached to the

ceiling, and the weight w1 of mass m1 is attached to the
lower end of this spring. Attached to weight w1 is a second
spring with spring constant k2, and the weight w2 of massm2

is attached to the lower end of this spring. x1 and x2 denote
the displacements of the center of masses of the weights w1

and w2 from equilibrium, respectively.
In this experiment, we first consider an instantiated ver-

sion of the system by using the same parameters as in [28]:
k1
m1

= k2
m2

= k and m1 = 5m2. The experimental result is
presented in Table 1. We found that the expressive power
of the invariant clusters does not increases any more as the
degree of the invariant clusters is greater than 3 and it took
only 0.25 seconds to compute the invariant cluster of de-
gree 3. Finally, we perform the computation directly on
the fully parameterized system and we get the following pa-
rameterized invariant cluster that enables us to analyze the
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Table 1: Benchmark results for the Longitudinal Motion of an Airplane (B1), the Looping Particle system
(B2), and the Coupled Spring-Mass system (B3).

Degree of No. of variables Running time (sec) No. of invariant clusters
invariants B1 B2 B3 B1 B2 B3 B1 B2 B3

1 9 4 6 0.016 0.015 0.047 0 0 0
2 45 10 21 0.031 0.047 0.078 1 1 0
3 165 20 56 0.484 0.049 0.250 1 0 1
4 495 35 126 3.844 0.156 1.109 1 1 1
5 1287 56 252 25.172 0.703 6.641 1 0 1
6 3003 84 462 200.903 3.000 32.109 1 1 1

system properties under different parameter settings.

g(~u, ~x) = u8v1v2 +
k2x1x2(m1u8 − 2m2u10)

m1m2
+ u10v

2
1 + u1

+
1

2

v22(k1m2u8 − k2m1u8 + k2m2u8 + 2k2m2u10)

k2m1

+
1

2

(2k1m2u10 − k2m1u8 + 2k2m2u10)x21
m1m2

+
1

2

(k1m2u8 − k2m1u8 + 2k2m2u10)x22
m1m2

5.4 Hybrid controller
Consider a hybrid controller consisting of two control

modes. The discrete transition diagram of the system is
shown in Figure 3(a) and the vector fields describing the
continuous behaviors are given as follows:

f1(~x) =

[
y2 + 10y + 25

2xy + 10x− 40y − 200

]
,

f2(~x) =

[
−y2 − 10y − 25

8xy + 40x− 160y − 800

]
The system starts from some point in X0 = {(x, y) ∈ R2 |
(x−9)2+(y−20)2 ≤ 4} and then evolves following the vector
field f1(~x) at location l1 (Switch-On). The value of x keeps
increasing until it reaches 35. Then the system switches to
location l2 (Switch-Off) without performing any reset op-
eration. At location l2, the system operates following the
vector field f2(~x) and the value of x keeps decreasing. As
the value of x drops to 5, the system switches immediately
back to location l1 again. Our objective is to verify that the
value of y will never exceed 48 in both locations.

For the convenience of SOS programming, we define the
unsafe set as Uns(l1) = Uns(l2) = {(x, y) ∈ R2 | 48 < y <
60}, which is sufficient to prove y ≤ 48 in locations l1 and
l2. According to the theory proposed in Section 4.2, we first
find an invariant cluster for each location, which consists
of a parameterized polynomial, respectively: g1(~u1, ~x) =
− 1

5
u12x

2 + 1
10
u12y

2 + 8u12x + u12y + u11 and g2(~u2, ~x) =
4
5
u22x

2+ 1
10
u22y

2−32u22x+u22y+u21. In the second phase,
we make use of the constraint condition in Proposition 5 to
compute a pair of vectors ~u∗1 and ~u∗2. By setting γ12 = γ21 =
1, our tool found a pair of ~u∗1 = (u11, u12) = (2.9747, 382.14)
and ~u∗2 = (u21, u22) = (2.9747, 138.44). As shown in Fig-
ure 3(b), the curves of g1(~u∗1, ~x) = 0 and g2(~u∗2, ~x) = 0 form
an upper bound for the reachable set in location l1 and l2, re-
spectively, which lie below the unsafe region y ≥ 48. There-
fore, the system is safe.

6. RELATED WORK

xfx

x

x

xfx

l l

x x

(a) (b)

Figure 3: Hybrid controller from Subsection 5.4.
(a) Hybrid automaton. (b) Hybrid invariant. Solid
patch in green: initial set. Curve in blue: invariant
for l1. Curve in purple: invariant for l2. Red shadow
region on the top: unsafe region.

Many recent efforts have been made toward generating
invariants for hybrid systems. Matringe et al. reduce the
invariant generation problem to the computation of the as-
sociated eigenspaces by encoding the invariant constraints
as symbolic matrices [26]. Ghorbal et al. use the invari-
ant algebraic set formed by a polynomial and a finite set
of its successive Lie derivatives to overapproximate vector
flows [12]. Both of the aforementioned methods involve min-
imizing the rank of a symbolic matrix. Although in theory
the problem of minimizing the rank of a symbolic matrix lies
in the same complexity class as that of our problem, experi-
ments show that our approach is more powerful in practice.
Sankaranarayanan discovers invariants based on invariant
ideal and pseudo ideal iteration [28], but this method is lim-
ited to algebraic systems. Moreover, none of the aforemen-
tioned methods involve verifying safety properties based on
the invariants obtained. Tiwari et al. compute invariants
for some special types of linear and nonlinear systems based
on Syzygy computation and Gröbner basis theory as well
as linear constraint solving [34]. Platzer et al. use quanti-
fier elimination to find differential invariants [23]. Another
approach considers barrier certificates based on different in-
ductive conditions [24, 20, 21] which can be solved by SOS
programming efficiently but is limited by the conservative
inductive condition. Carbonell et al. generate invariants for
linear systems [27]. Some other approaches focusing on dif-
ferent features of systems have also been proposed for con-
structing inductive invariants [19, 16, 29, 30, 22, 15].

7. CONCLUSION
In this paper, we proposed an approach to automatically

generate invariant clusters for semialgebraic hybrid systems.
Invariant clusters can overapproximate trajectories of the
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system precisely. They can be obtained efficiently by com-
puting the remainder of the Lie derivative of a template
polynomial g(~u, ~x) w.r.t. g(~u, ~x) and then solving a system
of homogeneous polynomial equations obtained from the re-
mainder. Based on invariant clusters and SOS program-
ming, we proposed a new method for safety verification of
hybrid systems. Experiments show that our approach is ef-
ficient for a large class of biological and control systems.
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