1,176 research outputs found

    A transfer principle and applications to eigenvalue estimates for graphs

    Full text link
    In this paper, we prove a variant of the Burger-Brooks transfer principle which, combined with recent eigenvalue bounds for surfaces, allows to obtain upper bounds on the eigenvalues of graphs as a function of their genus. More precisely, we show the existence of a universal constants CC such that the kk-th eigenvalue Ξ»knr\lambda_k^{nr} of the normalized Laplacian of a graph GG of (geometric) genus gg on nn vertices satisfies Ξ»knr(G)≀Cdmax⁑(g+k)n,\lambda_k^{nr}(G) \leq C \frac{d_{\max}(g+k)}{n}, where dmax⁑d_{\max} denotes the maximum valence of vertices of the graph. This result is tight up to a change in the value of the constant CC, and improves recent results of Kelner, Lee, Price and Teng on bounded genus graphs. To show that the transfer theorem might be of independent interest, we relate eigenvalues of the Laplacian on a metric graph to the eigenvalues of its simple graph models, and discuss an application to the mesh partitioning problem, extending pioneering results of Miller-Teng-Thurston-Vavasis and Spielman-Tang to arbitrary meshes.Comment: Major revision, 16 page

    Optimally fast incremental Manhattan plane embedding and planar tight span construction

    Full text link
    We describe a data structure, a rectangular complex, that can be used to represent hyperconvex metric spaces that have the same topology (although not necessarily the same distance function) as subsets of the plane. We show how to use this data structure to construct the tight span of a metric space given as an n x n distance matrix, when the tight span is homeomorphic to a subset of the plane, in time O(n^2), and to add a single point to a planar tight span in time O(n). As an application of this construction, we show how to test whether a given finite metric space embeds isometrically into the Manhattan plane in time O(n^2), and add a single point to the space and re-test whether it has such an embedding in time O(n).Comment: 39 pages, 15 figure

    Computational Methods for Sparse Solution of Linear Inverse Problems

    Get PDF
    The goal of the sparse approximation problem is to approximate a target signal using a linear combination of a few elementary signals drawn from a fixed collection. This paper surveys the major practical algorithms for sparse approximation. Specific attention is paid to computational issues, to the circumstances in which individual methods tend to perform well, and to the theoretical guarantees available. Many fundamental questions in electrical engineering, statistics, and applied mathematics can be posed as sparse approximation problems, making these algorithms versatile and relevant to a plethora of applications

    Dense point sets have sparse Delaunay triangulations

    Full text link
    The spread of a finite set of points is the ratio between the longest and shortest pairwise distances. We prove that the Delaunay triangulation of any set of n points in R^3 with spread D has complexity O(D^3). This bound is tight in the worst case for all D = O(sqrt{n}). In particular, the Delaunay triangulation of any dense point set has linear complexity. We also generalize this upper bound to regular triangulations of k-ply systems of balls, unions of several dense point sets, and uniform samples of smooth surfaces. On the other hand, for any n and D=O(n), we construct a regular triangulation of complexity Omega(nD) whose n vertices have spread D.Comment: 31 pages, 11 figures. Full version of SODA 2002 paper. Also available at http://www.cs.uiuc.edu/~jeffe/pubs/screw.htm

    Recent advances in directional statistics

    Get PDF
    Mainstream statistical methodology is generally applicable to data observed in Euclidean space. There are, however, numerous contexts of considerable scientific interest in which the natural supports for the data under consideration are Riemannian manifolds like the unit circle, torus, sphere and their extensions. Typically, such data can be represented using one or more directions, and directional statistics is the branch of statistics that deals with their analysis. In this paper we provide a review of the many recent developments in the field since the publication of Mardia and Jupp (1999), still the most comprehensive text on directional statistics. Many of those developments have been stimulated by interesting applications in fields as diverse as astronomy, medicine, genetics, neurology, aeronautics, acoustics, image analysis, text mining, environmetrics, and machine learning. We begin by considering developments for the exploratory analysis of directional data before progressing to distributional models, general approaches to inference, hypothesis testing, regression, nonparametric curve estimation, methods for dimension reduction, classification and clustering, and the modelling of time series, spatial and spatio-temporal data. An overview of currently available software for analysing directional data is also provided, and potential future developments discussed.Comment: 61 page

    Strengthening QC relaxations of optimal power flow problems by exploiting various coordinate changes

    Get PDF
    Motivated by the potential for improvements in electric power system economics, this dissertation studies the AC optimal power flow (AC OPF) problem. An AC OPF problem optimizes a specified objective function subject to constraints imposed by both the non-linear power flow equations and engineering limits. The difficulty of an AC OPF problem is strongly connected to its feasible space\u27s characteristics. This dissertation first investigates causes of nonconvexities in AC OPF problems. Understanding typical causes of nonconvexities is helpful for improving AC OPF solution methodologies. This dissertation next focuses on solution methods for AC OPF problems that are based on convex relaxations. The quadratic convex (QC) relaxation is one promising approach that constructs convex envelopes around the trigonometric and product terms in the polar representation of the power flow equations. This dissertation proposes several improvements to strengthen QC relaxations of OPF problems. The first group of improvements provides tighter envelopes for the trigonometric functions and product terms in the power flow equations. Methods for obtaining tighter envelopes includes implementing Meyer and Floudas envelopes that yield the convex hull of trilinear monomials. Furthermore, by leveraging a representation of line admittances in polar form, this dissertation proposes tighter envelopes for the trigonometric terms. Another proposed improvement exploits the ability to rotate the base power used in the per unit normalization in order to facilitate the application of tighter trigonometric envelopes. The second group of improvements propose additional constraints based on new variables that represent voltage magnitude differences between connected buses. Using \u27bound tightening\u27 techniques, the bounds on the voltage magnitude difference variables can be significantly tighter than the bounds on the voltage magnitudes themselves, so constraints based on voltage magnitude differences can improve the QC relaxation --Abstract, page iv

    Dual Bounds for Redistricting Problems with Non-Convex Objectives

    Full text link
    We study optimization models for computational redistricting. We focus nonconvex objectives that estimate expected black voter representation, political representation, and Polsby Popper Compactness. All objectives contain a sum of convolutions with a ratio of variables. The representation objectives are a convolution of a ratio of variables with a cumulative distribution function of a normal distribution, also known as the probit curve, while the compactness objective has a quadratic complication in the ratio. We extend the work of Validi et al. [30], which develops strong optimization models for contiguity constraints and develop mixed integer linear programming models that tightly approximate the nonlinear model, and show that our approach creates tight bounds on these optimization problems. We develop novel mixed integer linear relaxations to these nonconvex objectives and demonstrate the effectiveness of our approaches on county level data
    • …
    corecore