6,569 research outputs found

    Computing the value of flexibility in electricity retail, ahead and balancing markets

    Get PDF

    The role of local citizen energy communities in the road to carbon-neutral power systems: outcomes from a case study in Portugal

    Get PDF
    ABSTRACT: Global warming contributes to the worldwide goal of a sustainable carbon-neutral society. Currently, hydroelectric, wind and solar power plants are the most competitive renewable technologies. They are limited to the primary resource availability, but while hydroelectric power plants (HPPs) can have storage capacity but have several geographical limitations, wind and solar power plants have variable renewable energy (VRE) with stochastic profiles, requiring a substantially higher investment when equipped with battery energy storage systems. One of the most affordable solutions to compensate the stochastic behaviour of VRE is the active participation of consumers with demand response capability. Therefore, the role of citizen energy communities (CECs) can be important towards a carbon-neutral society. This work presents the economic and environmental advantages of CECs, by aggregating consumers, prosumers and VRE at the distribution level, considering microgrid trades, but also establishing bilateral agreements with large-scale VRE and HPPs, and participating in electricity markets. Results from the case-study prove the advantages of CECs and self-consumption. Currently, CECs have potential to be carbon-neutral in relation to electricity consumption and reduce consumers' costs with its variable term until 77%. In the future, electrification may allow CECs to be fully carbon-neutral, if they increase their flexibility portfolio.info:eu-repo/semantics/publishedVersio

    From wholesale energy markets to local flexibility markets: structure, models and operation

    Get PDF
    Most energy markets (EMs) across Europe are based on a design framework involving day-ahead, intraday, and bilateral markets, operating together with balancing markets. This framework was set out, however, when the vast majority of generation units were controllable and fuel-based. The increasing levels of renewable generation create unique challenges in the operation of EMs. In this context, flexibility markets are starting to be recognized as a promising and powerful tool to adequately valorize demand-side flexibility. This chapter describes the models underlying both centralized and bilateral markets, analyzes the operation of several European markets, introduces some energy management tools, analyzes the pressing issue of flexibility in system operation, and describes various pioneering flexibility platforms.info:eu-repo/semantics/publishedVersio

    Market design for a reliable ~100% renewable electricity system: Deliverable D3.5

    Get PDF
    Project TradeRES - New Markets Design & Models for 100% Renewable Power Systems: https://traderes.eu/about/ABSTRACT: The goal of this report is to identify in which respects the design and regulation of electricity markets needs to be improved in order facilitate a (nearly) completely decarbonized electricity system. It provides a basis for scoping the modeling analyses that are to be performed in subsequent work packages in the TradeRES project. These simulations will provide the basis for an update of this deliverable in the form of a more precise description of an all-renewable electricity market design. In this first iteration1 of deliverable 3.5, we analyze how the current design of electricity markets may fall short of future needs. Where there is a lack of certainty about the best market design choices, we identify alternative choices. Alternatives may concern a choice between policy intervention and no intervention or different intervention options. Section 2 outlines current European electricity market design and the key pieces of European legislation that underlie it. The European target model is zonal pricing with bidding zones that are defined as geographic areas within the internal market without structural congestion. That implies that within one bidding zone electricity can be traded without considering grid constraints and there are uniform wholesale prices in each zone. The main European markets are Nordpool, EPEX and MIBEL. Trading between zones in the European Price Coupling Region occurs through an implicit auction where price and quantity are computed for every hour of the next day, using EUPHEMIA, a hybrid algorithm for flowbased market coupling that is considered the best practice in Europe at this time.N/
    corecore