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Abstract—Renewable generation of energy is becoming more
affordable, and is therefore increasingly adopted to match local
demand. In addition, storage and demand response solutions
have reached the market, which provides flexibility and thereby
facilitates intelligent energy management. It has been suggested
that this bottom-up flexibility should contribute to the balancing
of the future smart grid, but financial incentives have so far
been elusive. This article presents computations that assess the
profitability of intelligent energy management for three different
value propositions: increasing self-sufficiency under typical retail
tariffs, or participating in ahead or balancing market price
fluctuations, specifically in the Netherlands, Germany and Italy.
First, an upper bound valuation of flexibility is computed from
2013 market data. Second, a technology-neutral profit analysis
is proposed and demonstrated on selected technologies. Our
simulations indicate the highest value for flexibility in the Dutch
and German imbalance markets (7.7 & 9.4 ec/kWh) and the
Dutch reserve market (10.4 ec/kWh), and for small prosumers
in the German and Italian retail markets (12 & 10 ec/kWh).
Results indicate that there is sufficient value in demand response
if activation costs are sufficiently low, which innovative tariffs
should exploit to provide incentives for bottom-up balancing of
the future smart grid.

I. INTRODUCTION

With the wide-spread adoption of generation from uncon-
trollable renewable resources in the electricity system, the
need for flexible consumption and production is increasing.
Storage and demand response (DR) technologies are consid-
ered valuable sources of flexiblility which can be valorized
by intelligent energy management (IEM). Although multiple
value propositions apply to these resources [1], the valorisation
of flexibility is developing slowly. Since it is hard to match a
value proposition to a flexible resource with specific parame-
ters such as location, size and technology-specific parameters,
no off-the-shelf solutions are available.

A review study from 2013 [2] discussed over 200 studies
on the evaluation of storage flexibility as a valuable asset.
Many attemps have been made to put a value on the flexibility
provided by storage technologies and demand response [3]–
[6]. The large number of studies indicates that the valuation
of flexibility is complex and can be approached from different
points of view.

In contrast to most studies, we take a technology-neutral
approach to assess the value of flexibility. We use this approach
to develop a framework for quantitive comparison of flexibility
valuations for different value propositions and different storage

and DR technologies. To enable comparison of technologies
and applications, we employ a reference scale of 1 MW
installed flexible capacity, and vary other key parameters.

To demonstrate the applicability of the technology-neutral
framework, we present a profitability assessment for three
value propositions: maximizing self-sufficiency under flat re-
tail prices, ahead market and balancing market participation,
where the latter includes reserve markets and imbalance mar-
kets. First, the revenue potential for the flexibility in ec/kWh
is given for the locations Netherlands, Germany and Italy.
This revenue potential can be used as a reference to which
results of other studies can be compared. Second, we provide a
lower bound estimation of the revenue of selected technologies
under more realistic assumptions. The difference between the
revenue potential and the realistic lower bound estimation
shows the potential value of more intelligent or optimized
solutions.

This paper is organised as follows: Section II provides
an overview of the literature in valuation of flexibility. The
technology-neutral framework is presented in Section III.
Section IV presents the assumptions for an optimistic scenario
and provides the revenue potential for the retail, ahead and bal-
ancing market. The refined evaluation of the least realistically
achievable revenue is presented and discussed in Section V.
The discussion and conclusion are presented in Section VI.

II. RELATED WORK

Multiple value propositions for storage and DR technologies
have been evaluated previously: self-sufficiency under feed-
in tariffs (FIT) [7], ahead market participation [4]–[6], [8],
providing ancillary services to system operators [9], [10],
flexibility as substitute to conventional grid reinforcements
[11] or to curtailment of wind energy [12], [13]. Some papers
evaluate the cumulative value of multiple value propositions
[14], [15]. Zucker et al. [2] concluded that the results of all
these studies are hard to compare due to the large bandwidth
of models, assumptions and use cases.

Most studies consider a specific technology such as Li-ion
batteries [5] or compressed air energy storage [16]. These
works use models that are tailored to a specific technology
and value proposition, but less suitable for comparison of
different value propositions and technologies. A minority of
the works uses a technology-neutral way of assessing the value
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of flexibility. For example, [17] provides a unified framework
for assessing different types of DR and storage qualitatively. A
quantitative technology-neutral approach is presented by Eyer
& Corey [18] and Miranda et al. [6]. Eyer & Corey provide
a high-level technology-neutral framework for assessing the
value of flexibility. The numbers provided in their work are
useful for making a first cut when matching technologies and
value propositions. In contrast, our work is more specific since
we use time series data of existing markets. Miranda et al.
provide an upper bound valuation for market participation
by energy storage systems in the Iberian, Nordic and Great
Britain markets using a Mixed Integer Linear Programming
Approach (MILP). In contrast to Miranda et al., we present a
technology-neutral model that can represent both storage and
demand response technologies. Furthermore, we provide an
upper bound that is not constrained by state-of-charge limits
and thus applies as a more general insight to any constrained
storage.

Most common assumptions in flexibility valuation studies
are perfect foresight of prices and that the exploitation of the
flexible resource does not have influence on market prices:
the price-taker assumption [2]. In this paper, we assume
price-taking since we study the value of small-scale storage
exploitation. However, we assume perfect foresight of prices
for the calculation of the upper bound valuation (an optimistic
assumption); for the lower bound valuation (a simple realistic
assumption) we explicitly consider a forecasting signal with
varying degree of zero-mean normal error.

III. FRAMEWORK

This section presents a technology-neutral framework to
assess the value of flexibility for a range of flexible resources
and value propositions. First, a set of flexibility parameters,
representing the most important characteristics of flexible
resources in a technology-neutral way is presented. Second,
the corresponding optimization problem for intelligent energy
management is given for participating in retail, ahead and
balancing markets.

A. Flexibility parameters

A set of technology-neutral flexibility parameters, describ-
ing the flexibility provided by a device or an aggregation of
devices (such as a microgrid or a virtual power plant) is given
in Table I. The flexibility parameters are technology-neutral
descriptors, such that many technologies or combinations of
technologies could be described. The flexibility parameter set
is highly simplified with respect to specific technologies, but
provides a generic description of a broad range of technologies
that is useful for estimating the value of flexibility.
The flexibility limit u per trading interval δt, the duration
of the energy block that can be bought or sold in a specific
market, is mainly determined by the power rating P , but also
affected by factors as the activation time, ramp rate, local
network constraints (such as peak limit and inrush constraints)
and response frequency [17]. In our simplified model, we

assume u = δt ·P , where δt = 1
4h for quarter hourly markets

and δt = 1h for hourly markets, and further E ≥ P · δt.
The energy amount that can be stored in the flexibility

resource is mainly determined by the energy rating E. For
a Demand Response (DR) system, we assume that the energy
rating is the maximum shiftable load within a time horizon T .
Since we pick a reference scale of 1 MW installed flexibility
capacity, we neglect market entrance limits that can impede
the valorisation of small loads or the fact that sometimes large
volumes cannot be matched by the liquidity of the market.

The activation cost function ca(x) returns the one-way cost
of using flexibility, capturing e.g. wear-and-tear and losses
incurred by charging or discharging a battery. Capturing wear-
and-tear in this way ensures that we are able to buy a new
system after the lifte cycle time has passed by. This implies
that we ignore any cash flow requirements. The simulation
models presented in this paper assume that the activation cost
scales linearly with the activated flexibility volume x, i.e.
ca(x) = Cax, where Ca is a constant, thus we neglect non-
linearities due to changing efficiencies or degradation.

To capture the influence of varying degree of error in
forecasting, the framework can bear one or more information
quality parameters. These parameters describe the correlation
between a signal and a stochastic variable that influences the
revenue, e.g. the market price or an uncontrollable load the
IEM has to balance using the flexible resource. The most
influencing stochastic variables for our selected applications
(retail, ahead and balancing market participation) are price and
load. For the experiments described in Section V, we use zero-
mean normal errors with standard deviation σ. The zero-mean
assumption is motivated by the fact that systematic biases in
prediction can typically be accounted for by mean-adjustment
of the predictor. The normal assumption is typical [19], as the
specific forecasting method is not subject of this article, and
the distribution could easily be replaced in future work.

The revenue of a specific flexibility resource in a given
market is represented by ψ, the revenue per installed capacity
P in e/MW/y and ϕ, the revenue per available MWh flexibil-
ity in e/MWh. The revenue ψ can easily be upscaled albeit
market liquidity has to be considered outside of our model.
Furthermore, the annual shifted volume Q indicates whether
the flexibility resource is fully exploited. A low utilization,
with Q

1
2V

yielding the established utilization factor, suggests
looking into combining value propositions.

B. Problem formulation

We use the technology-neutral parameters formulated in
Section III-A to define the optimization problem for intelli-
gent energy management. First, an optimization function is
formulated for increasing self-sufficiency under current retail
prices. Second, the ahead and balancing value propositions are
captured as optimization problems in discrete-time systems.
For brevity, we use the notations [x]+ ≡ max(0, x) and
[x]− ≡ min(0, x).

1) Retail market: We consider a scenario where the retail
consumption price pc is greater than the feed-in tariff pfit. This



TABLE I
THE TECHNOLOGY-NEUTRAL PARAMETERS OF FLEXIBILITY FROM STORAGE OR DEMAND RESPONSE OF INDIVIDUAL OR AN AGGREGATION OF DEVICES.

Parameter Symbol Unit Description

Power rating P MW The highest power input or output allowed to flow through the equipment.
Energy rating E MWh The maximum state of charge of a storage system.
TI flexibility limit u MWh Flexibility activation limit in 1 market time interval TI with duration δt. Typically u = δt · P if

the activation time is smaller than the time to reach the power rating. For example, u = 1
4
h · P

for quarterly hour markets and u = 1h · P for hourly markets.
Flexibility capacity V MWh/y Refers to the annual total of rated or reserved flexible capacity, V =

∑
t

ut.

Power-to-energy ratio P/E unitless Determines the proportion of storage capacity and power rating, formally 1h · P/E.
Activation costs ca(x) e/MWh The function ca(x) returns the marginal costs for activating a flexibility unit x. We use: ca(x) =

Cax, where Ca is a constant.
Price information quality σ e Assuming zero-mean normal forecast error, standard deviation σ characterizes the information

quality in our model.

Activated flexibility xt MWh Flexibility activated at t with duration of dt.
Shifted volume Q MWh/y Annual volume of shifted flexibility, Q ≤ 1

2
· V .

Annual operational profit ψ e/MW/y Annual operational profit per installed capacity P . Intuitively, ψ indicates how much business
there is per MW per year.

Average marginal revenue ϕ e/MWh Annual operational profit divided by annual flexibility capacity volume V . Intuitively, φ indicates
by how much the value exceeds operational costs.

Time horizon T 15min.,
1h

IEM should provide an optimization over all t ∈ T , e.g., for an hourly annual horizon T =
{1, . . . , 365 · 24}.

is in line with the current situation in Amsterdam, Berlin and
Palermo. Over the time horizon T , the costs of retail market
participation are cr(

−→x ) (Equation 1) and the activation costs

are ca(
−→x ) =

T∑
t=0

ca(xt). In this scenario, the objective for the

intelligent energy management system is to minimize Equation
2, where εt is the exogenous supply (respectively demand
if negative), and xt is the flexible load activated in trading
interval starting at t.

cr(
−→x ) =

T∑
t=0

pc[εt − xt]+ − pfit[εt − xt]+ (1)

ctot(
−→x ) = cr(

−→x ) + ca(
−→x ) (2)

2) Ahead and balancing markets: For all time steps t ∈ T
the intelligent energy management (IEM) system has to decide
what amount of flexibility xt to activate given the flexibility
buffer’s state of charge soct, the information coming from
a price information signal ht and the exogeneneous load
forecast ε̂t. Furthermore, the IEM system has some prior
knowlegde such as private cost of flexibility activation ca(xt)
and the overall price distributions. We model this problem as
a discrete-time system:
• S contains all possible states of the flexibility resource

that are sufficient and necessary to derive the costs and
thus constitute the action selection policy. A state st ∈ S
is described as: st = (soct,

−→pt , ht,−→εt , ε̂t), where:
– The set SOC = [0, E] contains all possible state-of

charge values. soct ∈ SOC is the state of charge
just before commencement of the trading interval TI
starting at t.

– The prices pt and p
t

are the prices for market
players that respectively overproduce/ramp up or

overconsume/ramp down. In our simulations, these
prices follow historic time series but looking at
uniform randomly drawn interval TIt, they follow the
distributions Pup and Pdown. The set −→pt contains all
prices pi for i ≤ t.

– The signal ht is a signal correlated with the real
prices. For the simulations presented in this paper, we
use ht = (pt+ξ1, pt+ξ2), where ξi ∼ N (µ = 0, σ).

– E contains all possible exogenous loads for εt. The
set −→εt contains all exogeneous loads εi for i ≤ t. For
the simulations presented in this paper is assumed
E = [0].

– ε̂t is the estimation of the exogenous load εt.
• Actions: A = X is the set of all possible actions a = xt,

where xt is the flexibility activation in the trading interval
starting at t.

• Transition: st+1 = (soct + xt,
−−→pt+1, ht+1,

−−→εt+1, ε̂t+1)
describes the transition from st to st+1 given action at.

• Objective is to minimize the cost function:

min−→x

(
T∑

t=0

ct(xt) +

T∑
t=0

p
t
[εt − xt]− −

T∑
t=0

pt[εt − xt]+
)

subject to
T∑

t=0

xt = 0

IV. REVENUE POTENTIAL

In order to determine the revenue potential in a market,
i.e. the upper bound revenue, we calculate revenue under very
optimistic assumptions. First, all loads can be shifted freely
throughout the time horizon T under consideration. In this
case the energy rating is not limiting the use of flexibility, i.e.
E ≥ P · T . Second, we assume no activation cost and third,
100% round trip efficiency.



A. Retail

In this section, we consider a typical tariff from the end-
customer retail market. Consumption is charged pc and feed-in
pFIT. The tariff considered here does not apply annual netting,
which is in line with the current situation in Germany and
Italy, but in constrast to the situation for fuses < 3× 80A in
the Netherlands, which still has this regulation in place that
removes any IEM incentives.

Since we assume no limit on storage capacity, the optimal
policy for retail market participation is to shift local demand
that is not matched with local supply and vice versa. For every
new match the gain is the difference between the retail price pc
and the feed-in-tariff pFIT. Table II shows our estimated for this
value for the Dutch, German and Italian retail market. The re-
tail price data as provided by CBS (Statistics Netherlands) [20]
is used for the Netherlands. The ratio between the household
tariffs in Germany [21] and Italy [22] 1 and the Netherlands
is used to estimate the prices in Germany and Italy for the
larger scales. As feed-in tariffs we take the annual average
solar feed-in price (Netherlands [23], Germany [24] and Italy
[25]). In this particular tariff, the marginal profit per kWh only
depends on the price difference, and the annual profit on the
shiftable volume, which is bound by the volume of unmatched
local demand and supply. In turn, this mismatch is bound by
total demand, which is used in Table III to compute annual
potential value. In this table we used an estimate of the demand
volume in a typical apartment building (60 dwellings), office
environment and small industry with on-site production.

B. Ahead or balancing market participation

In this section, we consider ahead, imbalance and reserve
market participation. Although market designs are different,
the decision problem for flexible resources participating in
these markets is similar and can be described by the problem
formulation presented in Section III-B2. We study the revenue
potential of these markets under the assumptions that the IEM
operator is a price-taker and that it has perfect forecast of all
market prices in T .

Given a historic time series of market prices for buying p
t

and selling pt, the optimal policy in the optimistic scenario
for market participation is to buy all residual shiftable loads
from the market for the n lowest prices and sell them again to
the market for the n highest prices, where the nth trade is the
last trade that generates an operational profit, such that when
matching intervals i and j, pi − pj > 0. As a consequence of
the price-taker and perfect forecast assumption, the optimal
solution is ∀t, xt ∈ {−u, 0, u}. This equilibrium solution
neglects that each interval can only be activated in one
direction, however it provides an very efficient computation for
an upper bound, and given correlations between p

t
and pt the

equilibrium is likely to contain few if any double bookings. In
our simulation, we observed few such occurences (< 0.01%)

1In Italy day-night tariffs for households are more common, therefore the
constant tariffs are relatively high compared to the Amsterdam and Berlin
region.

TABLE II
THE VALUE OF FLEXIBILITY IN EURO CENTS PER SHIFTED KWH AS

DESCRIBED IN SECTIONS IV-A AND IV-B.

Market Segment Netherlands Germany Italy

Retail Apartment 9.0 12.0 10.0
Office 1.0 2.0 2.0
Industry 0.2 1.0 0.3

Ahead Day-ahead 2.1 2.5 5.6**
Balancing Imbalance 7.7 9.4 -

Reserve 10.4 * -
*Incentives are available but this case is omitted due to weekly commitment
requirement. **Sicily, Italy.

TABLE III
COMPARISON OF UPPER BOUNDS FOR POTENTIAL ANNUAL VALUE OF

ZERO-COST FLEXIBILITY IN Ke WITH SHIFTABLE VOLUME Q IN GWH.

Netherlands Germany Italy
Market Segment Q ψ Q ψ Q ψ

Retail Apartment 0.1 1.2 0.1 1.7 0.1 1.4
Office 0.4 0.4 0.4 0.9 0.4 0.9
Industry 5.3 1.0 5.3 5.3 5.3 1.6

Ahead Day-ahead 4.4 91.7 4.4 107.4 6.0 337.9**
Balancing Imbalance 3.9 302.2 4.4 412.5 - -

Reserve 5.5 577.2 * * - -

for the Dutch and German day ahead and imbalance markets if
σ = 0, and if σ is large, double bookings only increase slightly.
For the Dutch reserve market and the Italian day ahead market,
the double booking percentage is 36% and 28% respectively,
and thus provide more optimistic overestimating bounds. The
refined solution in the next section is by design immune to
such infeasible allocations.

The optimal solution can be found by pairing ramp up and
ramp down prices ∀t, pt and ∀t, p

t
greedily. When we consider

each time interval t as an individual trader that submits pt as a
bid and p

t
as an ask to a double auction, the solution is equal

to the Nash equilibrium.2 Results are juxtaposed to the retail
values in Tables II and III.

V. REFINED EVALUATION

After estimating the upper revenue limits in the previous
section, we now use the flexibility parameters to give a more
refined estimation of the revenue that can be achieved by
intelligent energy management. First, we use our parameter-
ization to model the flexibility of a specific technology (the
Durion CS 55/123 battery), and provide a realistic lower bound
revenue estimation for this technology in a specific target
market (passive market participation in the Dutch imbalance
market). Second, we explore how the parameters of the flexible
resource more generally influence its revenue in that market.

A. Case study: Durion battery

Table IV shows the economical and technical properties
of a package of four Durion CS 55/123 batteries (LiFePO4)

2Proof omitted but trivial by contradiction. Intuitively, if an interval is
selected for flexibility activation, any activation below the limit could be
improved in profit by going to the limit, considering a few boundary cases.



[26] linked in parallel, and the flexibility parameters for this
package that were derived from these properties.

We evaluate a simple heuristic policy, since this provides a
realistic lower bound of the achievable revenue. The heuristic
policy (Equation 3) evaluates what the estimated operational
profit of a one-way activation of flexibility is. If the estimated
profit exceeds the cost of activating the flexibility, the flexi-
bility is activated.

buy if ht + 2C ≥ E(pt)

sell if ht ≤ E(p
t
)

(3)

This heuristic is a natural match for imbalance markets, where
prices are defined after the fact. Only the signal (ht, ht) is
available, which provides the estimated value of (pt, pt). It
also captures ahead and reserve markets, since volumes have
to be precommitted before market clearing.

Figure 1 shows the estimated revenue for a set of Durion
battery packages, with a total of 1 MW installed flexibility
capacity. The investment cost per 1MW installed flexibility is
18.2 · 476k = 8.7M and the upper bound revenue of market
participation is 90k e/y. This results in a break-even time of 96
year even while neglecting the P/E ratio and other constraints.
In this case the battery was replaced every 2-3 years, so it
would not expire. Figure 1 shows that if the energy rating
is neglected (E ≥ P · T ) the performance of the heuristic
is close to the performance of the offline algorithm and even
better when the forecasting error is large. This indicates that
there is little gain from intelligent energy management for
situations with high activation costs and small P/E ratio beyond
the achievable performance of a simple heurstic. The break-
even point for the specific Durion battery package, limited by
P/E ratio = 0.15, is after 176 years. This indicates that a higher
P/E ratio results in lower cost-effectiveness.

B. Influence of flexibility parameters

The previous section has shown that the investment cost and
thus the activation costs of an example storage technology that
is currently on the market is too high to generate profit from

TABLE IV
ECONOMICAL AND TECHNICAL PARAMETERS OF THE A PACKAGE OF

FOUR DURION CS 55/123 BATTERIES [26].

Economical and technical parameters

Investment costs 4 · 119k = 476k e
Storage capacity (DoD 70%) 4 batteries → 360 kWh
Cycles 7000
Round trip efficiency 93%
Nominal Capacity 55 kW → 18.2 packages./MW

Flexibility parameters

power rating P 0.055 MW
energy rating E 0.36 MWh
P/E ratio 0.15 MWh
activation cost per cycle 70.9
-wear and tear 476k

7k
= 68.0 e

-losses E(p
t
) · 0.07 = 2.9 e

one-way activation cost C per MWh 1
2
· 70.9
0.36

= 98.5 e

Fig. 1. Revenue estimation for the heuristic online policy for imbalance
market participation using the flexibility of the Durion CS 55/123 battery
package. The characteristic of this flexible resource are in Table IV. The
revenue is estimated by averaging over 10 simulations with randomized
forecasts.

intelligent participation in the Dutch imbalance market. In this
section we explore the characteristics of flexible resources
more broadly.

Figure 2 shows how the activation costs and the quality of
the forecasting signal influence the performance of a flexibility
buffer with the characteristic: E ≥ P ·T . Figure 2 can be used
to find what the maximal investment and/or operational costs
of a flexible resource can be. For example, if the activation
cost is 40e/MWh, the revenue for σ < 30 yields 140ke/y.
For a resource with a life time of 10 years, the maximum
investment cost is 1.4Me/MW.

An interesting observation is that a signal quality σ < 40
is sufficient: better signal quality does not influence the
revenue much. The highest operational profit is found for
zero activation cost and σ = 30, which indicates that the
heuristic policy is not optimal and that there is a niche for
developing more intelligent policies. A typical price signal for
the prices at t could be the price at t−1. The price difference
between these time slots is not well approximated by a normal
distribution, therefore it is not advisible to compare this price
signal to the signals used in our simulation using σ. However,
we can use Spearman’s r, a rank-based correlation coefficient
for comparison. The typical t − 1 prediction signal yields a
comparable r as a normal signal with σ in the range of 50−60.

VI. DISCUSSION & CONCLUSION

In this work we give guidance on the valuation of flexibility
as provided by Demand Response or storage in electric-
ity markets. We propose a technology-neutral description of
flexibility, that enables us to compare the revenue poten-
tial of different resources providing flexibility. We use this
technology-neutral description to provide a ec/kWh and a
e/MW/y valuation of flexibility. First, an upper bound for
the value of flexibility in the retail, ahead and balancing
markets in the Netherlands, Germany and Italy has been
computed under optimistic assumptions, providing a guide
for attention for business opportunities, and a computational
method for further exploration. Second, an evaluation of a



Fig. 2. Revenue estimation for the simple heuristic online policy for
participation in the Dutch imbalance market for varying activation costs and
forecasting error. Since E ≥ P.T , the result is not constrained by the P/E
ratio.

simple heurstic online policy provides a realistic lower bound
for the achievable profits from flexibility over various marginal
costs of activation. Finally, the technology-neutral approach is
demonstrated on the specific technology of a battery that is
currently available on the market.

Our results can serve as a reference simulation and com-
parison method to more refined and more specific techno-
economical assesments of flexibility resources. Furthermore,
the results can be compared to the revenue potential of
other value propositions for valorising flexibility, such as
flexibility as substitute to curtailment of wind energy [12],
[13] or conventional grid reinforcements [11]. Finally, market-
participation policies for intelligent energy management can be
evaluated against the upper bound and realistic lower bound
as a benchmark.

Our results suggest that there are business opportunities
for flexible resources with low activation costs, which may
be achieved by innovative tariffs for demand response. Such
innovative tariffs may eventually provide the lacking incentives
for the untapped distributed flexibility to contribute to the
efficient balancing of our future energy system.
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