96,443 research outputs found

    Regression Depth and Center Points

    Get PDF
    We show that, for any set of n points in d dimensions, there exists a hyperplane with regression depth at least ceiling(n/(d+1)). as had been conjectured by Rousseeuw and Hubert. Dually, for any arrangement of n hyperplanes in d dimensions there exists a point that cannot escape to infinity without crossing at least ceiling(n/(d+1)) hyperplanes. We also apply our approach to related questions on the existence of partitions of the data into subsets such that a common plane has nonzero regression depth in each subset, and to the computational complexity of regression depth problems.Comment: 14 pages, 3 figure

    A Metric for genus-zero surfaces

    Full text link
    We present a new method to compare the shapes of genus-zero surfaces. We introduce a measure of mutual stretching, the symmetric distortion energy, and establish the existence of a conformal diffeomorphism between any two genus-zero surfaces that minimizes this energy. We then prove that the energies of the minimizing diffeomorphisms give a metric on the space of genus-zero Riemannian surfaces. This metric and the corresponding optimal diffeomorphisms are shown to have properties that are highly desirable for applications.Comment: 33 pages, 8 figure

    The Stability of Heavy Objects with Multiple Contacts

    Get PDF
    In both robot grasping and robot locomotion, we wish to hold objects stably in the presence of gravity. We present a derivation of second-order stability conditions for a supported heavy object, employing the tool of Stratified Morse theory. We then apply these general results to the case of objects in the plane

    A Bayesian Approach to Manifold Topology Reconstruction

    Get PDF
    In this paper, we investigate the problem of statistical reconstruction of piecewise linear manifold topology. Given a noisy, probably undersampled point cloud from a one- or two-manifold, the algorithm reconstructs an approximated most likely mesh in a Bayesian sense from which the sample might have been taken. We incorporate statistical priors on the object geometry to improve the reconstruction quality if additional knowledge about the class of original shapes is available. The priors can be formulated analytically or learned from example geometry with known manifold tessellation. The statistical objective function is approximated by a linear programming / integer programming problem, for which a globally optimal solution is found. We apply the algorithm to a set of 2D and 3D reconstruction examples, demon-strating that a statistics-based manifold reconstruction is feasible, and still yields plausible results in situations where sampling conditions are violated
    • …
    corecore