918 research outputs found

    Fine-grained dichotomies for the Tutte plane and Boolean #CSP

    Get PDF
    Jaeger, Vertigan, and Welsh [15] proved a dichotomy for the complexity of evaluating the Tutte polynomial at fixed points: The evaluation is #P-hard almost everywhere, and the remaining points admit polynomial-time algorithms. Dell, Husfeldt, and Wahl\'en [9] and Husfeldt and Taslaman [12], in combination with Curticapean [7], extended the #P-hardness results to tight lower bounds under the counting exponential time hypothesis #ETH, with the exception of the line y=1y=1, which was left open. We complete the dichotomy theorem for the Tutte polynomial under #ETH by proving that the number of all acyclic subgraphs of a given nn-vertex graph cannot be determined in time exp(o(n))exp(o(n)) unless #ETH fails. Another dichotomy theorem we strengthen is the one of Creignou and Hermann [6] for counting the number of satisfying assignments to a constraint satisfaction problem instance over the Boolean domain. We prove that all #P-hard cases are also hard under #ETH. The main ingredient is to prove that the number of independent sets in bipartite graphs with nn vertices cannot be computed in time exp(o(n))exp(o(n)) unless #ETH fails. In order to prove our results, we use the block interpolation idea by Curticapean [7] and transfer it to systems of linear equations that might not directly correspond to interpolation.Comment: 16 pages, 1 figur

    Exponential Time Complexity of the Permanent and the Tutte Polynomial

    Get PDF
    We show conditional lower bounds for well-studied #P-hard problems: (a) The number of satisfying assignments of a 2-CNF formula with n variables cannot be counted in time exp(o(n)), and the same is true for computing the number of all independent sets in an n-vertex graph. (b) The permanent of an n x n matrix with entries 0 and 1 cannot be computed in time exp(o(n)). (c) The Tutte polynomial of an n-vertex multigraph cannot be computed in time exp(o(n)) at most evaluation points (x,y) in the case of multigraphs, and it cannot be computed in time exp(o(n/polylog n)) in the case of simple graphs. Our lower bounds are relative to (variants of) the Exponential Time Hypothesis (ETH), which says that the satisfiability of n-variable 3-CNF formulas cannot be decided in time exp(o(n)). We relax this hypothesis by introducing its counting version #ETH, namely that the satisfying assignments cannot be counted in time exp(o(n)). In order to use #ETH for our lower bounds, we transfer the sparsification lemma for d-CNF formulas to the counting setting

    The Fine-Grained Complexity of Computing the Tutte Polynomial of a Linear Matroid

    Full text link
    We show that computing the Tutte polynomial of a linear matroid of dimension kk on kO(1)k^{O(1)} points over a field of kO(1)k^{O(1)} elements requires kΩ(k)k^{\Omega(k)} time unless the \#ETH---a counting extension of the Exponential Time Hypothesis of Impagliazzo and Paturi [CCC 1999] due to Dell {\em et al.} [ACM TALG 2014]---is false. This holds also for linear matroids that admit a representation where every point is associated to a vector with at most two nonzero coordinates. We also show that the same is true for computing the Tutte polynomial of a binary matroid of dimension kk on kO(1)k^{O(1)} points with at most three nonzero coordinates in each point's vector. This is in sharp contrast to computing the Tutte polynomial of a kk-vertex graph (that is, the Tutte polynomial of a {\em graphic} matroid of dimension kk---which is representable in dimension kk over the binary field so that every vector has two nonzero coordinates), which is known to be computable in 2kkO(1)2^k k^{O(1)} time [Bj\"orklund {\em et al.}, FOCS 2008]. Our lower-bound proofs proceed via (i) a connection due to Crapo and Rota [1970] between the number of tuples of codewords of full support and the Tutte polynomial of the matroid associated with the code; (ii) an earlier-established \#ETH-hardness of counting the solutions to a bipartite (d,2)(d,2)-CSP on nn vertices in do(n)d^{o(n)} time; and (iii) new embeddings of such CSP instances as questions about codewords of full support in a linear code. We complement these lower bounds with two algorithm designs. The first design computes the Tutte polynomial of a linear matroid of dimension~kk on kO(1)k^{O(1)} points in kO(k)k^{O(k)} operations. The second design generalizes the Bj\"orklund~{\em et al.} algorithm and runs in qk+1kO(1)q^{k+1}k^{O(1)} time for linear matroids of dimension kk defined over the qq-element field by kO(1)k^{O(1)} points with at most two nonzero coordinates each.Comment: This version adds Theorem

    Exponential Time Complexity of Weighted Counting of Independent Sets

    Full text link
    We consider weighted counting of independent sets using a rational weight x: Given a graph with n vertices, count its independent sets such that each set of size k contributes x^k. This is equivalent to computation of the partition function of the lattice gas with hard-core self-repulsion and hard-core pair interaction. We show the following conditional lower bounds: If counting the satisfying assignments of a 3-CNF formula in n variables (#3SAT) needs time 2^{\Omega(n)} (i.e. there is a c>0 such that no algorithm can solve #3SAT in time 2^{cn}), counting the independent sets of size n/3 of an n-vertex graph needs time 2^{\Omega(n)} and weighted counting of independent sets needs time 2^{\Omega(n/log^3 n)} for all rational weights x\neq 0. We have two technical ingredients: The first is a reduction from 3SAT to independent sets that preserves the number of solutions and increases the instance size only by a constant factor. Second, we devise a combination of vertex cloning and path addition. This graph transformation allows us to adapt a recent technique by Dell, Husfeldt, and Wahlen which enables interpolation by a family of reductions, each of which increases the instance size only polylogarithmically.Comment: Introduction revised, differences between versions of counting independent sets stated more precisely, minor improvements. 14 page

    Fast Evaluation of Interlace Polynomials on Graphs of Bounded Treewidth

    Full text link
    We consider the multivariate interlace polynomial introduced by Courcelle (2008), which generalizes several interlace polynomials defined by Arratia, Bollobas, and Sorkin (2004) and by Aigner and van der Holst (2004). We present an algorithm to evaluate the multivariate interlace polynomial of a graph with n vertices given a tree decomposition of the graph of width k. The best previously known result (Courcelle 2008) employs a general logical framework and leads to an algorithm with running time f(k)*n, where f(k) is doubly exponential in k. Analyzing the GF(2)-rank of adjacency matrices in the context of tree decompositions, we give a faster and more direct algorithm. Our algorithm uses 2^{3k^2+O(k)}*n arithmetic operations and can be efficiently implemented in parallel.Comment: v4: Minor error in Lemma 5.5 fixed, Section 6.6 added, minor improvements. 44 pages, 14 figure

    How proofs are prepared at Camelot

    Full text link
    We study a design framework for robust, independently verifiable, and workload-balanced distributed algorithms working on a common input. An algorithm based on the framework is essentially a distributed encoding procedure for a Reed--Solomon code, which enables (a) robustness against byzantine failures with intrinsic error-correction and identification of failed nodes, and (b) independent randomized verification to check the entire computation for correctness, which takes essentially no more resources than each node individually contributes to the computation. The framework builds on recent Merlin--Arthur proofs of batch evaluation of Williams~[{\em Electron.\ Colloq.\ Comput.\ Complexity}, Report TR16-002, January 2016] with the observation that {\em Merlin's magic is not needed} for batch evaluation---mere Knights can prepare the proof, in parallel, and with intrinsic error-correction. The contribution of this paper is to show that in many cases the verifiable batch evaluation framework admits algorithms that match in total resource consumption the best known sequential algorithm for solving the problem. As our main result, we show that the kk-cliques in an nn-vertex graph can be counted {\em and} verified in per-node O(n(ω+ϵ)k/6)O(n^{(\omega+\epsilon)k/6}) time and space on O(n(ω+ϵ)k/6)O(n^{(\omega+\epsilon)k/6}) compute nodes, for any constant ϵ>0\epsilon>0 and positive integer kk divisible by 66, where 2ω<2.37286392\leq\omega<2.3728639 is the exponent of matrix multiplication. This matches in total running time the best known sequential algorithm, due to Ne{\v{s}}et{\v{r}}il and Poljak [{\em Comment.~Math.~Univ.~Carolin.}~26 (1985) 415--419], and considerably improves its space usage and parallelizability. Further results include novel algorithms for counting triangles in sparse graphs, computing the chromatic polynomial of a graph, and computing the Tutte polynomial of a graph.Comment: 42 p

    Exact Covers via Determinants

    Full text link
    Given a k-uniform hypergraph on n vertices, partitioned in k equal parts such that every hyperedge includes one vertex from each part, the k-dimensional matching problem asks whether there is a disjoint collection of the hyperedges which covers all vertices. We show it can be solved by a randomized polynomial space algorithm in time O*(2^(n(k-2)/k)). The O*() notation hides factors polynomial in n and k. When we drop the partition constraint and permit arbitrary hyperedges of cardinality k, we obtain the exact cover by k-sets problem. We show it can be solved by a randomized polynomial space algorithm in time O*(c_k^n), where c_3=1.496, c_4=1.642, c_5=1.721, and provide a general bound for larger k. Both results substantially improve on the previous best algorithms for these problems, especially for small k, and follow from the new observation that Lovasz' perfect matching detection via determinants (1979) admits an embedding in the recently proposed inclusion-exclusion counting scheme for set covers, despite its inability to count the perfect matchings
    corecore