40,366 research outputs found

    Computation of protein geometry and its applications: Packing and function prediction

    Full text link
    This chapter discusses geometric models of biomolecules and geometric constructs, including the union of ball model, the weigthed Voronoi diagram, the weighted Delaunay triangulation, and the alpha shapes. These geometric constructs enable fast and analytical computaton of shapes of biomoleculres (including features such as voids and pockets) and metric properties (such as area and volume). The algorithms of Delaunay triangulation, computation of voids and pockets, as well volume/area computation are also described. In addition, applications in packing analysis of protein structures and protein function prediction are also discussed.Comment: 32 pages, 9 figure

    Homological Region Adjacency Tree for a 3D Binary Digital Image via HSF Model

    Get PDF
    Given a 3D binary digital image I, we define and compute an edge-weighted tree, called Homological Region Tree (or Hom-Tree, for short). It coincides, as unweighted graph, with the classical Region Adjacency Tree of black 6-connected components (CCs) and white 26- connected components of I. In addition, we define the weight of an edge (R, S) as the number of tunnels that the CCs R and S “share”. The Hom-Tree structure is still an isotopic invariant of I. Thus, it provides information about how the different homology groups interact between them, while preserving the duality of black and white CCs. An experimentation with a set of synthetic images showing different shapes and different complexity of connected component nesting is performed for numerically validating the method.Ministerio de Economía y Competitividad MTM2016-81030-

    Characterizing the Shape of Activation Space in Deep Neural Networks

    Full text link
    The representations learned by deep neural networks are difficult to interpret in part due to their large parameter space and the complexities introduced by their multi-layer structure. We introduce a method for computing persistent homology over the graphical activation structure of neural networks, which provides access to the task-relevant substructures activated throughout the network for a given input. This topological perspective provides unique insights into the distributed representations encoded by neural networks in terms of the shape of their activation structures. We demonstrate the value of this approach by showing an alternative explanation for the existence of adversarial examples. By studying the topology of network activations across multiple architectures and datasets, we find that adversarial perturbations do not add activations that target the semantic structure of the adversarial class as previously hypothesized. Rather, adversarial examples are explainable as alterations to the dominant activation structures induced by the original image, suggesting the class representations learned by deep networks are problematically sparse on the input space

    Analysing Human Mobility Patterns of Hiking Activities through Complex Network Theory

    Full text link
    The exploitation of high volume of geolocalized data from social sport tracking applications of outdoor activities can be useful for natural resource planning and to understand the human mobility patterns during leisure activities. This geolocalized data represents the selection of hike activities according to subjective and objective factors such as personal goals, personal abilities, trail conditions or weather conditions. In our approach, human mobility patterns are analysed from trajectories which are generated by hikers. We propose the generation of the trail network identifying special points in the overlap of trajectories. Trail crossings and trailheads define our network and shape topological features. We analyse the trail network of Balearic Islands, as a case of study, using complex weighted network theory. The analysis is divided into the four seasons of the year to observe the impact of weather conditions on the network topology. The number of visited places does not decrease despite the large difference in the number of samples of the two seasons with larger and lower activity. It is in summer season where it is produced the most significant variation in the frequency and localization of activities from inland regions to coastal areas. Finally, we compare our model with other related studies where the network possesses a different purpose. One finding of our approach is the detection of regions with relevant importance where landscape interventions can be applied in function of the communities.Comment: 20 pages, 9 figures, accepte
    • …
    corecore