18,721 research outputs found

    Single-shot fault-tolerant quantum error correction

    Get PDF
    Conventional quantum error correcting codes require multiple rounds of measurements to detect errors with enough confidence in fault-tolerant scenarios. Here I show that for suitable topological codes a single round of local measurements is enough. This feature is generic and is related to self-correction and confinement phenomena in the corresponding quantum Hamiltonian model. 3D gauge color codes exhibit this single-shot feature, which applies also to initialization and gauge-fixing. Assuming the time for efficient classical computations negligible, this yields a topological fault-tolerant quantum computing scheme where all elementary logical operations can be performed in constant time.Comment: Typos corrected after publication in journal, 26 pages, 4 figure

    EEG-Based Emotion Recognition Using Regularized Graph Neural Networks

    Full text link
    Electroencephalography (EEG) measures the neuronal activities in different brain regions via electrodes. Many existing studies on EEG-based emotion recognition do not fully exploit the topology of EEG channels. In this paper, we propose a regularized graph neural network (RGNN) for EEG-based emotion recognition. RGNN considers the biological topology among different brain regions to capture both local and global relations among different EEG channels. Specifically, we model the inter-channel relations in EEG signals via an adjacency matrix in a graph neural network where the connection and sparseness of the adjacency matrix are inspired by neuroscience theories of human brain organization. In addition, we propose two regularizers, namely node-wise domain adversarial training (NodeDAT) and emotion-aware distribution learning (EmotionDL), to better handle cross-subject EEG variations and noisy labels, respectively. Extensive experiments on two public datasets, SEED and SEED-IV, demonstrate the superior performance of our model than state-of-the-art models in most experimental settings. Moreover, ablation studies show that the proposed adjacency matrix and two regularizers contribute consistent and significant gain to the performance of our RGNN model. Finally, investigations on the neuronal activities reveal important brain regions and inter-channel relations for EEG-based emotion recognition

    Topological Quantum Computing

    Full text link
    This set of lecture notes forms the basis of a series of lectures delivered at the 48th IFF Spring School 2017 on Topological Matter: Topological Insulators, Skyrmions and Majoranas at Forschungszentrum Juelich, Germany. The first part of the lecture notes covers the basics of abelian and non-abelian anyons and their realization in the Kitaev's honeycomb model. The second part discusses how to perform universal quantum computation using Majorana fermions.Comment: In Topological Matter: Topological Insulators, Skyrmions and Majoranas, Lecture notes of the 48th IFF Spring School 2017, eds. S. Bluegel, Y. Mokrusov, T. Schaepers, and Y. Ando (Forschungszentrum Juelich, Key Technologies, Vol. 139, 2017), Sec. D
    • …
    corecore