Conventional quantum error correcting codes require multiple rounds of
measurements to detect errors with enough confidence in fault-tolerant
scenarios. Here I show that for suitable topological codes a single round of
local measurements is enough. This feature is generic and is related to
self-correction and confinement phenomena in the corresponding quantum
Hamiltonian model. 3D gauge color codes exhibit this single-shot feature, which
applies also to initialization and gauge-fixing. Assuming the time for
efficient classical computations negligible, this yields a topological
fault-tolerant quantum computing scheme where all elementary logical operations
can be performed in constant time.Comment: Typos corrected after publication in journal, 26 pages, 4 figure