1,765 research outputs found

    A simple, combinatorial algorithm for solving SDD systems in nearly-linear time

    Get PDF
    Original manuscript January 28, 2013In this paper, we present a simple combinatorial algorithm that solves symmetric diagonally dominant (SDD) linear systems in nearly-linear time. It uses little of the machinery that previously appeared to be necessary for a such an algorithm. It does not require recursive preconditioning, spectral sparsification, or even the Chebyshev Method or Conjugate Gradient. After constructing a "nice" spanning tree of a graph associated with the linear system, the entire algorithm consists of the repeated application of a simple update rule, which it implements using a lightweight data structure. The algorithm is numerically stable and can be implemented without the increased bit-precision required by previous solvers. As such, the algorithm has the fastest known running time under the standard unit-cost RAM model. We hope the simplicity of the algorithm and the insights yielded by its analysis will be useful in both theory and practice.National Science Foundation (U.S.) (Award 0843915)National Science Foundation (U.S.) (Award 1111109)Alfred P. Sloan Foundation (Research Fellowship)National Science Foundation (U.S.). Graduate Research Fellowship Program (Grant 1122374

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum

    16th Scandinavian Symposium and Workshops on Algorithm Theory: SWAT 2018, June 18-20, 2018, Malmö University, Malmö, Sweden

    Get PDF

    Dynamics of spectral algorithms for distributed routing

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 109-117).In the past few decades distributed systems have evolved from man-made machines to organically changing social, economic and protein networks. This transition has been overwhelming in many ways at once. Dynamic, heterogeneous, irregular topologies have taken the place of static, homogeneous, regular ones. Asynchronous, ad hoc peer-to-peer networks have replaced carefully engineered super-computers, governed by globally synchronized clocks. Modern network scales have demanded distributed data structures in place of traditionally centralized ones. While the core problems of routing remain mostly unchanged, the sweeping changes of the computing environment invoke an altogether new science of algorithmic and analytic techniques. It is these techniques that are the focus of the present work. We address the re-design of routing algorithms in three classical domains: multi-commodity routing, broadcast routing and all-pairs route representation. Beyond their practical value, our results make pleasing contributions to Mathematics and Theoretical Computer Science. We exploit surprising connections to NP-hard approximation, and we introduce new techniques in metric embeddings and spectral graph theory. The distributed computability of "oblivious routes", a core combinatorial property of every graph and a key ingredient in route engineering, opens interesting questions in the natural and experimental sciences as well. Oblivious routes are "universal" communication pathways in networks which are essentially unique. They are magically robust as their quality degrades smoothly and gracefully with changes in topology or blemishes in the computational processes. While we have only recently learned how to find them algorithmically, their power begs the question whether naturally occurring networks from Biology to Sociology to Economics have their own mechanisms of finding and utilizing these pathways. Our discoveries constitute a significant progress towards the design of a self-organizing Internet, whose infrastructure is fueled entirely by its participants on an equal citizen basis. This grand engineering challenge is believed to be a potential technological solution to a long line of pressing social and human rights issues in the digital age. Some prominent examples include non-censorship, fair bandwidth allocation, privacy and ownership of social data, the right to copy information, non-discrimination based on identity, and many others.by Petar Maymounkov.Ph.D

    LIPIcs, Volume 244, ESA 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 244, ESA 2022, Complete Volum

    Algorithmic embeddings

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (p. 233-242).We present several computationally efficient algorithms, and complexity results on low distortion mappings between metric spaces. An embedding between two metric spaces is a mapping between the two metric spaces and the distortion of the embedding is the factor by which the distances change. We have pioneered theoretical work on relative (or approximation) version of this problem. In this setting, the question is the following: for the class of metrics C, and a host metric M', what is the smallest approximation factor a > 1 of an efficient algorithm minimizing the distortion of an embedding of a given input metric M E C into M'? This formulation enables the algorithm to adapt to a given input metric. In particular, if the host metric is "expressive enough" to accurately model the input distances, the minimum achievable distortion is low, and the algorithm will produce an embedding with low distortion as well. This problem has been a subject of extensive applied research during the last few decades. However, almost all known algorithms for this problem are heuristic. As such, they can get stuck in local minima, and do not provide any global guarantees on solution quality. We investigate several variants of the above problem, varying different host and target metrics, and definitions of distortion.(cont.) We present results for different types of distortion: multiplicative versus additive, worst-case versus average-case and several types of target metrics, such as the line, the plane, d-dimensional Euclidean space, ultrametrics, and trees. We also present algorithms for ordinal embeddings and embedding with extra information.by Mihai Bădoiu.Ph.D
    • …
    corecore