12,240 research outputs found

    Computing N\'eron-Severi groups and cycle class groups

    Get PDF
    Assuming the Tate conjecture and the computability of \'etale cohomology with finite coefficients, we give an algorithm that computes the N\'eron-Severi group of any smooth projective geometrically integral variety, and also the rank of the group of numerical equivalence classes of codimension p cycles for any p.Comment: 22 pages; to appear in Compositio Mat

    Computing generators of the unit group of an integral abelian group ring

    Get PDF
    We describe an algorithm for obtaining generators of the unit group of the integral group ring ZG of a finite abelian group G. We used our implementation in Magma of this algorithm to compute the unit groups of ZG for G of order up to 110. In particular for those cases we obtained the index of the group of Hoechsmann units in the full unit group. At the end of the paper we describe an algorithm for the more general problem of finding generators of an arithmetic group corresponding to a diagonalizable algebraic group

    Hilbert's fourteenth problem over finite fields, and a conjecture on the cone of curves

    Full text link
    We give examples over arbitrary fields of rings of invariants that are not finitely generated. The group involved can be as small as three copies of the additive group, as in Mukai's examples over the complex numbers. The failure of finite generation comes from certain elliptic fibrations or abelian surface fibrations having positive Mordell-Weil rank. Our work suggests a generalization of the Morrison-Kawamata cone conjecture from Calabi-Yau varieties to klt Calabi-Yau pairs. We prove the conjecture in dimension 2 in the case of minimal rational elliptic surfaces.Comment: 26 pages. To appear in Compositio Mathematic

    Computing Invariants of Simplicial Manifolds

    Full text link
    This is a survey of known algorithms in algebraic topology with a focus on finite simplicial complexes and, in particular, simplicial manifolds. Wherever possible an elementary approach is chosen. This way the text may also serve as a condensed but very basic introduction to the algebraic topology of simplicial manifolds. This text will appear as a chapter in the forthcoming book "Triangulated Manifolds with Few Vertices" by Frank H. Lutz.Comment: 13 pages, 3 figure

    Circuit complexity, proof complexity, and polynomial identity testing

    Full text link
    We introduce a new algebraic proof system, which has tight connections to (algebraic) circuit complexity. In particular, we show that any super-polynomial lower bound on any Boolean tautology in our proof system implies that the permanent does not have polynomial-size algebraic circuits (VNP is not equal to VP). As a corollary to the proof, we also show that super-polynomial lower bounds on the number of lines in Polynomial Calculus proofs (as opposed to the usual measure of number of monomials) imply the Permanent versus Determinant Conjecture. Note that, prior to our work, there was no proof system for which lower bounds on an arbitrary tautology implied any computational lower bound. Our proof system helps clarify the relationships between previous algebraic proof systems, and begins to shed light on why proof complexity lower bounds for various proof systems have been so much harder than lower bounds on the corresponding circuit classes. In doing so, we highlight the importance of polynomial identity testing (PIT) for understanding proof complexity. More specifically, we introduce certain propositional axioms satisfied by any Boolean circuit computing PIT. We use these PIT axioms to shed light on AC^0[p]-Frege lower bounds, which have been open for nearly 30 years, with no satisfactory explanation as to their apparent difficulty. We show that either: a) Proving super-polynomial lower bounds on AC^0[p]-Frege implies VNP does not have polynomial-size circuits of depth d - a notoriously open question for d at least 4 - thus explaining the difficulty of lower bounds on AC^0[p]-Frege, or b) AC^0[p]-Frege cannot efficiently prove the depth d PIT axioms, and hence we have a lower bound on AC^0[p]-Frege. Using the algebraic structure of our proof system, we propose a novel way to extend techniques from algebraic circuit complexity to prove lower bounds in proof complexity
    • …
    corecore