56 research outputs found

    Computing Real Roots of Real Polynomials

    Full text link
    Computing the roots of a univariate polynomial is a fundamental and long-studied problem of computational algebra with applications in mathematics, engineering, computer science, and the natural sciences. For isolating as well as for approximating all complex roots, the best algorithm known is based on an almost optimal method for approximate polynomial factorization, introduced by Pan in 2002. Pan's factorization algorithm goes back to the splitting circle method from Schoenhage in 1982. The main drawbacks of Pan's method are that it is quite involved and that all roots have to be computed at the same time. For the important special case, where only the real roots have to be computed, much simpler methods are used in practice; however, they considerably lag behind Pan's method with respect to complexity. In this paper, we resolve this discrepancy by introducing a hybrid of the Descartes method and Newton iteration, denoted ANEWDSC, which is simpler than Pan's method, but achieves a run-time comparable to it. Our algorithm computes isolating intervals for the real roots of any real square-free polynomial, given by an oracle that provides arbitrary good approximations of the polynomial's coefficients. ANEWDSC can also be used to only isolate the roots in a given interval and to refine the isolating intervals to an arbitrary small size; it achieves near optimal complexity for the latter task.Comment: to appear in the Journal of Symbolic Computatio

    Computing Real Roots of Real Polynomials ... and now For Real!

    Full text link
    Very recent work introduces an asymptotically fast subdivision algorithm, denoted ANewDsc, for isolating the real roots of a univariate real polynomial. The method combines Descartes' Rule of Signs to test intervals for the existence of roots, Newton iteration to speed up convergence against clusters of roots, and approximate computation to decrease the required precision. It achieves record bounds on the worst-case complexity for the considered problem, matching the complexity of Pan's method for computing all complex roots and improving upon the complexity of other subdivision methods by several magnitudes. In the article at hand, we report on an implementation of ANewDsc on top of the RS root isolator. RS is a highly efficient realization of the classical Descartes method and currently serves as the default real root solver in Maple. We describe crucial design changes within ANewDsc and RS that led to a high-performance implementation without harming the theoretical complexity of the underlying algorithm. With an excerpt of our extensive collection of benchmarks, available online at http://anewdsc.mpi-inf.mpg.de/, we illustrate that the theoretical gain in performance of ANewDsc over other subdivision methods also transfers into practice. These experiments also show that our new implementation outperforms both RS and mature competitors by magnitudes for notoriously hard instances with clustered roots. For all other instances, we avoid almost any overhead by integrating additional optimizations and heuristics.Comment: Accepted for presentation at the 41st International Symposium on Symbolic and Algebraic Computation (ISSAC), July 19--22, 2016, Waterloo, Ontario, Canad

    Computing Real Roots of Real Polynomials -- An Efficient Method Based on Descartes' Rule of Signs and Newton Iteration

    Get PDF
    Computing the real roots of a polynomial is a fundamental problem of computational algebra. We describe a variant of the Descartes method that isolates the real roots of any real square-free polynomial given through coefficient oracles. A coefficient oracle provides arbitrarily good approximations of the coefficients. The bit complexity of the algorithm matches the complexity of the best algorithm known, and the algorithm is simpler than this algorithm. The algorithm derives its speed from the combination of Descartes method with Newton iteration. Our algorithm can also be used to further refine the isolating intervals to an arbitrary small size. The complexity of root refinement is nearly optimal

    New Acceleration of Nearly Optimal Univariate Polynomial Root-findERS

    Full text link
    Univariate polynomial root-finding has been studied for four millennia and is still the subject of intensive research. Hundreds of efficient algorithms for this task have been proposed. Two of them are nearly optimal. The first one, proposed in 1995, relies on recursive factorization of a polynomial, is quite involved, and has never been implemented. The second one, proposed in 2016, relies on subdivision iterations, was implemented in 2018, and promises to be practically competitive, although user's current choice for univariate polynomial root-finding is the package MPSolve, proposed in 2000, revised in 2014, and based on Ehrlich's functional iterations. By proposing and incorporating some novel techniques we significantly accelerate both subdivision and Ehrlich's iterations. Moreover our acceleration of the known subdivision root-finders is dramatic in the case of sparse input polynomials. Our techniques can be of some independent interest for the design and analysis of polynomial root-finders.Comment: 89 pages, 5 figures, 2 table

    Fast real and complex root-finding methods for well-conditioned polynomials

    Get PDF
    Given a polynomial pp of degree dd and a bound Îș\kappa on a condition number of pp, we present the first root-finding algorithms that return all its real and complex roots with a number of bit operations quasi-linear in dlog⁥2(Îș)d \log^2(\kappa). More precisely, several condition numbers can be defined depending on the norm chosen on the coefficients of the polynomial. Let p(x)=∑_k=0da_kxk=∑_k=0d(dk)b_kxkp(x) = \sum\_{k=0}^d a\_k x^k = \sum\_{k=0}^d \sqrt{\binom d k} b\_k x^k. We call the condition number associated with a perturbation of the a_ka\_k the hyperbolic condition number Îș_h\kappa\_h, and the one associated with a perturbation of the b_kb\_k the elliptic condition number Îș_e\kappa\_e. For each of these condition numbers, we present algorithms that find the real and the complex roots of pp in O(dlog⁥2(dÎș) polylog(log⁥(dÎș)))O\left(d\log^2(d\kappa)\ \text{polylog}(\log(d\kappa))\right) bit operations.Our algorithms are well suited for random polynomials since Îș_h\kappa\_h (resp. Îș_e\kappa\_e) is bounded by a polynomial in dd with high probability if the a_ka\_k (resp. the b_kb\_k) are independent, centered Gaussian variables of variance 11

    Symbolic-Numeric Tools for Analytic Combinatorics in Several Variables

    Full text link
    Analytic combinatorics studies the asymptotic behaviour of sequences through the analytic properties of their generating functions. This article provides effective algorithms required for the study of analytic combinatorics in several variables, together with their complexity analyses. Given a multivariate rational function we show how to compute its smooth isolated critical points, with respect to a polynomial map encoding asymptotic behaviour, in complexity singly exponential in the degree of its denominator. We introduce a numerical Kronecker representation for solutions of polynomial systems with rational coefficients and show that it can be used to decide several properties (0 coordinate, equal coordinates, sign conditions for real solutions, and vanishing of a polynomial) in good bit complexity. Among the critical points, those that are minimal---a property governed by inequalities on the moduli of the coordinates---typically determine the dominant asymptotics of the diagonal coefficient sequence. When the Taylor expansion at the origin has all non-negative coefficients (known as the `combinatorial case') and under regularity conditions, we utilize this Kronecker representation to determine probabilistically the minimal critical points in complexity singly exponential in the degree of the denominator, with good control over the exponent in the bit complexity estimate. Generically in the combinatorial case, this allows one to automatically and rigorously determine asymptotics for the diagonal coefficient sequence. Examples obtained with a preliminary implementation show the wide applicability of this approach.Comment: As accepted to proceedings of ISSAC 201
    • 

    corecore