
Computing Real Roots of Real Polynomials

Michael Sagraloff∗ Kurt Mehlhorn∗

March 12, 2015

Abstract

Computing the roots of a univariate polynomial is a fundamental and long-studied
problem of computational algebra with applications in mathematics, engineering, computer
science, and the natural sciences. For isolating as well as for approximating all complex
roots, the best algorithm known is based on an almost optimal method for approximate
polynomial factorization, introduced by Pan in 2002. Pan’s factorization algorithm goes
back to the splitting circle method from Schönhage in 1982. The main drawbacks of Pan’s
method are that it is quite involved1 and that all roots have to be computed at the same
time. For the important special case, where only the real roots have to be computed, much
simpler methods are used in practice; however, they considerably lag behind Pan’s method
with respect to complexity.

In this paper, we resolve this discrepancy by introducing a hybrid of the Descartes
method and Newton iteration, denoted ANewDsc, which is simpler than Pan’s method, but
achieves a run-time comparable to it. Our algorithm computes isolating intervals for the real
roots of any real square-free polynomial, given by an oracle that provides arbitrary good
approximations of the polynomial’s coefficients. ANewDsc can also be used to only isolate
the roots in a given interval and to refine the isolating intervals to an arbitrary small size; it
achieves near optimal complexity for the latter task.

Keywords. root finding, root isolation, root refinement, approximate arithmetic, certified
computation, complexity analysis

1 Introduction

Computing the roots of a univariate polynomial is a fundamental problem in computational
algebra. Many problems from mathematics, engineering, computer science, and the natural
sciences can be reduced to solving a system of polynomial equations, which in turn reduces to
solving a polynomial equation in one variable by means of elimination techniques such as resultants
or Gröbner Bases. Hence, it is not surprising that this problem has been extensively studied and
that numerous approaches have been developed; see [23, 24, 25, 32] for an extensive (historical)
treatment. Finding all roots of a polynomial and the approximate factorization of a polynomial
into linear factors are closely related. The most efficient algorithm for approximate factorization
is due to Pan [30]; it is based on the splitting circle method of Schönhage [41] and considerably
refines it. From an approximate factorization, one can derive arbitrary good approximations of

∗MPI for Informatics, Campus E1 4, 66123 Saarbrücken, Germany. emails: msagralo@mpi-inf.mpg.de and
mehlhorn@mpi-inf.mpg.de. The author ordering deviates from the default alphabetic ordering used in Theoretical
Computer Science, because the first author contributed significantly more to the paper than the second author.

1In Victor Pan’s own words: “Our algorithms are quite involved, and their implementation would require a
non-trivial work, incorporating numerous known implementation techniques and tricks”. In fact, we are not aware
of any implementation of Pan’s method.

1

ar
X

iv
:1

30
8.

40
88

v2
 [

cs
.S

C
]

 1
1

M
ar

 2
01

5

msagralo@mpi-inf.mpg.de
mehlhorn@mpi-inf.mpg.de

all complex roots as well as corresponding isolating disks; e.g. see [12, 26]. The main drawbacks
of Pan’s algorithm are that it is quite involved (see Footnote 1) and that it necessarily computes
all roots, i.e., cannot be used to only isolate the roots in a given region. It has not yet been
implemented. In contrast, simpler approaches, namely Aberth’s, Weierstrass-Durand-Kerner’s and
QR algorithms, found their way into popular packages such as MPSolve [4] or eigensolve [13],
although their excellent empirical behavior has never been entirely verified in theory.

In parallel, there is steady ongoing research on the development of dedicated real roots solvers
that also allow to search for the roots only in a given interval. Several methods (e.g. Sturm
method, Descartes method, continued fraction method, Bolzano method) have been proposed,
and there exist many corresponding implementations in computer algebra systems. With respect
to computational complexity, all of these methods lag considerably behind the splitting circle
approach. In this paper, we resolve this discrepancy by introducing a hybrid of the Descartes method
and Newton iteration, denoted ANewDsc (read approximate-arithmetic-Newton-Descartes). Our
algorithm is simpler than Pan’s algorithm, is already implemented with very promising results
for polynomials with integer coefficients [20], and has a complexity comparable to that of Pan’s
method.

1.1 Algorithm and Results

Before discussing the related work in more detail, we first outline our algorithm and provide the
main results. Given a square-free univariate polynomial P with real coefficients, the goal is to
compute disjoint intervals on the real line such that all real roots are contained in the union of
the intervals and each interval contains exactly one real root. The Descartes or Vincent-Collins-
Akritas2 method is a simple and popular algorithm for real root isolation. It starts with an
open interval guaranteed to contain all real roots and repeatedly subdivides the interval into two
open intervals and a split point. The split point is a root if and only if the polynomial evaluates
to zero at the split point. For any interval I, Descartes’ rule of signs (see Section 2.3) allows
one to compute an integer vI , which bounds the number mI of real roots in I and is equal to
mI , if vI ≤ 1. The method discards intervals I with vI = 0, outputs intervals I with vI = 1 as
isolating intervals for the unique real root contained in them, and splits intervals I with vI ≥ 2
further. The procedure is guaranteed to terminate for square-free polynomials, as vI = 0, if the
circumcircle of I (= the one-circle region of I) contains no root of p, and vI = 1, if the union of
the circumcircles of the two equilateral triangles with side I (the two-circle region of I) contains
exactly one root of I, see Figure 1 on page 11.

The advantages of the Descartes method are its simplicity and the fact that it applies to
polynomials with real coefficients. The latter has to be taken with a grain of salt. The method
uses the four basic arithmetic operations (requiring only divisions by two) and the sign-test for
numbers in the field of coefficients. In particular, if the input polynomial has integer or rational
coefficients, the computation stays within the rational numbers. Signs of rational numbers are
readily determined. In the presence of non-rational coefficients, the sign-test becomes problematic.

The disadvantages of the Descartes method are its inefficiency when roots are clustered and its
need for exact arithmetic. When roots are clustered, there can be many subsequent subdivision
steps, say splitting I into I ′ and I ′′, where min(vI′ , vI′′) = 0 and max(vI′ , vI′′) = vI . Such
subdivision steps exhibit only linear convergence to the cluster of roots as an interval I is split
into equally sized intervals. The need for exact arithmetic stems from the fact that it is crucial
for the correctness of the algorithm that sign-tests are carried out exactly. It is known how to
overcome each one of the two weaknesses separately; however, it is not known how to overcome
them simultaneously. Our main result achieves this. That is, we present an algorithm ANewDsc

2Descartes did not formulate an algorithm for isolating the real roots of a polynomial but (only) a method
for bounding the number of positive real roots of a univariate polynomial (Descartes’ rule of signs). Collins and
Akritas [7] based on ideas going back to Vincent formulated a bisection algorithm based on Descartes’ rule of signs.

2

that overcomes both shortcomings at the same time. Our algorithm applies to real polynomials
given through coefficient oracles3, and our algorithm works well in the presence of clustered roots.

We are now ready for a high-level description of the algorithm. The correctness of the
Descartes method rests on exact sign computations; however, the exact computation of the sign
of a number does not necessarily require the exact computation of the number. The Descartes
algorithm uses the sign-test in two situations: It needs to determine whether the polynomial
evaluates to zero at the split point, and it determines vI as the number of sign changes in the
coefficient sequence of polynomials PI , where PI is a polynomial determined by the interval I
and the input polynomial P . We borrow from [10] the idea of carefully choosing split points so
as to guarantee that P is relatively large at split points. Our realization of the idea is, however,
quite different and is based on a fast method for approximately evaluating a polynomial at many
points [19, 21, 22, 34, 44]. We describe the details in Section 2.2. The choice of a split point where
the polynomial has a large absolute value has a nice consequence for the sign change computation.
Namely, the cases vI = 0, vI = 1, and vI > 1 can be distinguished with approximate arithmetic.
We give more details in Section 2.4.

The recursion tree of the Descartes method may have size Ω(nτ). However, there are only O(n)
nodes where both children are subdivided further. This holds because the sum of the number of
sign changes at the children of a node is at most the number of sign changes at the node. In other
words, large subdivision trees must have long chains of nodes, where the interval that is split off
is immediately discarded. Long chains are an indication of clustered roots. We borrow from [36]
the idea of traversing such chains more efficiently by combining Descartes’ rule of signs, Newton
iteration, and a subdivision strategy similar to Abbott’s quadratic interval refinement (QIR for
short) method [1]. As a consequence, quadratic convergence towards the real roots instead of the
linear convergence of pure bisection is achieved in most iterations. Again, our realization of the
idea is quite different. For example, Newton iteration towards a cluster of k roots needs to know
k (see equation 22). The algorithm in [36] uses exact arithmetic and, therefore, can determine
the exact number vI of sign changes in the coefficient sequence of polynomials PI ; vI is used
as an estimate for the size of a cluster contained in interval I. We cannot compute vI (in the
case vI > 1, we only know this fact and have no further knowledge about the value of vI) and
hence have to estimate the size of a cluster differently. We tentatively perform Newton steps from
both endpoints of the interval and determine a k such that both attempts essentially lead to the
same iterate. Also, we use a variant of quadratic interval refinement because it interpolates nicely
between linear and quadratic convergence. Details are given in Section 3. This completes the
high-level description of the algorithm.

A variant of our algorithm using randomization instead of multi-point evaluation for the
choice of split point has already been implemented for polynomials with integer coefficients [20].
First experiments are quite promising. The implementation seems to be competitive with the
fastest existing real root solvers for all instances and much superior for some hard instances with
clustered roots, e.g., Mignotte polynomials.4

The worst-case bit complexity of our algorithm essentially matches the bit complexity of the
algorithms that are based on Pan’s algorithm. More specifically, we prove the following theorems:

Theorem 1. Let P (x) = Pnx
n + . . . + P1x

1 + P0 ∈ R[x] be a real, square-free polynomial of
degree n with5 1/4 ≤ Pn ≤ 1. The algorithm ANewDsc determines isolating intervals for all

3A coefficient oracle provides arbitrarily good approximations of the coefficients.
4Mignotte [27][Section 4.6] considers the polynomial xn − 2(ax− 1)2, where n ≥ 3 and a ≥ 10 is an integer.

He shows that the polynomial has two real roots in the interval (1/a− h, 1/a+ h), where h = a−(n+2)/2.
5If P (x) is arbitrary, it suffices to determine an integer t with 2t/4 ≤ Pn ≤ 2t and to consider 2−tP (x).

3

real roots of P with a number of bit operations bounded by6

Õ(n · (n2 + n log Mea(P) +

n∑
i=1

logM(P ′(zi)
−1))) (1)

= Õ(n(n2 + n log Mea(P) + logM(Disc(P)−1))).

The coefficients of P have to be approximated with quality7

Õ(n+ τP + max
i

(n logM(zi) + logM(P ′(zi)
−1))).

Here M(x) := max(1, |x|), z1 to zn are the roots of P , Mea(P) := |Pn| ·
∏n
i=1M(|zi|) denotes

the Mahler Measure of P , Disc(P) := P 2n−2
n

∏
1≤i<j≤n(zj − zi)

2 is the discriminant of P ,
τP := M(|log(maxi |Pi|)|), and P ′ is the derivative of P .

For polynomials with integer coefficients, the bound can be stated more simply.

Theorem 2. For a square-free polynomial P ∈ Z[x] with integer coefficients of absolute value
2τ or less, the algorithm ANewDsc computes isolating intervals for all real roots of P with
Õ(n3 + n2τ) bit operations. If P has only k non-vanishing coefficients, the bound improves to
Õ(n2(k + τ)).

For general real polynomials, the bit complexity of the algorithm ANewDsc matches the bit
complexity of the best algorithm known ([26]). For polynomials with integer coefficients, the bit
complexity of the best algorithm known ([12, Theorem 3.1]) is Õ(n2τ), however, for the price of
using Ω(n2τ) bit operations for every input.8 Both algorithms are based on Pan’s approximate
factorization algorithm [30], which is quite complex, and always compute all complex roots.

Our algorithm is simpler and has the additional advantage that it can be used to isolate the
real roots in a given interval instead of isolating all roots. Moreover, the complexities stated in the
theorems above are worst-case complexities, and we expect a better behavior for many instances.
We have some theoretical evidence for this statement. For sparse integer polynomials with only
k non-vanishing coefficients, the complexity bound reduces from Õ(n2(n+ τ)) to Õ(n2(k + τ))
(Theorem 2). Also, if we restrict the search for roots in an interval I0, then only the roots
contained in the one-circle region ∆(I0) of I0 have to be considered in the complexity bound
(1) in Theorem 1. More precisely, the first summand n3 can be replaced by n2 ·m, where m
denotes the number of roots contained in ∆(I0), and the last summand

∑n
i=1 logM(P ′(zi)

−1)
can be replaced by

∑
i:zi∈∆(I0) logM(P ′(zi)

−1). We can also bound the size of the subdivision
tree in terms of the number of sign changes in the coefficient sequence of the input polynomial
(Theorem 27). In particular, if P is a sparse integer polynomial, e.g., a Mignotte polynomial, with
only (log(nτ))O(1) non-vanishing coefficients, our algorithm generates a tree of size (log(nτ))O(1).
Our algorithm generates a tree of size (log(nτ))O(1), whereas bisection methods, such as the
classical Descartes method, generate a tree of size Ω(nτ), and the continued fraction method [6]
generates a tree of size Ω(n).

A modification of our algorithm can be used to refine roots once they are isolated.

6The Õ-notation suppresses polylogarithmic factors, i.e., Õ(T) = O(T (log T)k), where k is any fixed integer.
7Let L ≥ 1 be an integer and let z be real. We call z̃ = s · 2−(L+1) with s ∈ Z an approximation of z with

quality L if |z − z̃| ≤ 2−L.
8More precisely, Pan’s algorithm uses O(n(log2 n)(log2 n + log b)) arithmetic operations carried out with

a precision b of size Ω(n(τ + logn)), and thus O(n(log2 n + log τ)µ(n(τ + logn)) bit operations, where µ(b)
denotes the cost for multiplying two b-bit integers. A straight forward, but tedious, calculation yields the bound
O((n3 +n2τ)(log6 n)(log2(nτ))) for the bit complexity of our method, when ignoring log log-factors. This is weaker
than Pan’s method, however, we have neither tried to optimize our algorithm in this direction nor to consider
possible amortization effects in the analysis when considering log-factors.

4

Theorem 3. Let P = Pnx
n+. . .+P0 ∈ R[x] be a real, square-free polynomial with 1/4 ≤ |Pn| ≤ 1,

and let κ be a positive integer. Isolating intervals of size less than 2−κ for all real roots can be
computed with

Õ(n · (κ+ n2 + n log Mea(P) + logM(Disc(P)−1)))

bit operations using coefficient approximations of quality

Õ(κ+ n+ τP + max
i

(n logM(zi) + logM(P ′(zi)
−1))).

For a square-free polynomial P with integer coefficients of size less than 2τ , isolating intervals of
size less than 2−κ for all real roots can be computed with Õ(n(n2 + nτ + κ)) bit operations.

The complexity of the root refinement algorithm is Õ(nκ) for large κ. This is optimal up to
logarithmic factors, as the size of the output is Ω(nκ). The complexity matches the complexity
shown in [26], and when considered as a function in κ only, it also matches the complexity as
shown in [18] and as sketched in [31].

1.2 Related Work

Isolating the roots of a polynomial is a fundamental and well-studied problem. One is either
interested in isolating all roots, or all real roots, or all roots in a certain subset of the complex
plane. A related problem is the approximate factorization of a polynomial, that is, to find z̃1 to
z̃n such that ‖P (x)−Pn

∏
1≤i≤n(x− z̃i)‖ is small. Given the number of distinct complex roots of

a polynomial P , one can derive isolating disks for all roots from a sufficiently good approximate
factorization of P ; see [26]. In particular, this approach applies to polynomials that are known to
be square-free.

Many algorithms for approximate factorization and root isolation are known, see [23, 24, 25, 32]
for surveys. The algorithms can be roughly split into two groups: There are iterative methods for
simultaneously approximating all roots (or a single root if a sufficiently good approximation is
already known); there are subdivision methods that start with a region containing all the roots
of interest, subdivide this region according to certain rules, and use inclusion- and exclusion-
predicates to certify that a region contains exactly one root or no root. Prominent examples of
the former group are the Aberth-Ehrlich method (used for MPSolve [4]) and the Weierstrass-
Durand-Kerner method. These algorithms work well in practice and are widely used. However, a
complexity analysis and global convergence proof is missing. Prominent examples of the second
group are the Descartes method [7, 9, 10, 35], the Bolzano method [5, 39], the Sturm method [8],
the continued fraction method [2, 42, 43], and the splitting circle method [41, 30].

The splitting circle method was introduced by Schönhage [41] and later considerably refined by
Pan [30]. Pan’s algorithm computes an approximate factorization and can also be used to isolate
all complex roots of a polynomial. For integer polynomials, it isolates all roots with Õ(n2τ) bit
operations. It also serves as the key routine in a recent algorithm [26] for complex root isolation,
which achieves a worst case complexity similar to the one stated in our main theorem. There
exists a “proof of concept” implementation of the splitting circle method in the computer algebra
system Pari/GP [14], whereas we are not aware of any implementation of Pan’s method itself.

The Descartes, Sturm, and continued fraction methods isolate only the real roots. They are
popular for their simplicity, ease of implementation, and practical efficiency. The papers [15, 17, 35]
report about implementations and experimental comparisons. The price for the simplicity is a
considerably larger worst-case complexity. We concentrate on the Descartes method.

The standard Descartes method has a complexity of Õ(n4τ2) for isolating the real roots of
an integer polynomial of degree n with coefficients bounded by 2τ in absolute value, see [11].
The size of the recursion tree is O(n(τ + log n)), and Õ(n) arithmetic operations on numbers of

5

bitsize O(n2(τ + log n)) need to be performed at each node. For τ = Ω(log n), these bounds are
tight, that is, there are examples where the recursion tree has size Ω(nτ) and the numbers to be
handled grow to integers of length Ω(n2τ) bits.

Johnson and Krandick [16] and Rouillier and Zimmermann [35] suggested the use of approxi-
mate arithmetic to speed up the Descartes method. They fall back on exact arithmetic when
sign computations with approximate arithmetic are not conclusive. Eigenwillig et al. [10] were
the first to describe a Descartes method that has no need for exact arithmetic. It works for
polynomials with real coefficients given through coefficient oracles and isolates the real roots of a
square-free real polynomial P (x) = Pnx

n + . . .+ P0 with root separation9 ρ, coefficients |Pn| ≥ 1,
and |Pi| ≤ 2τ , with an expected cost of O(n4(log(1/ρ)+τ)2) bit operations. For polynomials with
integer coefficients, it constitutes no improvement. Sagraloff [38] gave a variant of the Descartes
method that, when applied to integer polynomials, uses approximate arithmetic with a working
precision of only Õ(nτ) bits. This leads to a bit complexity of Õ(n3τ2); the recursion tree has
size O(n(τ + log n)), there are Õ(n) arithmetic operations per node, and arithmetic on numbers
of length Õ(nτ) bits is required.

As already mentioned before, the recursion tree of the Descartes method may have size Ω(nτ),
and there are only O(n) nodes where both children are subdivided further. Thus, large subdivision
trees must have long chains of nodes, where one child is immediately discarded. Sagraloff [36]
showed how to traverse such chains more efficiently using a hybrid of bisection and Newton
iteration. His method reduces the size of the recursion tree to O(n log(nτ)), which is optimal
up to logarithmic factors.10 It only applies to polynomials with integral coefficients, uses exact
rational arithmetic, and achieves a bit complexity of Õ(n3τ). In essence, the size of the recursion
tree is O(n log(nτ)), there are Õ(n) arithmetic operations per node, and arithmetic is on numbers
of amortized length Õ(nτ) bits. Other authors have also shown how to use Newton iteration for
faster convergence after collecting enough information in a slower initial phase. For instance,
Renegar [33] combines the Schur-Cohn test with Newton iteration. His algorithm makes crucial
use of the fact that each (sufficiently small) cluster consisting of k roots of a polynomial P induces
the existence of a single nearby ordinary root of the (k − 1)-th derivative P (k−1), and thus, one
can apply Newton iteration to P (k−1) in order to efficiently compute a good approximation of
this root (and the cluster) if the multiplicity k of the cluster is known. Several methods have been
proposed to compute k, such as approximating the winding number around the perimeter of a
disk by discretization of the contour, numerically tracking a homotopy path near a cluster, or the
usage of Rouché’s and Pellet’s Theorem. For a more detailed discussion and more references, we
refer the reader to Yakoubsohn’s paper [45]. Compared to these methods, our approach is more
light-weight in the sense that we consider a trial and error approach that yields less information
in the intermediate steps without making sacrifices with respect to the speed of convergence.
More precisely, we use a variant of Newton iteration for multiple roots in order to guess the
multiplicity of a cluster (provided that such a cluster exists), however, we actually never verify
our guess. Nevertheless, our analysis shows that, if there exists a well-separated cluster of roots,
then our method yields the correct multiplicity. From the so obtained ”multiplicity”, we then
compute a better approximation of the cluster (again assuming the existence of a cluster) and
finally aim to verify via Descartes’ Rule of Signs that we have not missed any root. If the latter
cannot be verified, we fall back to bisection.

The bit complexity of our new algorithm is Õ(n3 + n2τ) for integer polynomials. Similar
as in [36], the size of the recursion tree is O(n log(nτ)) due to the combination of bisection
and Newton steps. The number of arithmetic operations per node is Õ(n) and arithmetic is
on numbers of amortized length Õ(n + τ) bits (instead of Õ(nτ) as in [36]) due to the use of
approximate multipoint evaluation and approximate Taylor shift.

9The root separation of a polynomial is the minimal distance between two roots
10As there might be n real roots, n is a trivial lower bound on the worst-case tree size.

6

Root refinement is the process of computing better approximations once the roots are isolated.
In [18, 22, 19, 26, 31], algorithms have been proposed which scale like Õ(nκ) for large κ. The
former two algorithms are based on the splitting circle approach and compute approximations of
all complex roots. The latter two solutions are dedicated to approximate only the real roots. They
combine a fast convergence method (i.e., the secant method and Newton iteration, respectively)
with approximate arithmetic and efficient multipoint evaluation; however, there are details missing
in [31] when using multipoint evaluation. In order to achieve complexity bounds comparable to
the one stated in Theorem 3, the methods from [18, 31] need as input isolating intervals whose
size is comparable to the separation of the corresponding root, that is, the roots must be ”well
isolated”. This is typically achieved by using a fast method, such as Pan’s method, for complex
root isolation first. Our algorithm does not need such a preprocessing step.

Very recent work [37] on isolating the real roots of a sparse integer polynomial P ∈ Z[x] makes
crucial use of a slight modification of the subroutine Newton-Test as proposed in Section 3.2.
There, it is used to refine an isolating interval I for a root of P in a number of arithmetic
operations that is nearly linear in the number of roots that are close to I and polynomial in
m · log(n · τP), where n := degP and m denotes the number of non-vanishing coefficients of P .
This eventually yields the first real root isolation algorithm that needs only a number of arithmetic
operations over the rationals that is polynomial in the input size of the sparse representation
of P . Furthermore, for very sparse polynomials (i.e. m = O(logc(nτP)) with c a constant), the
algorithm from [37] uses only Õ(nτP) bit operations to isolate all real roots of P and is thus
near-optimal.

1.3 Structure of Paper and Reading Guide

We introduce our new algorithm in Section 3 and analyze its complexity in Section 4. We first
derive a bound on the size of the subdivision tree (Section 4.1) and then a bound on the bit
complexity (Section 4.2). Section 5 discusses root refinement. Section 2 provides background
material, which we recommend to go over quickly in a first reading of the paper. We provide
many references to Section 2 in Sections 3 and 4 so that the reader can pick up definitions and
theorems as needed.

2 The Basics

2.1 Setting and Basic Definitions

We consider a square-free polynomial

P (x) = Pnx
n + . . .+ P0 ∈ R[x], where n ≥ 2 and 1/4 ≤ Pn ≤ 1. (2)

We fix the following notations.

Definition 4.
(1) M(z) := max(1, |z|) for all z ∈ C.
(2) ‖P‖ := ‖P‖1 := |P0|+ . . .+ |Pn| denotes the 1-norm of P , and ‖P‖∞ := maxi |Pi| denotes

the infinity-norm of P .
(3) τP := M(log ‖P‖∞).
(4) z1, . . . , zn ∈ C are the complex roots of P .
(5) For each root zi, we define the separation of zi as the value σi := σ(zi, P) := minj∈{1,...,n}\i |zi−

zj |. The separation of P is defined as σP := mini σ(zi, P).
(6) ΓP := M(log maxi |zi|) denotes the logarithmic root bound of P , and
(7) Mea(P) := |Pn| ·

∏n
i=1M(|zi|) denotes the Mahler Measure of P .

7

(8) For an interval I = (a, b), m(I) := a+b
2 denotes the midpoint and w(I) := b− a the width of

I. The open disk in complex space with center m(I) and radius w(I)
2 is denoted by ∆(I). We

call ∆(I) the one-circle region of I.11

(9) M(I) denotes the set of roots of P which are contained in ∆(I).
(10) A dyadic fraction is any rational of the form s · 2−` with s ∈ Z and ` ∈ Z≥0.

We assume the existence of an oracle that provides arbitrary good approximations of the
polynomial P . Let L ≥ 1 be an integer and let z be a real. We call z̃ = s · 2−(L+1) with s ∈ Z an
(absolute) L-approximation of z or an approximation of z with quality L if |z − z̃| ≤ 2−L. We call
a polynomial P̃ = P̃nx

n + . . .+ P̃0 an (absolute) L-approximation of P or an approximation of
quality L if every coefficient of P̃ is an approximation of quality L of the corresponding coefficient
of P . We assume that we can obtain such an approximation P̃ at O(n(L+ τP)) cost. This is the
cost of reading the coefficients of P̃ .

We have τP ≤M(log(2n ·Mea(P))) ≤M(n+ nΓP) = n(1 + ΓP) ≤ 2nΓP . According to [26,
Theorem 1] (or [38, Section 6.1]), we can compute an integer approximation Γ̃P of ΓP with

ΓP + 1 ≤ Γ̃P ≤ ΓP + 8 log n+ 1 (3)

with Õ(n2ΓP) many bit operations. From Γ̃P , we can then immediately derive a Γ = 2γ , with
γ := dlog Γ̃P e ∈ N≥1, such that

ΓP + 1 ≤ Γ̃P ≤ Γ ≤ 2 · Γ̃P ≤ 2 · (ΓP + 8 log n+ 1). (4)

Thus, 2Γ = 22γ is an upper bound for the modulus of all roots (in fact, we have 2Γ ≥ maxi |zi|+ 1
for all i = 1, . . . , n), and Γ = O(Γp + log n).

2.2 Approximate Polynomial Evaluation

We introduce the notions multipoint (Definition 9) and admissible point (Definition 7). A point
x∗ in a set X is admissible if |P (x∗)| ≥ 1

4 · |P (x)| for all x ∈ X. We show how to efficiently
compute an admissible point in a multipoint (Corollary 11) and derive a lower bound on the
value of P at such a point. Corollary 11 is our main tool for choosing subdivision points.

Theorem 5. Let P be a polynomial as defined in (2), x0 be a real point, and L be a positive
integer.
(a) The algorithm stated in the proof of part (a) computes an approximation ỹ0 of y0 := P (x0)

with |y0 − ỹ0| ≤ 2−L with
Õ(n(τP + n logM(x0) + L)).

bit operations using approximations of the coefficients of P and the point x0 of quality
O(τP + n logM(x0) + L+ log n).

(b) Suppose y0 6= 0. The algorithm stated in the proof of part (b) computes an integer t with
2t−1 ≤ |y0| ≤ 2t+1 with

Õ(n(τP + n logM(x0) + logM(y−1
0)))

bit operations. The computation uses fixed-precision arithmetic with a precision of O(τP +
n logM(x0) +M(y−1

0) + log n) bits.

Proof. Part (a) follows directly from [18, Lemma 3], where it has been shown that we can compute
a desired approximation ỹ0 via the Horner scheme and fixed-precision interval arithmetic, with a
precision of O(τP + n logM(x0) + L+ log n) bits.

11The choice of name will become clear when we discuss Descartes’ rule of signs in Section 2.3; see also Figure 1.

8

For (b), we consider L = 1, 2, 4, 8, . . . and compute absolute L-bit approximations ỹ0 of y0 until
we obtain an approximation ỹ0 with |ỹ0| ≥ 22−L. Since ỹ0 is an absolute L-bit approximation
of y0, |ỹ0 − y0| ≤ 2−L ≤ |ỹ0| /4. Since ỹ0 is a dyadic fraction, we can determine t ∈ Z with
|t− log |ỹ0|| ≤ 1/2. Then, 2t−1 ≤ (3/4)2−1/22t ≤ (3/4) |ỹ0| ≤ |y0| ≤ (5/4) |ỹ0| ≤ (5/4)21/22t ≤
2t+1. Obviously, we succeed if L ≥ 2 logM(y−1

0), and since we double L in each step, we need
at most O(log logM(y−1

0)) many steps. Up to logarithmic factors, the total cost is dominated
by the cost of the last iteration, which is bounded by Õ(n(τP + n logM(x0) + logM(y−1

0))) bit
operations according to Part (a).

It has been shown [19, 21, 22, 34, 44] that the cost for approximately evaluating a polynomial
of degree n at N = O(n) points is is of the same order as the cost of approximately evaluating it
at a single point.

Theorem 6 ([19, 21, 22]). Let P be a polynomial as in (2), let x1, . . . , xN be real points with
N = O(n), and let L be a positive integer. The algorithm in [19, 21, 22] computes approximations
ỹi of yi := P (xi) with |yi − ỹi| ≤ 2−L, i = 1, . . . , N , with

Õ(n(n+ τP + n logM(max
i
|xi|) + L))

bit operations using approximations of the coefficients of P as well as the points xi of quality
O(τP + n logM(maxi |xi|) + L+ n log n).

We frequently need to select a point xi from a given set X = {x1, . . . , xN} of points at which
|P (xi)| is close to maximal.

Definition 7. Let X := {x1, . . . , xN} be a set of N real points. We call a point x∗ ∈ X admissible
with respect to X (or just admissible if there is no ambiguity) if |P (x∗)| ≥ 1

4 ·maxi |P (xi)|.

Fast approximate multipoint evaluation allows us to find an admissible point efficiently.

Algorithm: Admissible Point
Input: A polynomial P (x) as in (2), and a set X = {x1, . . . , xN} of points.

Guarantee: λ := maxi |P (xi)| > 0.

Output: An admissible point x∗ ∈ X and an integer t with 2t−1 ≤ λ ≤ 2t+1.

(1) L := 1/2.

(2) repeat

(2.1) L := 2 · L
(2.2) Compute approximations λ̃i of quality L for the values P (xi) for 1 ≤ i ≤ N .

(2.3) λ̃ := maxi |λ̃i|.

until λ̃ ≤ 22−L.

(3) Let i0 be an index with λ̃ := |λ̃i0 | and t be an integer with |t− log |λ̃|| ≤ 1
2 .

(4) return xi0 and t.

An argument similar to the one as in the proof of Part (b) in Lemma 5 now yields the following
result:

9

Lemma 8. Let X := {x1, . . . , xN} be a set of N = O(n) real points. The algorithm Admissible
Point applied to X selects an admissible point x∗ ∈ X and an integer t with

2t−1 ≤ |P (x∗)| ≤ λ := max
i
|P (xi)| ≤ 2t+1

using Õ(n(n+ τP + n logM(maxi |xi|) + logM(λ−1))) bit operations. It requires approximations
of the coefficients of P and the points xi of quality O(n+ τP + n logM(maxi |xi|) + logM(λ−1)).

We will mainly apply the Lemma in the situation where X is a set of N = 2 · dn/2e + 1
equidistant points. In this situation, we can prove a lower bound on λ in the Lemma above in
terms of the separations of the roots zi, the absolute values of the derivatives P ′(zi), and the
number of roots contained in a neighborhood of the points X.

Definition 9. For a real point m and a real positive value ε, the (m, ε)-multipoint m[ε] is defined
as

m[ε] := {mi := m+ (i− dn/2e) · ε ; i = 0, . . . , 2 · dn/2e}. (5)

Lemma 10. Let m be a real point, let ε be a real positive value, and let K be a positive real with
K ≥ 2 · dn/2e. If the disk ∆ := ∆K·ε(m) with radius K · ε and center m contains at least two
roots of P , then each admissible point m∗ ∈ m[ε] satisfies

|P (m∗)| > 2−4n−1 ·K−µ(∆)−1 · σ(zi, P) · |P ′(zi)| for all roots zi ∈ ∆,

where µ(∆) denotes the number of roots of P contained in ∆.

Proof. Since the number of points mi ∈ m[ε] is larger than the number of roots of P and since
their pairwise distances are ε, there exists a point mi0 ∈ m[ε] whose distance to all roots of P is
at least ε/2. We will derive a lower bound on |P (mi0)|. Let zi be any root in ∆. For any different
root zj ∈ ∆, we have |zi − zj |/|mi0 − zj | < 2Kε/(ε/2) = 4K, and, for any root zj /∈ ∆, we have
|zi − zj |/|mi0 − zj | ≤ 2K/(K − dn/2e) ≤ 4. Hence, it follows that

|P (mi0)| = |Pn| · |mi0 − zi| ·
∏
j 6=i

|mi0 − zj | > |Pn| ·
ε

2
· (4K)−µ(∆) · 4−n+µ(∆) ·

∏
j 6=i

|zi − zj |

= |P ′(zi)| ·
ε

2n
· 4−n ·K−µ(∆) = 2−(logn+1)−2n · ε ·K−µ(∆) · |P ′(zi)|

> 2−2n−logn−2 ·K−µ(∆)−1 · σ(zi, P) · |P ′(zi)|,

where we used σ(zi, P) < 2Kε. Hence, for each admissible point m∗ ∈ m[ε], it follows that

|P (m∗)| ≥ |P (mi0)|
4 ≥ 2−4n−1 ·K−µ(∆)−1 · σ(zi, P) · |P ′(zi)|.

We summarize the discussion of this section in the following corollary.

Corollary 11. Let m be a real point, let ε be a real positive value, and let K be a positive real
with K ≥ 2 · dn/2e, and assume that the disk ∆ := ∆K·ε(m) contains at least two roots of P .
Then, for each admissible point m∗ ∈ m[ε],

|P (m∗)| > 2−4n−1 ·K−µ(∆)−1 · σ(zi, P) · |P ′(zi)| for all roots zi ∈ ∆. (6)

The algorithm Admissible Point applied to m[ε] selects an admissible point from the set with

Õ(n(µ(∆) · logK + n+ τP + n logM(|m|+ nε) + logM(max
zi∈∆

(σ(zi, P) · |P ′(zi)|))). (7)

bit operations. It requires approximations of the coefficients of P and the points mi of quality

O(µ(∆) · logK + n+ τP + n logM(|m|+ nε) + logM(max
zi∈∆

(σ(zi, P) · |P ′(zi)|)).

10

p
k+2

p
n+2-k

Ln-k

A k

M

2p
k+2

a b

C k

C k

p
3

a b

C 1

C 1

C 0= C 0

Figure 1: For any k, 0 ≤ k ≤ n, the Obreshkoff disks Ck and Ck for I = (a, b) have the endpoints
of I on their boundaries; their centers see the line segment (a, b) under the angle 2π

k+2 . The

Obreshkoff lens Lk is the interior of Ck ∩ Ck, and the Obreshkoff area Ak is the interior of
Ck ∪ Ck. Any point (except a and b) on the boundary of Ak sees I under the angle π

k+2 , and
any point (except a and b) on the boundary of Lk sees I under the angle π − π

k+2 . We have
Ln ⊆ . . . ⊆ L1 ⊆ L0 and A0 ⊆ A1 ⊆ . . . ⊆ An. The cases k = 0 and k = 1 are of special interest:
The circles C0 and C0 coincide. They have their centers at the midpoint of I. The circles C1

and C1 are the circumcircles of the two equilateral triangles having I as one of their edges. We
call A0 = ∆(I) and A1 the one-circle and the two-circle region for I, respectively.

Corollary 11 is a key ingredient of our root isolation algorithm. We will appeal to it whenever
we have to choose a subdivision point. Assume, in an ideal world with real arithmetic at unit
cost, we choose a subdivision point m. The polynomial P may take a very small value at m,
and this would lead to a high bit complexity. Instead of choosing m as the subdivision point, we
choose a nearby admissible point m∗ ∈ m[ε] and are guaranteed that |P (m∗)| has at least the
value stated in (6). The fact that |P | is reasonably large at m∗ will play a crucial role in the
analysis of our algorithm, cf. Theorem 31.

2.3 Descartes’ Rule of Signs in Monomial and in Bernstein Basis

This section provides a brief review of Descartes’ rule of signs. We remark that most of what
follows in this section has already been presented (in more detail) elsewhere (e.g. in [9, 10, 36]);
however, for the sake of a self-contained representation, we have decided to reiterate the most
important results which are needed for our algorithm and its analysis.

In order to estimate the number mI of roots of P contained in an interval I = (a, b) ⊆ I =

(−2Γ, 2Γ), we use Descartes’ rule of signs: For a polynomial F (x) =
∑N
i=0 fix

i ∈ R[x], the number
m of positive real roots of F is bounded by the number v of sign variations12 in its coefficient
sequence (f0, . . . , fN) and, in addition, v ≡ m mod 2. We can apply this rule to the polynomial
P and the interval I by considering a Möbius transformation x 7→ ax+b

x+1 that maps (0,+∞)
one-to-one onto I. Namely, let

PI(x) :=

n∑
i=0

pI,i · xi := (x+ 1)n · P
(
ax+ b

x+ 1

)
, (8)

and let vI := var(P, I) := var(pI,0, . . . , pI,n) be defined as the number of sign variations in the

12Zero entries are not considered. For instance, var(−1, 0, 0, 2, 0,−1) = var(−1, 2,−1) = 2.

11

coefficient sequence (pI,0, . . . , pI,n) of PI . Then, vI is an upper bound for mI (i.e. vI ≥ mI) and
vI has the same parity as mI (i.e. vI ≡ mI mod 2). Notice that the latter two properties imply
that vI = mI if vI ≤ 1.

The following theorem states that the number vI is closely related to the number of roots
located in specific neighborhoods of the interval I.

Theorem 12 ([28, 29]). Let I = (a, b) be an open interval and vI = var(P, I). If the Obreshkoff
lens Ln−k (see Figure 1 for the definition of Ln−k) contains at least k roots (counted with
multiplicity) of P , then vI ≥ k. If the Obreshkoff area Ak contains no more than k roots (counted
with multiplicity) of P , then vI ≤ k. In particular,

of roots of P in Ln ≤ vI = var(P, I) ≤ # of roots of P in An.

We remark that the special cases k = 0 and k = 1 appear as the one-circle and the two-circle
theorems in the literature (e.g. [3, 9]). Theorem 12 implies that if the one-circle region A0 = ∆(I)
of I contains a root zi with separation σ(zi, P) > 2w(I) = 2(b− a), then this root must be real
and vI = 1. Namely, the condition on σ(zi, P) guarantees that the two-circle region A1 contains
zi but no other root of P . If the one-circle region contains no root, then vI = 0. Hence, it
follows that each interval I of width w(I) < σP /2 yields vI = 0 or vI = 1. In addition, we state
the variation diminishing property of the function var(P, I); e.g., see [9, Corollary 2.27] for a
self-contained proof:

Theorem 13 ([40]). Let I be an interval and I1 and I2 be two disjoint subintervals of I. Then,

var(P, I1) + var(P, I2) ≤ var(P, I).

In addition to the above formulation of Descartes’ rule of signs in the monomial basis, we
provide corresponding results for the representation of P (x) in terms of the Bernstein basis
Bn0 , . . . , B

n
n with respect to I = (a, b), where

Bni (x) := Bni [a, b](x) :=

(
n

i

)
(x− a)i(b− x)n−i

(b− a)n
, 0 ≤ i ≤ n. (9)

If P (x) =
∑n
i=0 biB

n
i [a, b](x), we call B = (b0, . . . , bn) the Bernstein representation of P with

respect to I. For the first and the last coefficient, we have b0 = P (a) and bn = P (b). The
following Lemma provides a direct correspondence between the coefficients of the polynomial PI
from (8) and the entries of B. For a self-contained proof, we refer to [9].

Lemma 14. Let I = (a, b) be an interval, P (x) =
∑n
i=0 biB

n
i [a, b](x) be the Bernstein represen-

tation of P with respect to I, and PI(x) =
∑n
i=0 pI,i · xi as in (8). It holds that

pI,i = bn−i ·
(
n

i

)
for all i = 0, . . . , n. (10)

In particular, vI coincides with the number of sign variations in the sequence (b0, . . . , bn).

In essence, the above lemma states that, when using Descartes’ Rule of Signs, it makes no
difference whether we consider the Bernstein basis representation of P with respect to I or the
polynomial PI from (8). This will turn out to be useful in the next section, where we review
results from [10] which allow us to treat the cases vI = 0 and vI = 1 by using approximate
arithmetic.

12

2.4 Descartes’ Rule of Signs with Approximate Arithmetic

We introduce the 0-Test and 1-Test for intervals I with the following properties.

(1) If var(P, I) = 0 (var(P, I) = 1), then the 0-Test (1-Test) for I succeeds.
(2) If the 0-Test (1-Test) for I succeeds, I contains no (exactly one) root of P .
(3) The 0-Test and the 1-Test for I can be carried out efficiently with approximate arithmetic,

see Corollaries 18 and 21.

2.4.1 The case var(P, I) = 0

Consider the following Lemma, which follows directly from [10, Lemma 5] and its proof:

Lemma 15. Let P (x) =
∑n
i=0 biB

n
i [a, b](x) be the Bernstein representation of P with respect to

the interval I = (a, b), and let m be a subdivision point contained in [m(I)− w(I)
4 ,m(I) + w(I)

4].
The Bernstein representations of P with respect to I ′ = (a,m) and I ′′ = (m, b) are given
by P (x) =

∑n
i=0 b

′
iB

n
i [a,m](x) and P (x) =

∑n
i=0 b

′′
i B

n
i [m, b](x), respectively. Suppose that

var(P, I) = 0. Then, var(P, I ′) = var(P, I ′′) = 0, and

|b′i|, |b′′i | > min(|P (a)|, |P (b)|) · 4−(n+1) for all i = 0, . . . , n.

Combining the latter result with Lemma 14 now yields:

Corollary 16. Let I, I ′, I ′′ be intervals as in Lemma 15, and let L be an integer with

L ≥ LI,0 := logM(min(|P (a)|, |P (b)|)−1) + 2(n+ 1) + 1. (11)

Suppose that
∑n
i=0 p̃I′,i · xi and

∑n
i=0 p̃I′′,i · xi are absolute L-bit approximations of PI′ and

PI′′ , respectively. If var(P, I) = 0, then var(p̃I′,0, . . . , p̃I′,n) = var(p̃I′′,0, . . . , p̃I′′,n) = 0, and
|p̃I′,i|, |p̃I′′,i| > 2−L for all i = 0, . . . , n.

Proof. Suppose that var(P, I) = 0, then Lemma 15 yields |b′i|, |b′′i | > min(|P (a)|, |P (b)|)·4−(n+1) ≥
2 · 2−LI,0 for all i = 0, . . . , n, and, in addition, all coefficients b′i and b′′i have the same sign. Since
pI′,i =

(
n
i

)
b′n−i and pI′′,i =

(
n
i

)
b′′n−i, it follows that the coefficients pI′,i and pI′′,i also have

absolute value larger than 2 · 2−LI,0 . Thus, |p̃I′,i|, |p̃I′′,i| > 2−LI,0 since |pI′,i − p̃I′,i| ≤ 2−L0 and
|pI′′,i − p̃I′′,i| ≤ 2−L ≤ 2−LI,0 for all i. In addition, all coefficients p̃I′,i and p̃I′′,i have the same
sign because this holds for their exact counterparts.

The above corollary allows one to discard an interval I by using approximate arithmetic with
a precision directly related to the absolute values of P at the endpoints of I. More precisely,
we consider the following exclusion test that applies to intervals I = (a, b) with P (a) 6= 0 and
P (b) 6= 0. Comments explaining the rationale behind our choices are typeset in italic and start
with the symbol //.

Algorithm: 0-Test
Input: A polynomial P (x) as in (2) and an interval I = (a, b) with P (a) 6= 0 and P (b) 6= 0.

Output: True or False. In case of True, I contains no root of P . In case of False, it holds
that var(P, I) > 0.

(1) Compute integers ta and tb with 2ta−1 ≤ |P (a)| ≤ 2ta+1 and 2tb−1 ≤ |P (b)| ≤ 2tb+1

using the algorithm Admissible Point with input X = {a} and X = {b}, respectively.

//Notice that, according to Lemma 5, we can compute ta and tb with a number of bit oper-
ations bounded by Õ(n(τP +n logM(a)+n logM(b)+logM(P (a)−1)+logM(P (b)−1))).

13

(2) L := M(−min(ta − 1, tb − 1)) + 2(n+ 1) + 1

//From the definition of LI,0 in (11), it follows that LI,0 ≤ L ≤ LI,0 + 2.

(3) I ′ := (a,m(I)) and I ′′ := (m(I), b)

(4) Compute absolute L-bit approximations P̃I′ =
∑n
i=0 p̃I′,i ·xi and P̃I′′ :=

∑n
i=0 p̃I′′,i ·xi

of the polynomials PI′ and PI′′ , respectively.

//For an efficient solution of this step, consider the algorithm from the proof of
Lemma 17.

(5) If var(p̃I′,0, . . . , p̃I′,n) = var(p̃I′′,0, . . . , p̃I′′,n) = 0, and |p̃I′,j | > 2−L and |p̃I′′,j | > 2−L

for all j = 0, . . . , n, then return True.

//We conclude that var(pI′,0, . . . , pI′,n) = var(pI′′,0, . . . , pI′′,n) = 0. Since p̃I′′,0 =
P (m(I)), we also have P (m(I)) 6= 0, and thus I contains no root of P .

(6) return False.

It remains to provide an efficient method to compute an absolute L-bit approximation of a
polynomial PI as required in the 0-Test:

Lemma 17. Let I = (a, b) be an interval, and let L be a positive integer. The algorithm stated
in the proof computes an absolute L-bit approximation P̃I(x) =

∑n
i=0 p̃I,i of PI(x) =

∑n
i=0 pI,ix

i

with
Õ(n(n+ τP + n logM(a) + n logM(b) + L))

bit operations. It requires approximations of the coefficients of P and the endpoints of I of quality
O(n+ τP + n logM(a) + n logM(b) + L).

Proof. The computation of PI decomposes into four steps: First, we substitute x by a + x,
which yields the polynomial P1(x) := P (a + x). Second, we substitute x by w(I) · x in order
to obtain P2(x) := P1(a + w(I) · x). Third, the coefficients of P2 are reversed (i.e. the i-
th coefficient is replaced by the (n − i)-th coefficient), which yields the polynomial P3(x) =
xnP2(1/x) = xnP (a+w(I)/x). In the last step, we compute the polynomial P4(x) := P3(x+1) =
(x+ 1)nP (a+ w(I)/(x+ 1)) = PI(x).

Now, for the computation of an absolute L-bit approximation P̃I , we proceed as follows:
Let L1 be a positive integer, which will be specified later. According to [21, Theorem 14]
(or [41, Theorem 8.4]), we can compute an absolute L1-bit approximations P̃1 of P1 with
Õ(n(n + τP + n logM(a) + L1)) bit operations, where we used that the coefficients of P have
absolute value of size 2τP or less. For this step, the coefficients of P as well as the endpoint a
have to be approximated with quality Õ(n+ τP + n logM(a) + L1). The coefficients of P1 have
absolute value less than 2n+τPM(a)n, and thus, the coefficients of P̃1 have absolute value less
than 2n+τPM(a)n + 1 < 2n+1+τPM(a)n. Computing w(I)i for all i = 0, . . . , n with quality L1

takes Õ(n(n logM(w(I)) +L1)) = Õ(n(n logM(a) +n logM(b) +L1)) bit operations. This yields
an approximation P̃2 of P2 with quality L2 := L1 − n− 1− τP − n logM(a).

The coefficients of P̃2 have absolute value less than 2n+1+τPM(a)nM(w(I))n. Reversing the
coefficients of P̃2 trivially yields an absolute L2-bit approximation P̃3 of P3. For the last step, we
again apply [21, Theorem 14] to show that we can compute an absolute L-bit approximation of
P4 = P3(x+ 1) from an L3-bit approximation of P3, where L3 is an integer of size Õ(L+n+ τP +
n logM(a) +n logM(w(I))). The cost for this computation is bounded by Õ(nL3) bit operations.
Hence, it suffices to start with an integer L1 of size Õ(L+ n+ τP + n logM(a) + n logM(w(I))).
This shows the claimed bound for the needed input precision, where we use that w(I) ≤ |a|+ |b|.

14

The bit complexity for each of the two Taylor shifts (i.e. x 7→ a+x and x 7→ x+1) as well as for the
approximate scaling (i.e. x 7→ w(I) ·x) is bounded by Õ(n(n+ τP +n logM(a) +n logM(b) +L))
bit operations.

The above lemma (applied to the intervals I ′ = (a,m(I)) and I ′′ = (m(I), b)) now directly
yields a bound on the bit complexity for the 0-Test:

Corollary 18. For an interval I = (a, b), the 0-Test requires

Õ(n(n+ τP + n logM(a) + n logM(b) + logM(min(|P (a)|, |P (b)|)−1)) (12)

bit operations using approximations of the coefficients of P and the endpoints of I of quality
O(n+ τP + n logM(a) + n logM(b) + logM(min(|P (a)|, |P (b)|)−1)).

2.4.2 The case var(P, I) = 1

We need the following result, which follows directly from [10, Lemma 6] and its proof.

Lemma 19. With the same definitions as in Lemma 15, suppose that var(P, I) = 1 and P (m) 6= 0.
Then,

|b′i|, |b′′i | > min(|P (a)|, |P (b)|, |P (m)|) · 16−n for all i = 0, . . . , n.

Furthermore, var(P, I ′) = 1 (and var(P, I ′′) = 0) or var(P, I ′′) = 1 (and var(P, I ′) = 0).

Again, combining the latter result with Lemma 14 yields the following result, whose proof is
completely analogous to the proof of Corollary 20.

Corollary 20. With the same definitions as in Lemma 15 and Lemma 19, let L be an integer
with

L ≥ LI,1 := logM(min(|P (a)|, |P (b)|, |P (m)|)−1) + 4n+ 1, (13)

and let
∑n
i=0 p̃I′,i · xi and

∑n
i=0 p̃I′′,i · xi be absolute L-bit approximations of PI′ and PI′′ ,

respectively. Suppose that var(P, I) = 1 and P (m) 6= 0. Then, it follows that |p̃I′,i|, |p̃I′′,i| > 2−L

for all i = 0, . . . , n, and, in addition, var(p̃I′,0, . . . , p̃I′,n) = 1 (and var(p̃I′′,0, . . . , p̃I′′,n) = 0) or
var(p̃I′,0, . . . , p̃I′,n) = 1 (and var(p̃I′′,0 . . . , p̃I′′,n) = 0).

Based on the above Corollary, we can now formulate the 1-Test, which applies to intervals
I = (a, b) with P (a) 6= 0 and P (b) 6= 0:

Algorithm: 1-Test
Input: A polynomial P (x) as in (2) and an interval I = (a, b) with P (a) 6= 0 and P (b) 6= 0.

Output: True or False. In case of True, the algorithm also returns an interval I ′, with
I ′ ⊂ I, and such that 1

4 · w(I) ≤ w(I ′) ≤ 3
4 · w(I), var(f, I) = 1, and I\I ′ contains no root.

In case of False, it holds that var(P, I) 6= 1.

(1) Compute integers ta and tb with 2ta−1 ≤ |P (a)| ≤ 2ta+1 and 2tb−1 ≤ |P (b)| ≤ 2tb+1

using the algorithm Admissible Point.

(2) For ε := w(I) · 2−dlogn+2e ≤ w(I)
4n , compute an admissible point m ∈ m(I)[ε] and an

integer t with 2t+1 ≥ maxi |P (mi)| ≥ |P (m∗)| ≥ 2t−1 using the algorithm Admissible
Point.

(3) L := M(−min(ta − 1, tb − 1, t− 1)) + 4n+ 2

15

(4) I ′ := (a,m) and I ′′ := (m, b)

//Notice that each point from m(I)[ε] is contained in [m(I)− w(I)
4 ,m(I) + w(I)

4] since

dn/2e · 2−dlogn+2e < 1
4 . In addition, we have LI,1 ≤ L ≤ LI,1 + 2. Thus, we can use

Corollary 20.

(5) Compute absolute L-bit approximations P̃I′ =
∑n
i=0 p̃I′,i ·xi and P̃I′′ :=

∑n
i=0 p̃I′′,i ·xi

of the polynomials PI′ and PI′′ , respectively.

(6) If |p̃I′,j | ≤ 2−L or |p̃I′′,j | > 2−L for some j = 0, . . . , n then return False

//Corollary 20 implies that var(P, I) 6= 1.

(7) If var(p̃I′,0, . . . , p̃I′,n) = 1 and var(p̃I′′,0, . . . , p̃I′′,n) = 0 then return True and I ′

//Corollary 20 implies that var(P, I ′) = 1 and var(P, I ′′) = 0.

(8) If var(p̃I′,0, . . . , p̃I′,n) = 0 and var(p̃I′′,0, . . . , p̃I′′,n) = 1 then return True and I ′′

//Corollary 20 implies that var(P, I ′) = 0 and var(P, I ′′) = 1.

(9) return False

//Corollary 20 implies that var(P, I) 6= 1.

In completely analogous manner as for the 0-Test, we can estimate the cost for the 1-Test:

Corollary 21. Let I = (a, b) be an interval, let m(I)[ε] be the multipoint defined in the 1-Test,
and let λ := max{|P (x)| ; x ∈ m(I)[ε]}. Then, the 1-Test applied to I requires

Õ(n(n+ τP + n logM(a) + n logM(b) + logM(min(|P (a)|, |P (b)|, λ)−1))) (14)

bit operations using approximations of the coefficients of P and the endpoints of I of quality
O(n+ τP + n logM(a) + n logM(b) + logM(min(|P (a)|, |P (b)|, λ)−1)).

2.5 Useful Inequalities

Lemma 22. Let p =
∑

0≤i≤n pix
i = pn

∏
1≤i≤n(x− zi) ∈ R[z]. Then,

Mea(p) ≤ ‖p‖2 ≤ ‖p‖1 ≤ (n+ 1)2τp (15)

σp ≥
√
|Disc(p)| ‖p‖−n+1

2 n−(n+2)/2 (16)

|Disc(p)| ≤ nn(Mea(p))2n−2 ≤ nn ‖p‖2n−2
2 (17)

log |p′(zi)| = O(log n+ τp + n logM(zi)) (18)∑
i

logM(p′(zi)
−1) = O(nτp + n2 + n log Mea(p) + | log Disc(p)|−1) (19)

Mea(p(x− zi)) ≤ 2τp2n+1M(zi)
n (20)

τp = O(n+ log Mea(p)). (21)

Proof. [46, Lemma 4.14] establishes (15). [46, Corollary 6.29] establishes (16) and (17). For (18),
observe

log |p′(zi)| = log(
∑

1≤k≤n

∣∣pkkzk−1
i

∣∣) ≤ log(n · 2τpnM(zi)
n) = O(log n+ τp + n logM(zi)).

16

(19) follows from∑
i

logM(p′(zi)
−1) = log

∏
i

M(p′(zi)
−1) = log

∏
iM(p′(zi))∏
i |p′(zi)|

= log
|pn|n−2∏

iM(p′(zi))

|Disc(p)|
= O(nτp + n2 + n log Mea(p) + log |Disc(p)|−1).

For (20), we use Mea(p) ≤ ‖p‖1 and p(x− zi) =
∑

0≤k≤n(xk
∑
k≤j≤n pj

(
j
k

)
(−zi)j−k), and hence,

‖p(x− zi)‖1 ≤
∑

0≤k≤n

∑
k≤j≤n

pj

(
j

k

)
M(zi)

j−k ≤ 2τpM(zi)
n
∑

0≤j≤n

∑
k≤j

(
j

k

)
≤ 2τpM(zi)

n
∑

0≤j≤n

2j ≤ 2τpM(zi)
n2n+1.

For (21), we first recall that τP = logM(‖p‖∞). The coefficient pi is given by

pi = pn ·
∑

I⊆{1,...,n},|I|=n−i

∏
i∈I

zi.

Thus

|pi| ≤ |pn|
(

n

n− i

)
Mea(p)

|pn|
≤ 2n Mea(p).

3 The Algorithm

We are now ready for our algorithm ANewDsc13 for isolating the real roots of P . We maintain
a list A of active intervals,14 a list O of isolating intervals, and the invariant that the intervals
in O are isolating and that each real root of P is contained in either an active or an isolating
interval. We initialize O to the empty set and A to the interval I = (−2Γ, 2Γ), where Γ = 2γ is
defined as in (4). This interval contains all real roots of P . Our actual initialization procedure is
more complicated, see Section 3.1, but this is irrelevant for the high level introduction to the
algorithm.

In each iteration, we work on one of the active intervals, say I. We first apply the 0-Test and
the 1-Test to I; see Section 2.4 for a discussion of these tests. If the 0-Test succeeds, we discard I.
This is safe, as a successful 0-Test implies that I contains no real root. If the 1-Test succeeds, we
add I to the set of isolating intervals. This is safe, as a successful 1-Test implies that I contains
exactly one real root. If neither 0- or 1-Test succeeds, we need to subdivide I.

Classical bisection divides I into two equal or nearly equal sized subintervals. This works fine,
if the roots contained in I spread out nicely, as then a small number of subdivision steps suffices
to separate the roots contained in I. This works poorly if the roots contained in I form a cluster
of nearby roots, as then a larger number of subdivision steps are needed until I is shrunk to an
interval whose width is about the diameter of the cluster.

13Our algorithm is an approximate arithmetic variant of the algorithm NewDsc presented in [36]. NewDsc
combines the classical Descartes method and Newton iteration. It uses exact rational arithmetic and only applies to
polynomials with rational coefficients. Pronounce ANewDsc as either “approximate arithmetic Newton-Descartes”
or “a new Descartes”.

14In fact, A is a list of pairs (I,NI), where I is an interval and NI ∈ N a power of two. For the high level
introduction, the reader may think of A of a list of intervals only.

17

In the presence of a cluster C of roots (i.e., a set of k := |C| ≥ 2 nearby roots that are “well
separated” from all other roots), straight bisection converges only linearly, and it is much more
efficient to obtain a good approximation of C by using Newton iteration. More precisely, if we
consider a point ξ, whose distance d to the cluster C is considerably larger than the diameter
of the cluster, and whose distance to all remaining roots is considerably larger than d, then the
distance from the point

ξ′ := ξ − k · P (ξ)

P ′(ξ)
(22)

to the cluster C is much smaller than the distance from ξ to C.15. The distance d′ of ξ′ to the
cluster is approximately d2 if d < 1. Thus, we can achieve quadratic convergence to the cluster C
by iteratively applying (22). Unfortunately, when running the subdivision algorithm, we neither
know whether there actually exists a cluster C nor do we know its size or diameter. Hence, the
challenge is to make the above insight applicable to a computational approach.

We overcome these difficulties as follows. First, we estimate k. For this, we consider two
choices for ξ, say ξ1 and ξ2. Let ξ′i, i = 1, 2, be the Newton iterates. For the correct value of k,
we should have ξ′1 ≈ ξ′2. Conversely, we can estimate k by solving ξ′1 = ξ′2 for k. Secondly, we use
quadratic interval refinement [1]. With every active interval I = (a, b), we maintain a number
NI = 22nI , where nI ≥ 1 is an integer. We call nI the level of interval I. We hope to refine I to
an interval I ′ = (a′, b′) of width w(I)/NI . We compute candidates for the endpoints of I ′ using
Newton iteration, that is, we compute a point inside I ′ and then obtain the endpoints of I ′ by
rounding. We apply the 0-Test to (a, a′) and to (b′, b). If both 0-Tests succeed, we add (I ′, N2

I) to
the set of active intervals. Observe that, in a regime of quadratic convergence, the next Newton
iteration should refine I ′ to an interval of width w(I ′)/N2

I . If we fail to identify I ′, we bisect I
and add both subintervals to the list of active intervals (with NI replaced by max(4,

√
NI).

The details of the Newton step are discussed in Section 3.2, where we introduce the Newton-
Test and the Boundary-Test. The Boundary-Test treats the special case that the subinterval I ′

containing all roots in I shares an endpoint with I, and there are roots outside I and close to I.
There is one more ingredient to the algorithm. We need to guarantee that P is large at

interval endpoints. Therefore, instead of determining interval endpoints as described above, we
instead take an admissible point chosen from an appropriate multipoint.

We next give the details of the algorithm ANewDsc:

Algorithm: ANewDsc
Input: A polynomial P (x) as in (2).

Output: Disjoint isolating intervals I1, . . . , Im for all real roots of P with var(P, Ij) = 1 for
all j = 1, . . . , n.

(1) A := {(Ik, 4)}k=0,...,2γ+2, with Ik as computed by Algorithm Initialization, and
O := ∅.

//Algorithm Initialization is defined in Section 3.1. It computes a set of open and

15The following derivation gives intuition for the behavior of the Newton iteration. Consider P (x) = (x−α)kg(x),

where α is not a root of g, and consider the iteration xn+1 = xn − k P (xn)
P ′(xn)

. Then,

xn+1 − α = xn − α− k
(xn − α)kg(xn)

k(xn − α)k−1g(xn) + (xn − α)kg′(xn)

= (xn − α)(1−
kg(xn)

kg(xn) + (xn − α)g′(xn)
= (xn − α)2

g′(xn)

kg(xn) + (xn − α)g′(xn)
,

and hence, we have quadratic convergence in an interval around α.

18

disjoint intervals Ik, such that all real roots of P are covered by the union of these
intervals. We remark that ANewDsc works for any set of intervals with this property,
however, the choice of Section 3.1 simplifies the complexity analysis of the algorithm.

(2) while A 6= ∅ do

(2.1) Choose an arbitrary pair (I,NI) from A, with I = (a, b), and remove (I,NI)
from A

(2.2) If the algorithm 0-Test (with input P and I) returns True, then go to Step (2.1)

//In this case, we have I contains no root of P , and thus I can be discarded.

(2.3) If the algorithm 1-Test (with input P and I) returns True and an interval I ′,
then add I ′ to O and go to Step (2.1)

//If the 1-Test returns an interval I ′, then I ′ is isolating and contains all roots of
P that are contained in I. Hence, we can store I ′ as isolating and discard I\I ′.

(2.4) If the algorithm Boundary-Test or the algorithm Newton-Test returns True
and an interval I ′, then add (I ′, NI′) := (I ′, N2

I) to A, and go to Step (2.1)

(quadratic step)

//The Boundary-Test and the Newton-Test are defined in Section 3.2. The
interval I ′ returned by one of these tests contains all roots that are contained in

I, and thus we can proceed with I ′. Further notice that w(I)
8NI
≤ w(I ′) ≤ w(I)

NI
.

(2.5) Compute an admissible point m∗ ∈ m(I)[w(I)
2d2+logne] using the algorithm Ad-

missible Point and add (I ′, NI′) and (I ′′, NI′′) to A, where I ′ = (a,m∗) and
I ′′ = (m∗, b), and NI′ := NI′′ := max(4,

√
NI).

(linear step)

//This step correspond to the classical bisection step, where the interval I is split
into two equally sized subintervals. Here, we make sure that |P | takes a reasonably

large value at the splitting point. In addition, we have w(I)
4 ≤ min(w(I ′), w(I ′′)) ≤

max(w(I ′), w(I ′′)) 3w(I)
4 .

(3) return O

If we succeed in Step (2.4), we say that the subdivision step from I to I ′ is quadratic. In a linear

step, we just split I into two intervals of approximately the same size (i.e., of size in between w(I)
4

and 3w(I)
4). From the definitions of our tests, the exactness of the algorithm follows immediately.

In addition, since any interval I of width w(I) < σP
2 satisfies var(P, I) = 0 or var(P, I) = 1, either

the 0-Test or the 1-Test succeeds for I. This proves termination (i.e., Step (2.2) or Step (2.3)
succeeds) because, in each iteration, an interval I is replaced by intervals of width less than or

equal to 3w(I)
4 .

3.1 Initialization

Certainly, the most straight-forward initialization is to start with the interval I = (−2Γ, 2Γ). In
fact, this is also what we recommend doing in an actual implementation. However, in order to
simplify the analysis of our algorithm, we proceed slightly differently. We first split I into disjoint
intervals Ik = (s∗k, s

∗
k+1), with k = 0, . . . , 2 · γ + 2 and γ = log Γ, such that for each interval, P is

19

large at the endpoints of the interval, and logM(x) is essentially constant within the interval.
More precisely, the following conditions are fulfilled for all k:

min(|P (s∗k)|, |P (s∗k+1)|) > 2−8n logn, and (23)

max
x∈Ik

logM(x) ≤ 2 · (1 + min
x∈Ik

logM(x)).

The intervals (−22γ ,−22γ−1

), (−22γ−1

,−22γ−2

), . . . , (−220

, 0), (0,+220

), . . . , (−22γ−1

,−22γ)
satisfy the second condition. In order to also satisfy the first, consider the points

sk :=

−22γ−k for k = 0, . . . , γ

0 for k = γ + 1

+22k−γ for k = γ + 2, . . . , 2γ + 2

(24)

and corresponding multipoints Mk := sk[2−d2 logne]. In Mk, there exists at least one point with
distance at least 1

8n or larger to all roots of P . Thus, |P (s∗k)| ≥ |Pn| ·
(

1
8n

)n ≥ 2−4n−n logn >
2−8n logn, where s∗k is an admissible point in Mk.

Algorithm: Initialization
Input: A polynomial P (x) as in (2) and a γ as defined in (4).

Output: Disjoint open intervals Ik := (s∗k, s
∗
k+1), with k = 0, . . . , 2γ + 2, such that

⋃
k Ik

contains all real roots of P and the condition in (23) is fulfilled.

• For k = 0, . . . , 2γ + 2, define sk as in (24).

• For k = 0, . . . , 2γ + 2, compute an admissible point s∗k ∈Mk := sk[2−d2 logne] using the
algorithm Admissible Point.

• Return the intervals

Ik := (s∗k, s
∗
k+1) for k = 0, . . . , 2γ + 2. (25)

It is easy to check that the second condition in (23) is fulfilled for the intervals computed by the
above algorithm.

3.2 The Newton-Test and the Boundary-Test

The Newton-Test and the Boundary-Test are the key to quadratic convergence. The Newton-test
receives an interval I = (a, b) ⊆ I and an integer NI = 22nI , where nI ≥ 1 is an integer. In case

of success, the test returns an interval I ′ with w(I)
8NI
≤ w(I ′) ≤ w(I)

NI
that contains all roots that are

contained in I. Success is guaranteed if there is a subinterval J of I of width at most 2−13 · w(I)
NI

whose one-circle region contains all roots that are contained in the one-circle region of I and if the
disk with radius 2logn+10 ·NI ·w(I) and center m(I) contains no further root of P , see Lemma 23
for a precise statement. Informally speaking, the Newton-Test is guaranteed to succeed if the
roots in I cluster in a subinterval significantly shorter than w(I)/NI , and roots outside I are far
away from I. In the following description of the Newton-Test, we inserted comments that explain
the rationale behind our choices. For this rationale, we assume the existence of a cluster C of k
roots centered at some point ξ ∈ I with diameter d(C) � w(I) and that there exists no other
root in a large neighborhood of the one-circle region ∆(I) of I. The formal justification for the
Newton-Test will be given in Lemma 23.

20

Algorithm: Newton-Test
Input: An Interval I = (a, b) ⊂ R, an integer NI = 22nI with nI ∈ N, and a polynomial
P ∈ R[x] as defined in (2)

Output: True or False. In case of True, it also returns an interval I ′ ⊂ I, with w(I)
8NI

≤
w(I ′) ≤ w(I)

NI
, that contains all real roots of P that are contained in I.

(1) Let ξ1 := a+ 1
4 · w(I), ξ2 := a+ 1

2 · w(I), ξ3 := a+ 3
4 · w(I), and ε := 2−d5+logne, and

compute admissible points
ξ∗j ∈ ξj [ε · w(I)], (26)

for j = 1, 2, 3, using the Algorithm Admissible Point from Section 2.2.

//At least two of the three points ξj (say ξ1 and ξ2) have a distance from C that is
large compared to the diameter of C. In addition, their distances to all remaining
roots are also large, and thus the points ξ′1 := ξ1 − k · v1 and ξ′2 := ξ2 − k · v2, with

vj1 :=
P (ξ∗j1

)

P ′(ξ∗j1
) and vj2 :=

P (ξ∗j2
)

P ′(ξ∗j2
) , obtained from considering one Newton step, with

ξ = ξ∗j1 and ξ = ξ∗j2 , have much smaller distances to C than the points ξ1 and ξ2. Notice
that k is not known to the algorithm at this point.

(2) For each of the three distinct pairs (j1, j2) of indices j1, j2 ∈ {1, 2, 3}, with j1 < j2, do:

(2.1) For L = 2, 4, 8, . . . , compute approximations Aj1 , Aj2 , A′j1 , and A′j2 of P (ξ∗j1),
P (ξ∗j2), P ′(ξ∗j1), and P ′(ξ∗j2) of quality L, respectively, until, for some L = L1, it
holds that

|Aj1 | − 2−L

|A′j1 |+ 2−L
> w(I) or

|Aj2 | − 2−L

|A′j2 |+ 2−L
> w(I) (27)

or

|Aj1 |, |Aj2 | > 2−L+1 and |A′j1 |, |A
′
j2 | > 2−L+1 (28)

Then, if (27) holds, discard the pair (j1, j2). Otherwise, proceed with Step (2.2).

//The values ṽj1 :=
Aj1
A′j1

and ṽj2 :=
Aj2
A′j2

are approximations of vj1 and vj2 ,

respectively. Condition (27) implies that either |vj1 | > w(I) or |vj2 | > w(I). The
proof of Lemma 23 shows that the existence of C implies that there is a pair

(j1, j2), for which vj1 and vj2 have distance � w(I)
NI

to C and |vj1 |, |vj2 | <
w(I)
k ≤

w(I). Hence, such a pair cannot be discarded in step (2.1). Further notice that
L1 ≤ L∗1 := log max{M(|P (ξ∗j1)|−1),M(|P (ξ∗j1)|−1)}+ logM(w(I)) + 3. Namely,
for L ≥ L∗1, either (28) holds or

|Aj | − 2−L

|A′j |+ 2−L
>
|P (ξ∗j)| − 2−L+1

2−L+1 + 2−L
≥ 8 ·M(w(I)) · 2−L − 2−L+1

3 · 2−L
≥ w(I)

for j = j1 or j = j2. In addition, if (28) holds for L = L1, then (28) also holds
for any L ≥ 2 ·L1. This also implies that, for j = j1, j2, |ṽj | is a 4-approximation

of |vj |, that is, |ṽj | differs from |vj | by a factor in (1/4, 4). Since
|Aj |+2−L

|A′j |−2−L
differs

from ṽj by a factor in (1, 4), it follows that |ṽj | < 64w(I) for any L ≥ 2L1 and
j = j1, j2.

21

(2.2) For L = 2 ·L1, 4 ·L1, 8 ·L1, . . . , compute approximations Aj1 , Aj2 , A′j1 , and A′j2
of P (ξ∗j1), P (ξ∗j2), P ′(ξ∗j1), and P ′(ξ∗j2) of quality L, respectively, until, for some
L = L2, it holds that

δj1 , δj2 < min

{
w(I)

25 · n
,
w(I)

214 ·NI

}
, with δj1 :=

|Aj1 |+ |A′j1 |
2L−2 · |A′j1 |2

, δj2 :=
|Aj2 |+ |A′j2 |
2L−2 · |A′j2 |2

.

(29)

If the condition

|ṽj1 − ṽj2 |+ δj1 + δj2 ≥
w(I)

n
, with ṽj1 :=

Aj1
A′j1

and ṽj2 :=
Aj2
A′j2

, (30)

is fulfilled, then proceed with Step (2.3). Otherwise, discard the pair (j1, j2).

//A straight-forward computation shows that |ṽj1 − vj1 | < δj1 and |ṽj2 − vj2 | < δj2 ,
where we use that |Aj | and |A′j | are relative 2-approximations of |P (ξ∗j)| and
|P ′(ξ∗j)|, for j = j1, j2, respectively. Hence, if condition (30) does not hold, then

|vj1 − vj2 | <
w(I)
n . Due to the proof of Lemma 23, the existence of C yields that

|vj1 − vj2 | >
w(I)
k for some pair (j1, j2), and thus (30) must be fulfilled for such a

pair. Notice that the inequality in (29) holds for L = L2, with an L2 of size

L2 = O(L1 + log max(M((32n)/w(I)), NI))

= O(log max{n,M(|P (ξ∗j1)|−1),M(|P (ξ∗j2)|−1),M(w(I)),M(w(I)−1), NI}),

where we use that ṽj < 64w(I) and 2L · |A′j | ≥ 2L · 1
4 · 2

−L1+1 = 2L−L1−1 for all
L ≥ 2 · L1 and j = j1, j2.

(2.3) Compute

λ̃j1,j2 := ξ∗j1 +
ξ∗j2 − ξ

∗
j1

ṽj1 − ṽj2
· ṽj1 (31)

If λ̃j1,j2 6∈ Ī = [a, b], discard the pair (j1, j2). Otherwise, compute `j1,j2 :=

b λ̃j1,j2−a
w(I)/(4NI)c, which is an integer contained in {0, . . . , 4NI}. Further define

Ij1,j2 := (aj1,j2 , bj1,j2) := (a+max(0, `j1,j2−1)·w(I)

4NI
, a+min(4NI , `j1,j2+2)·w(I)

4NI
).

If aj1,j2 = a, set a∗j1,j2 := a, and if bj1,j2 = b, set bj1,j2 := b. For all other values for
aj1,j2 and bj1,j2 , use Algorithm Admissible Point from Section 2.2 to compute
admissible points

a∗j1,j2 ∈ aj1,j2 [ε · w(I)

NI
] and b∗j1,j2 ∈ bj1,j2 [ε · w(I)

NI
]. (32)

Define I∗j1,j2 := (a∗j1,j2 , b
∗
j1,j2

).

//The Newton iteration (22) with ξ = ξ∗j for a k-fold root produces ξ′j = ξ∗j − kvj.
Equating ξ′j1 = ξ′j2 yields −k =

ξ∗j2
−ξ∗j1

vj1−vj2
. Then, ξ′j1 and ξ′j2 are given by

λj1,j2 := ξ∗j1 +
ξ∗j2 − ξ

∗
j1

vj1 − vj2
· vj1 . (33)

22

A straight-forward computation shows that |λ̃j1,j2 − λj1,j2 | <
w(I)
32NI

, where we

use inequality (29) and the fact that |ṽj1 |, |ṽj2 | < 64w(I), and |ṽj1 |, |ṽj2 | >
w(I)
2n

due to (30). If λ̃j1,j2 is contained in I, we (conceptually) subdivide I into 4NI
subintervals and determine the subinterval that contains λ̃j1,j2 . Extending the

interval on both sides by w(I)
4NI

yields an interval Ij1,j2 , which contains λj1,j2 .
Finally, replacing the endpoints aj1,j2 and bj1,j2 by nearby admissible points yields

an interval I∗j1,j2 with w(I)
8n ≤ w(I∗j1,j2) ≤ w(I)

n . Lemma 23 then shows that the
existence of C guarantees that I∗j1,j2 contains all roots of P that are contained in
I.

(2.4) Run the 0-Test from Section 2.4.1 with input I ′` := (a, a∗j1,j2) and I ′r := (b∗j1,j2 , b).
If it succeeds on both intervals, return True and the interval I ′ := I∗j1,j2 . Other-
wise, discard the pair (j1, j2).

//For intervals I ′` or I ′r, which are empty (i.e., I ′` = (a, a) or I ′r = (b, b)), nothing
needs to be done. If the 0-Test succeeds on I ′` as well as on I ′r, then neither
interval contains a root of P . Hence, I∗j1,j2 contains all roots of P that are
contained in I.

(3) If each of the three pairs (j1, j2) is discarded in one of the above steps, return False.

We next derive a sufficient condition for the success of the Newton-Test.

Lemma 23. Let I = (a, b) be an interval, NI = 22nI with nI ∈ Z≥1, and J = (c, d) ⊆ I be a

subinterval of width w(J) ≤ 2−13 · w(I)
NI

. Suppose that the one-circle region of ∆(J) contains k

roots z1, . . . , zk of P , with k ≥ 1, and that the disk with radius 2logn+10 ·NI · w(I) and center
m(I) contains no further root of P . Then, the Newton-Test succeeds.

Proof. We first show that, for at least two of the three points ξ∗j , j = 1, 2, 3, the inequality∣∣∣m(J)− (ξ∗j − k ·
P (ξ∗j)

P ′(ξ∗j))
∣∣∣ < w(I)

128NI
holds: There exist at least two points (say ξ := ξ∗j1 and

ξ̄ := ξ∗j2 with j1 < j2) whose distances to any root from z1, . . . , zk are larger than |ξ−ξ̄|
2 −

w(J)
2 > 3

32w(I)− 1
2w(J) ≥ 512NIw(J). In addition, the distances to any of the remaining roots

zk+1, . . . , zn are larger than 210nNIw(I) − w(I) ≥ 512 · nNIw(I). Hence, with m := m(J), it
follows that∣∣∣∣1k · (ξ −m)P ′(ξ)

P (ξ)
− 1

∣∣∣∣ =

∣∣∣∣∣1k
k∑
i=1

ξ −m
ξ − zi

+
1

k

∑
i>k

ξ −m
ξ − zi

− 1

∣∣∣∣∣ =
1

k

∣∣∣∣∣
k∑
i=1

zi −m
ξ − zi

+
∑
i>k

ξ −m
ξ − zi

∣∣∣∣∣
≤ 1

k

k∑
i=1

|zi −m|
|ξ − zi|

+
1

k

∑
i>k

|ξ −m|
|ξ − zi|

<
w(J)

512nNIw(J)
+

(n− k) · w(I)

512knNIw(I)

≤ 1

256NI
,

where we used that P ′(ξ)
P (ξ) =

∑n
i=1(ξ − zi)

−1. This yields the existence of an ε ∈ R with

|ε| < 1
256NI

≤ 1
1024 and 1

k ·
(ξ−m)P ′(ξ)

P (ξ) = 1 + ε. We can now derive the following bound on the

23

distance between the approximation ξ′ = ξ − k · P (ξ)
P ′(ξ) obtained by the Newton iteration and m:

|m− ξ′| = |m− ξ| ·

∣∣∣∣∣∣1− 1
1
k ·

(ξ−m)P ′(ξ)
P (ξ)

∣∣∣∣∣∣ = |m− ξ| ·
∣∣∣∣1− 1

1 + ε

∣∣∣∣ =

∣∣∣∣ε · (m− ξ)1 + ε

∣∣∣∣ < w(I)

128NI
.

In a completely analogous manner, we show that
∣∣∣ξ̄ − k · P (ξ̄)

P ′(ξ̄)
−m

∣∣∣ < w(I)
128NI

.

Let vj1 = P (ξ)
P ′(ξ) and vj2 = P (ξ̄)

P ′(ξ̄)
be defined as in the Newton-Test. Then, from the above

considerations, it follows that |(ξ − k · vj1)− (ξ̄ − k · vj2)| < w(I)
64NI

. Hence, since |ξ − ξ̄| > 3w(I)
16

and 1 ≤ k ≤ n, we must have |vj1 − vj2 | >
w(I)
8k . Furthermore, it holds that |k · vj1 | < w(I) since,

otherwise, the point ξ − k · vj1 is not contained in (ξ −w(I), ξ +w(I)), which contradicts the fact

that |ξ − k · vj1 −m| <
w(I)

128NI) and m ∈ I. An analogous argument yields that |k · vj2 | < w(I).

Hence, none of the two inequalities in (27) are fulfilled, whereas the inequality in (30) must hold.
In the next step, we show that λ := λj1,j2 as defined in (33) is actually a good approximation of

ξ − k · vj1 : There exist ε and ε̄, both of magnitude less than w(I)
128NI

, such that ξ − k · vj1 = m+ ε

and ξ̄ − k · vj2 = m+ ε̄. This yields

λ = ξ +
ξ̄ − ξ

vj1 − vj2
· vj1 = ξ +

(
ε̄− ε+ k · (vj2 − vj1)

vj1 − vj2

)
· vj1 = ξ + k · vj1 +

(ε̄− ε)vj1
vj1 − vj2

.

The absolute value of the fraction on the right side is smaller than
w(I)·|vj1 |

64NI
· 8k
w(I) ≤

w(I)
8NI

, and

thus |ξ − k · vj1 − λ| <
w(I)
8NI

. Hence, with λ̃j1,j2 as defined in (31), we have

|m− λ̃j1,j2 | ≤ |m−(ξ−k ·vj1)|+ |(ξ−k ·vj1)−λ|+ |λ− λ̃j1,j2 | <
w(I)

128NI
+
w(I)

8NI
+
w(I)

32NI
<

3w(I)

16NI
.

From the definition of the interval Ij1,j2 , we conclude that J ⊆ Ij1,j2 . Furthermore, each
endpoint of Ij1,j2 is either an endpoint of I, or its distance to both endpoints of J is larger than
w(I)
16NI

− w(J)
2 > w(I)

32NI
> w(J)

2 . This shows that the interval I ′ = I∗j1,j2 contains J . Hence, the
Newton-Test succeeds since the one-circle regions of I ′` and I ′r contain no roots of P .

The Newton-Test is our main tool to speed up convergence to clusters of roots without actually
knowing that there exists a cluster. However, there is one special case that has to be considered
separately: Suppose that there exists a cluster C ⊆ ∆(I) of roots whose center is close to one of
the endpoints of I. If, in addition, C is not well separated from other roots that are located outside
of ∆(I), then the above lemma does not apply. For this reason, we introduce the Boundary-Test,
which checks for clusters near the endpoints of an interval I. Its input is the same as for the

Newton-Test. In case of success, it either returns an interval I ′ ⊆ I, with w(I)
4NI
≤ w(I ′) ≤ w(I)

NI
,

which contains all real roots that are contained in I, or it proves that I contains no root.

Algorithm: Boundary-Test

Input: An Interval I = (a, b) ⊂ R, an integer NI = 22nI with nI ∈ N, and a polynomial
P ∈ R[x] as defined in (2)

Output: True or False. In case of True, it also returns an interval I ′ ⊂ I, with w(I)
8NI

≤
w(I ′) ≤ w(I)

NI
, that contains all real roots of P that are contained in I.

24

(1) Let m` := a+ w(I)
2NI

, mr := b− w(I)
2NI

, and ε := 2−d2+logne. Use algorithm Admissible
Point to compute admissible points

m∗` ∈ m`[ε ·
w(I)

NI
] and m∗r ∈ mr[ε ·

w(I)

NI
], (34)

(2) If the 0-Test returns true for the interval I` := (m∗` , b), then return (a,m∗`).

(3) If the 0-Test returns true for the interval Ir := (a,m∗r), then return (m∗r , b).

(4) return False

Clearly, if all roots contained in ∆(I) have distance less than w(I)
4NI

to one of the two endpoints of
I, the Boundary-Test for I is successful, as the one-circle region of either I` or Ir contains no
root of P .

4 Complexity Analysis

We bound the size of the subdivision tree in Section 4.1 and the bit complexity in Section 4.2.

4.1 Size of the Subdivision Tree

We use T to denote the subdivision forest which is induced by our algorithm ANewDsc. More
precisely, in this forest, we have one tree for each interval Ik, with k = 0, . . . , 2 log Γ + 2, as
defined in (25). Furthermore, an interval I ′ is a child of some I ∈ T if and only if it has been

created by our algorithm when processing I. We have w(I)
8NI
≤ w(I ′) ≤ w(I)

NI
in a quadratic step

and 1
4 · w(I) ≤ w(I ′) ≤ 3

4 · w(I) in a linear step. An interval in T has two, one, or zero children.
Intervals with zero children are called terminal. Those are precisely the intervals for which either
the 0-Test or the 1-Test is successful. Since each interval I 6= I with var(P, I) ≤ 1 is terminal, it
follows that, for each non-terminal interval I, the one circle region ∆(I) contains at least one
root and the two-circle region of I contains at least two roots of P . Thus, all non-terminal nodes
have width larger than or equal to σP /2.

In order to estimate the size of T , we estimate for each Ik the size of the tree Tk rooted at
it. If Ik is terminal, Tk consists only of the root. So, assume that Ik is non-terminal. Call a
non-terminal I ∈ Tk splitting if either I is the root of Tk, or M(I ′) 6=M(I) for all children I ′ of
I (recall that M(I) denotes the set of roots of P contained in the one circle region ∆(I) of I), or
if all children of I are terminal. By the argument in the preceding paragraph, M(I) 6= ∅ for all
splitting nodes. A splitting node I is called strongly splitting if there exists a root z ∈M(I) that
is not contained in any of the one-circle regions of its children. The number of splitting nodes in
Tk is bounded by 2 |Mk| since there are at most |Mk| splitting nodes all of whose children are
terminal, since at most |Mk| − 1 splitting nodes all of whose children have a smaller set of roots
in the one-circle region of the associated interval, and since there is one root. For any splitting
node, consider the path of non-splitting nodes ending in it, and let smax be the maximal length
of such a path (including the splitting node at which the path ends and excluding the splitting
node at which the path starts). Then, the number of non-terminal nodes in Tk is bounded by
1 + smax · (2 |Mk| − 1), and the total number of non-terminal nodes in the subdivision forest is
O(log Γ + n · smax). Hence, the same bound also applies to the number of all nodes in T .

The remainder of this section is concerned with proving that

smax = O(log n+ log(Γ + logM(σ−1
P))).

25

The proof consists of three parts.
(1) We first establish lower and upper bounds for the width of all (i.e., also for terminal) intervals

I ∈ T and the corresponding numbers NI (Lemma 24).
(2) We then study an abstract version of how interval sizes and interval levels develop in quadratic

interval refinement (Lemma 25).
(3) In a third step, we then derive the bound on smax (Lemma 26).

Lemma 24. For each interval I ∈ T \I, we have

2Γ ≥ w(I) ≥ 2−4Γ−6σ5
P and 4 ≤ NI ≤ 24(Γ+1) · σ−4

P .

Proof. The inequalities 2Γ ≥ w(I) and NI ≥ 4 are trivial. For NI > 16, there exist two
ancestors (not necessarily parent and grandparent) J ′ and J of I, with I ⊆ J ′ ⊆ J , such that
w(I) ≤ w(J ′)/NJ′ and w(J ′) ≤ w(J)/NJ , and NI = N2

J′ = N4
J . Hence, it follows that J ′

is a non-terminal interval of width less than or equal to 2Γ/NJ = 2ΓN
−1/4
I . Since each non-

terminal interval has width σP /2 or more, the upper bound on NI follows. For the claim on
the width of I, we remark that the parent interval K of I has width σP /2 or more and that
w(K)
8NJ

≤ w(I) ≤ 3
4w(K).

We come to the evolution of interval sizes and levels in quadratic interval refinement. The
following Lemma has been introduced in [36, Lemma 4] in a slightly weaker form:

Lemma 25. Let w, w′ ∈ R+ be two positive reals with w > w′, and let m ∈ N≥1 be a
positive integer. We recursively define the sequence (si)i∈N≥1

:= ((xi, ni))i∈N≥1
as follows:

Let s1 = (x1, n1) := (w,m), and

si+1 = (xi+1, ni+1) :=

{
(εi · xi, ni + 1) with an εi ∈ [0, 1

Ni
], if xi

Ni
≥ w′

(δi · xi,max(1, ni − 1)) with a δi ∈ [0, 3
4], if xi

Ni
< w′,

where Ni := 22ni and i ≥ 1. Then, the smallest index i0 with xi0 ≤ w′ is bounded by 8(n1 +
log log max(4, ww′)).

Proof. The proof is similar to the proof given in [36]. However, there are subtle differences,
and hence, we give the full proof. We call an index i strong (S) if xi/Ni ≥ w′ and weak (W),
otherwise. If w/4 < w′, then each i ≥ 1 is weak, and thus, i0 ≤ 6 because of (3/4)5 < 1/4.

So assume w/4 ≥ w′ and let k′ be the smallest weak index. We split the sequence 1, 2, . . . , i0
into three parts, namely (1) the prefix 1, . . . , k′ − 1 of strong indices, (2) the subsequence
k′, . . . , i0 − 6 starting with the first weak index and containing all indices but the last 6, and (3)
the tail i0 − 5, . . . , i0. The length of the tail is 6.

We will show that the length of the prefix of strong indices is bounded by k ∈ N≥1 where k is
the unique integer with

2−2k+1

< w′/w ≤ 2−2k .

Then, k ≤ log log w
w′ . Intuitively, this holds since we square Ni in each strong step, and hence,

after O(log logw/w′) strong steps we reach a situation where a single strong step guarantees
that the next index is weak. In order to bound the second subsequence, we split it into
subsubsequences of maximal length containing no two consecutive weak indices. We will show
that the subsubsequences have length at most five and that each such subsubsequence (except
for the last) has one more weak index than strong indices. Thus, the value of n at the end of
a subsubsequence is one smaller than at the beginning of the subsubsequence, and hence, the
number of subsubsequences is bounded by n1. We turn to the bound on the length of the prefix
of strong indices.

26

Claim 1: k′ ≤ k + 1.
Suppose that the first k indices are strong. Then, xi+1 ≤ 2−2m+i

xi for i = 1, . . . , k, and hence,

xk+1 ≤ w · 2−(2m+2m+1+···+2m+k−1) = w · 2−2m(2k−1) ≤ 4w · 2−2k+1

< 4w′,

and nk+1 ≥ 2. Thus, xk+1/Nk+1 < w′, and k + 1 is weak.

Let us next consider the subsequence S = k′, k′ + 1, . . . , i0 − 6.
Claim 2: S contains no subsequence of type SS or SWSWS.
Consider any weak index i followed by a strong index i+ 1. Then, Ni+2 ≥ Ni and xi+2 ≤ xi, and
hence, xi+2/Ni+2 ≤ xi/Ni < w′. Thus, i+ 2 is weak. Since S starts with a weak index, the first
part of our claim follows. For the second part, assume that i, i+ 2 are strong, and i+ 1 and i+ 3
are weak. Then, Ni = Ni+2 = Ni+4, Ni+1 = N2

i , xi+1 ≤ xi/Ni, xi+3 ≤ xi+2/Ni+2, xi+4 < xi+3,
xi+3 < xi+1, and hence,

xi+4

Ni+4
<

xi+2

Ni+2Ni+4
≤ xi+1

N2
i+2

=
xi+1

Ni+1
< w′.

Thus, i+ 4 is weak.

Claim 3: If i is weak and i ≤ i0 − 6, then ni ≥ 2.
Namely, if i is weak and ni = 1, then xi/4 = xi/Ni < w′, and thus, xi0−1 < w′ because
(3/4)5 < 1/4. This contradicts the definition of i0.

We now partition the sequence S into maximal subsequences S1,S2, . . . ,Sr, such that each
Sj , j = 1, . . . , r, contains no two consecutive weak elements. Then, according to our above
results, each Sj , with j < r, is of type W, WSW, or WSWSW. The last subsequence Sr is of
type W, WS, WSW, WSWS, or WSWSW. Since ni ≥ 2 for all weak i with i ≤ i0 − 6, the
number ni decreases by one after each Sj , with j < r. Thus, we must have r ≤ n1 + k′ − 2 since
nk′ = n1 + k′ − 1, nr−1 = nk′ − (r− 1), and nr−1 ≥ 2. Since the length of each Sj is bounded by
5, it follows that

i0 = i0 − 6 + 6 ≤ k′ + 5r + 6 ≤ k′ + 5(n1 + k′ − 2) + 6 ≤ 5(n1 + k) + k + 2 < 8(n1 + k).

We are now ready to derive an upper bound on smax.

Lemma 26. The maximal length smax of any path between splitting nodes is bounded by O((log n+
log(Γ + logM(σ−1

P)))).

Proof. Consider any path in the subdivision forest ending in a splitting node and otherwise
containing only non-splitting nodes. Let I1 := (a1, b1) := I to Is = (as, bs) be the corresponding
sequence of intervals. Then, the one-circle regions ∆(Ij) of all intervals in the sequence contain
exactly the same set of roots of P , and this set is non-empty. We show s = O(log n + log(Γ +
logM(σ−1

P))). We split the sequence into three parts:
(1) Let s1 ∈ {1, . . . , s} be the smallest index with as1 6= a1 and bs1 6= b1. The first part

consists of intervals I1 to Is1−1. We may assume a = a1 = a2 = . . . = as1−1. We will show
s1 = O(log(Γ + logM(σ−1

P)).
(2) Let s2 ≥ s1 be minimal such that either s2 = s or w(Is2) ≤ 2−13−lognw(Is1)/NIs2 . We will

show s2 − s1 = O(log n+ log(Γ + logM(σ−1
P)). The second part consists of intervals Is1 to

intervals Is2−1.
(3) The third part consists of the remaining intervals Is2 to Is. If s2 = s, this part consists of a

single interval. If ss < s, we have w(Ij) ≤ 2−13−lognw(Is1)/NIj for all j ≥ s2. If Ij+1 comes
from Ij by a linear step, this is obvious because w(Ij+1) ≤ w(Ij) and NIj+1

≤ NIj . If it is
generated in a quadratic step, we have w(Ij+1) ≤ w(Ij)/NIj and NIj+1

= N2
Ij

.

27

In order to derive a bound on s1, we appeal to Lemma 25. If w(Ij)/NIj ≥ 4 ·w(Is+1) for some
j, then according to the remark following the definition of the Boundary-Test, the subdivision
step from Ij to Ij+1 is quadratic. However, it might also happen that the step from Ij to Ij+1

is quadratic, and yet, w(Ij)/NIj < 4 · w(Is+1). If such a j exists, then let j0 be the minimal
such j; otherwise, we define j0 = s. In either case, s = j0 + O(1). This is clear if s = j0. If
j0 < s, the step from Ij0 to Ijo+1 is quadratic, and hence, w(Ij0+1) ≤ w(Ij0)/NIj0 < 4 · w(Is+1),
and hence, a constant number of steps suffices to reduce the width of Ij0+1 to the width of Is+1.
For j = 1, . . . , j0 − 1, the sequence (w(Ij), nIj) coincides with a sequence (xj , nj) as defined in
Lemma 25, where w := w(I1), w′ := 4w(Is+1), and n1 = m := nI1 . Namely, if w(Ij)/NIj ≥ w′,
we have w(Ij+1) ≤ w(Ij)/NIj and nIj+1 = 1 + nIj , and otherwise, we have w(Ij+1) ≤ 3

4 · w(Ij)
and nIj+1 = max(1, nIj − 1). Hence, according to Lemma 25, it follows that j0 (and thus also s)
is bounded by

8(nI1 + log log max(4, w(I1)/w(Is))) = O(log(Γ + logM(σ−1
P)),

where we used the bounds for NI1 , w(I1), and w(Is) from Lemma 24.
We come to the bound on s2. Observe first that min(|a1−as1 |, |b1−bs1 |) ≥ 1

8w(Is1). Obviously,
there exists an s′1 = s1 +O(log n), such that w(Ij) ≤ 2−13−lognw(Is1) for all j ≥ s′1. Furthermore,

NIj ≤ Nmax := 2O(Γ+logM(σ−1
P)) for all j according to Lemma 24. Thus, if the sequence Is′1 ,

Is′1+1, . . . starts with mmax := max(5, log logNmax + 1) or more consecutive linear subdivision

steps, then NIj′ = 4 and w(Ij′) ≤
w(Is′1

)

4 ≤ 2−13−logn · w(Is1)

4 = 2−13−logn ·w(Is1) ·N−1
Ij′

for some

j′ ≤ s′1 +mmax. Otherwise, there exists a j′ with s′1 ≤ j′ ≤ s′1 +mmax, such that the step from
Ij′ to Ij′+1 is quadratic. Since the length of a sequence of consecutive quadratic subdivision
steps is also bounded by mmax, there must exist a j′′ with j′ + 1 ≤ j′′ ≤ j′ + mmax + 1 such
that the step from Ij′′−1 to Ij′′ is quadratic, whereas the step from Ij′′ to Ij′′+1 is linear. Then,

NIj′′+1
=
√
NIj′′ = NIj′′−1

, and

w(Ij′′+1) ≤ 3

4
w(Ij′′) ≤

3w(Ij′′−1)

4NIj′′−1

≤ 2−13−logn · w(Is1)

NIj′′+1

.

Hence, in any case, there exists an s2 ≤ s1 + 2mmax + 1 with w(Is2) ≤ 2−13−logn · w(Is1)/NIs2 .
We next bound s− s2. We only need to deal with the case that s2 < s, and hence, w(Ij) ≤

2−13−lognN−1
Ij
w(Is1) for all j ≥ s2. For j ≥ s2, we also have

|x− zi| > 2logn+10NIjw(Ij) for all zi /∈M(Ij) and all x ∈ Ij . (35)

From (35) and Lemma 23, we conclude that the step from Ij to Ij+1 is quadratic if j ≥ s2 and

w(Is) ≤ 2−13 · w(Ij)
NIj

. Again, it might also happen that there exists a j ≥ s2 such that the step from

Ij to Ij+1 is quadratic, and yet, w(Is) > 2−13 · w(Ij)
NIj

. If this is the case, then we define s3 to be the

minimal such index; otherwise, we set s3 := s. Clearly, s = s3 +O(1). We can now again apply
Lemma 25. The sequence (w(Is2+i), nIs2+i

)i=1,...,s3−s2 coincides with a sequence (xi, ni)1≤i≤s3−s2
as defined in Lemma 25, where n1 = m = nIs2+1

and w′ := 213 · w(Is). Namely, if w(Is2+i) ·
N−1
Is2+i

≥ w′, then w(Is2+i+1) ≤ w(Is2+i) · N−1
s2+i and nIs2+i+1 = 1 + nIs2+i , whereas we have

w(Is2+i+1) ≤ 3
4w(Is2+i) and nIs2+i+1

= max(nIs2+i
− 1, 1) for w(Is2+i) ·N−1

Is2+i
< w′. It follows

that s3 − s2 is bounded by 8(n1 + log log max(4, w(Is2+1)/w′)) = O(log(Γ + logM(σ−1
P))).

The following theorem now follows immediately from Lemma 26 and our considerations from
the beginning of Section 4.1. For the bound on the size of the subdivision forest when running
the algorithm on a square-free polynomial P of degree n and with integer coefficients of bit-size

28

9

5 2

4

2

1 1

0 2
1

02

0

2 0

0

2

02

11

9

5 2

4

2

2

2 2

2

2

Figure 2: The left figure shows the subdivision tree Tk rooted at the interval Ik, where, for each
node I, the number var(f, I) of sign variations is given (e.g. var(P, Ik) = 9). Special nodes and
terminal nodes are indicated by red squares and black diamonds, respectively. Blue dots indicate
ordinary nodes, which are neither special nor terminal. The right figure shows the subtree T ∗k
obtained by removing all terminal nodes. T ∗k partitions into special nodes and chains of ordinary
nodes connecting two consecutive special nodes.

less than τ , we use that γ = O(log Γ) and log n + log(Γ + logM(σ−1
P)) = O(log(nτ)), which is

due to Lemma 22.

Theorem 27. Let K = log n+ log(Γ + logM(σ−1
P)). The size |T | of the subdivision forest is

O

(
2γ+2∑
k=0

(1 + |M(Ik)| ·K)

)
= O(nK),

where Ik are the intervals as defined in (25), and M(Ik) denotes the set of all roots contained in
the one-circle region ∆(Ik) of Ik. In the case, where the input polynomial has integer coefficients
of bit-size less than τ , the above bound simplifies to

O

(
2γ+2∑
k=0

(1 + |M(Ik)| · log(nτ))

)
= O(n log(nτ)).

We further provide an alternative bound on the number of iterations needed by the algorithm
ANewDSC, which is stated in terms of the number of sign variations vk := var(f, Ik) of f on
the initial intervals Ik instead of the values |M(Ik)|:

Theorem 28. Let K = log n + log(Γ + logM(σ−1
P)). The size |Tk| of the subdivision tree Tk

rooted at the interval Ik is O(var(P, Ik) ·K), and the size of the subdivision forest T is

O

(∑2γ+2

k=0
(1 + var(P, Ik) ·K)

)
.

Proof. Let I1, . . . , Is be a sequence of intervals produced by the algorithm such that Is ⊂ Is−1 ⊂
· · · ⊂ I1 ⊂ Ik, and v = var(P, I1) = · · · = var(P, Is) for some v ∈ N. Notice that v ≤ var(P, Ik)
according to Theorem 13. We first show that s = O(K). For j = 1, . . . , s, let Ln(Ij) and An(Ij)
be the Obreshkoff lens and the Obreshkoff area of Ij , respectively, as defined in Figure 1. Then,

29

from Theorem 12, we conclude that each Ln(Ij) contains at most v roots of P , whereas each
An(Ij) contains at least v roots of P . Using the same argument in as in the proof of Lemma 26
shows that either s = O(K) or there exists an s1 = O(log(Γ + logM(σ−1

P))) such that I1 does
not share any endpoint with Is1 , and the distance between any two endpoints of I1 and Is1
is at least as large as the width w(Is1) of Is1 . Hence, after ` = O(log n), further subdivision
steps, the one-circle region ∆(Is1+`) of Is1+` is completely contained in the lens Ln(I1), and
thus the one-circle region ∆(Ij) of any interval Ij , with j ≥ s2 := s1 + ` = O(K), is contained
in Ln(I1). Since Ln(I1) contains at most v roots, we conclude that |M(Ij)| ≤ v for all j ≥ s2.
The same argument also shows that either s = O(K) or that there exists an s3, with s3 ≤ s and
s− s3 = O(K) such that the one-circle region ∆(Ij) of each interval Ij , with j ≤ s3, contains the
Obreshkoff area An(Is). Thus, we have |M(Ij)| ≥ v for all j ≤ s3 as An(Is) contains at least v
roots. We can assume that s2 ≤ s3 as, otherwise, s ≤ s2 + (s− s3) = O(K). Since |M(Ij)| ≤ v
for all j ≥ s2 and |M(Ij)| ≥ v for all j ≤ s3, we have |M(Ij)| = v for j = s2, . . . , s3. Then,
from Lemma 26, we conclude that s3 − s2 = O(K), and thus also s = O(K). Now, consider the
sub-tree T ∗k of Tk obtained from Tk after removing all intervals I ∈ Tk with var(P, I) ≤ 1; see
also Figure 2. Then, |Tk| ≤ 2 · |T ∗k |+ 1, and thus it suffices to bound the size of T ∗k . We call an
interval I ∈ T ∗k special if it is either the root Ik of T ∗k or if none of its children yields the same
number of sign variations as I. Then, the following argument shows that the number of special
intervals is at most var(P, Ik). We can assume that var(P, Ik) > 1 as otherwise Tk has size 1.
Now, let Ak ⊂ A be the set of all active intervals in Tk produced by the algorithm in a certain
iteration, and define

µ :=
∑

I∈A:I⊆Ik and var(P,I)≥1

(var(P, I)− 1),

then µ decreases by at least one at each special interval, whereas it stays invariant at all other
intervals. Since, µ = var(P, Ik)− 1 at the beginning, and µ ≥ 0 in each iteration, it follows that
there can be at most var(f, Ik) special intervals in T ∗k . Notice that T ∗k splits into special intervals
and chains of intervals I1, . . . , Is connecting two consecutive special intervals I and J , that is,
I ⊂ Is ⊂ · · · ⊂ I1 ⊂ J , and there exists no special interval I ′ with I ⊂ I ′ ⊂ J . Since var(P, Ij)
is invariant for all j = 1, . . . , s, our above considerations show that each such chain has length
O(K). Hence, the claim follows.

Remark. For polynomials P = P0 + · · ·+Pnx
n ∈ Z[x] with integer coefficients, we remark that the

above bound can also be stated in terms of the number v+(P) := var(P0, . . . , Pn) of sign variations
of the coefficient sequence of P , and the number v−(P) := var(P0,−P1, P2, . . . , (−1)n ·Pn) of sign
variations of the coefficient sequence of P (−x): After removing a suitable factor xi, we are left
with a polynomial P̄ = P · x−i, which fulfills |P̄ (0)| ≥ 1, v−(P̄) = v−(P), and v+(P̄) = v+(P).
Let us now estimate the size of the subdivision forest induced by our algorithm when applied
to the polynomial P̄ . In the definition (25) of the intervals Ik = (s∗k, s

∗
k+1), we may choose

s∗γ+1 = sγ = 0 as this does not harm the requirements from (23) posed on the intervals Ik.

Now, because of the sub-additivity of the function var(P̄ , .), it follows that
∑γ+1
k=0 var(P̄ , Ik) ≤

var(P̄ , (s∗0, s
∗
γ+1)) and

∑2γ+2
k=γ+1 var(P̄ , Ik) ≤ var(P̄ , (s∗γ+1, s2γ+2)). The intervals I− := (s∗0, s

∗
γ+1)

and I+ := (s∗γ+1, s2γ+2) are contained in R<0 and in R>0, respectively. Hence, it holds that

var(P̄ , I−) ≤ v−(P̄), and that var(P̄ , I+) ≤ v+(P̄). Theorem 28 then implies that the subdivision
forest has size O(γ +K · (v−(P) + v+(P))) = O((v−(P) + v+(P) + 1) log(nτ)), where τ bounds
the bit size of the coefficients of P . In particular, we obtain:

Theorem 29. Let P ∈ Z[x] be a square-free polynomial of degree n and with integer coefficients
of bit size less than τ . Let k be the number of non-zero coefficients of P . Then, for isolating all
real roots of P , ANewDsc generates a tree of size O(k log(nτ)).

30

Notice that, in the special case, where P is a sparse integer polynomial with only (log(nτ))O(1)

non-vanishing coefficients, our algorithm generates a tree of size (log(nτ))O(1). An illustrative
example of the latter kind are Mignotte polynomials of the form P = xn − (a · x− 1)2, with a an
integer of bit size less than τ . In order to isolate the real roots of P , our algorithm generates
a tree of size (log(nτ))O(1), whereas bisection methods, such as the classical Descartes method,
generate a tree of size Ω(nτ).

4.2 Bit Complexity

In order to bound the bit complexity of our algorithm, we associate a root zi of P with every
interval I in the subdivision forest and argue that the cost (in number of bit operations) of
processing I is

Õ(n(n+ τP + n logM(zi) + logM(P ′(zi)
−1))). (36)

The association is such that each root of P is associated with at most O(smax log n + log Γ)
intervals, and hence, the total bit complexity can be bounded by summing the bound in (36) over
all roots of P and multiplying by smax log n+ log Γ. Theorem 31 results.

We next define the mapping from T to the set of roots of P . Let I be any non-terminal
interval in T . We define a path of intervals starting in I. Assume we have extended the path to an
interval I ′. The path ends in I ′ if I ′ is strongly splitting or if I ′ is terminal; see the introduction
of Section 4.1 for the definitions. If I ′ has a child I ′′ with M(I ′) =M(I ′′), the path continues
to this child. If I ′ has two children J1 and J2 with M(J1) ∪M(J2) =M(I ′), and both M(J1)
and M(J2), are nonempty (and hence max(|M(J1)| , |M(J1)|) < |M(I ′)|), the path continues
to the child with smaller value of |M(∗)|. Ties are broken arbitrarily, but consistently, i.e., all
paths passing through I ′ make the same decision. Let J be the last interval of the path starting
in I. Then, the one-circle region of J contains at least one root that is not contained in the
one-circle region of any child of J . We call any such root z ∈M(J) ⊂M(I) associated with I.
With terminal intervals I that are different from any Ik, we associate the same root as with the
parent interval. With terminal intervals Ik, we associate an arbitrary root. More informally,
with an interval I, we associate a root zi ∈M(I), which is either ”discarded” or isolated when
processing the last interval of the path starting in J .

The path starting in an interval has length at most smax · log n as there are at most smax

intervals I with the same set M(I), and |M(∗)| shrinks by a factor of at least 1/2 whenever the
path goes through a splitting node. There are at most 2 log Γ + 1 intervals Ik with which any root
can be associated, and each root associated with an interval I (Ik cannot be associated with any
interval I ′ (Ik′ with k 6= k′ as the corresponding one-circle regions are disjoint. As a consequence,
any root of P is associated with at most smax · log n+ 2 log Γ + 1 = O(smax log n+ log Γ) intervals.

We next study the complexity of processing an interval I. We first derive a lower bound for
|P | at the subdivision points that are considered when processing I. We introduce the following
notation: For an interval I = (a, b) ∈ T , we call a point ξ special with respect to I (or just special
if there is no ambiguity) if ξ is
(P1) an endpoint of I, that is, ξ = a or ξ = b.
(P2) an admissible point m∗ ∈ m(I)[w(I) · 2−dlogn+2e] as computed in the 1-Test.
(P3) an admissible point ξ∗j ∈ ξj [w(I) · 2−d5+logne] as computed in (26) in the Newton-Test.

(P4) an admissible point a∗j1,j2 ∈ aj1,j2 [2−d5+logne·w(I)
NI

] or an admissible point b∗j1,j2 ∈ bj1,j2 [2−d5+logne·
w(I)
NI

] as computed in (32) in the Newton-Test.

(P5) an admissible point m∗` ∈ m`[2
−d2+logne · w(I)

NI
] or an admissible point m∗r ∈ mr[2

−d2+logne ·
w(I)
NI

] as computed in (34) in the Boundary-Test.
For intervals I with var(P, I) = 0, we have only special points of type (P1), and for intervals with
var(P, I) = 1, we have only special points of type (P1) and type (P2). For other intervals, we

31

consider all types. The following lemma provides a lower bound for the absolute value of P at
special points.

Lemma 30. Let I ∈ T be an arbitrary interval, and let ξ be a special point with respect to I. If
∆(I) contains a root of P , then

|P (ξ)| > 2−40n logn−2τP ·M(zi)
−5n ·min(1, σ(zi, P))5 ·min(1, |P ′(zi)|)5 (37)

for all zi ∈ ∆(I). If ∆(I) contains no root, then ξ fulfills the above inequality for all roots
contained in ∆(J), where J is the parent of I.16

Proof. We will prove the claim via induction on the depth k of an interval I, where the depth of
the intervals Ik is one. According to (23), the endpoints of Ik fulfill inequality (37). Now, if ξ is
a special point (with respect to Ik) of type (P2), then

|P (ξ)| ≥ 1

4
·max{|P (x)| ; x ∈ m(Ik)[w(Ik) · 2−dlogn+2e]}.

Since at least one of the points in m(Ik)[w(Ik) · 2−dlogn+2e] has distance more than w(Ik) ·
2−dlogn+3e > 1

8n to all roots of P , it follows that |P (ξ)| > |Pn|
(8n)n > 2−8n logn, where we use that

|Pn| ≥ 1/4 and w(Ik) ≥ 1. An analogous argument yields |P (ξ)| > 1
(64n)n+1 ≥ 2−8n logn if ξ is a

special point of type (P3) to (P5), where we additionally use NIk = 4 for all k.

For the induction step from k to k + 1, suppose that I = (a, b) is an interval of depth k + 1
with parent interval J = (c, d) of depth k. We distinguish the following cases.

The point ξ is a special point of type (P1): The endpoints of I are either subdivision points (as
constructed in Steps (Q) or (L) in our algorithm) or endpoints of some interval J ′ ∈ T with
I ⊆ J ′. Hence, they are special points with respect to an interval J ′ that contains I. Thus,
from our induction hypothesis (the depth of J ′ is smaller than or equal to k) and the fact that
∆(I) ⊆ ∆(J ′), it follows that the inequality (37) holds for all admissible points ξ of type (P1).

The point ξ is a special point of type (P2): Since var(P, J) ≥ 2, the two-circle region of J contains
at least two roots of P , and thus the disk ∆ := ∆2w(J)(m(I)) with radius 2w(J) centered at the
midpoint m(I) of I contains at least two roots. This shows that σ(zi, P) < 2w(J) for any root

zi ∈ ∆. With ε := w(I) · 2−dlogn+2e and K := w(J)
w(I) · 2

dlogn+3e, we can now use Lemma 10 to

show that

|P (ξ)| > 2−4n−1 ·K−µ(∆)−1 · σ(zi, P) · |P ′(zi)| > 2−8n logn ·
(
w(J)

w(I)

)−µ(∆)−1

· σ(zi, P) · |P ′(zi)|,

(38)

where zi is any root in ∆, and µ(∆) denotes the number of roots contained in ∆. If the subdivision
step from J to I is linear, then w(J)/w(I) ∈ [4/3, 4], and thus the bound in (37) is fulfilled.
Otherwise, we have w(J)/w(I) ∈ [NI , 4NI] = [N2

J , (2NJ)2]. In addition, w(J) ≤ 4w(Ik)/NJ ,
where k is the unique index with J ⊆ Ik. We conclude that NJ ≤ 4w(Ik)/w(J), and thus

w(J)

w(I)
≤ (2NJ)2 ≤

(
8w(Ik)

w(J)

)2

≤ 212 ·M(zi)
2

w(J)2
(39)

16If I = Ik for some k and ∆(I) contains no root, then zi can be chosen arbitrarily.

32

since w(Ik) ≤ 8M(x)2 for all x ∈ Ik. Furthermore, since

|P ′(zi)| = n|Pn| ·
∏

zj∈∆:zj 6=zi

|zi − zj | ·
∏
zj /∈∆

|zi − zj | ≤ n · (2w(J))µ(∆)−1 ·
∏
zj /∈∆

|zi − zj |

≤ n · 2n · w(J)µ(∆)−1 ·
∏
zj /∈∆

M(zi − zj) ≤ n · 2n · w(J)µ(∆)−1 · Mea(P (zi − x))

|Pn|

≤ n · 2n · w(J)µ(∆)−1 · 2τP 2nM(zi)
n < 24n+τP ·M(zi)

n · w(J)µ(∆)−1,

it follows that

w(J)−µ(∆)−1 = w(J)−µ(∆)+1w(J)−2 <
28n+τP ·M(zi)

n

σ(zi, P)2 · |P ′(zi)|
,

where we used that 2w(J) > σ(zi, P) in order to bound w(J)−2. Hence, it follows from (39) that(
w(J)

w(I)

)−µ(∆)−1

≥
(
212 ·M(zi)

2 · w(J)−2
)−µ(∆)−1

≥ 2−12(n+1) ·M(zi)
−2(n+1) · 2−16n−2τP ·M(zi)

−2nσ(zi, P)4 · |P ′(zi)|4

> 2−32n−2τP ·M(zi)
−5n · σ(zi, P)4 · |P ′(zi)|4.

Plugging the latter inequality into (38) eventually yields

|P (ξ)| > 2−8n logn·
(
w(J)

w(I)

)−µ(∆)−1

·σ(zi, P)·|P ′(zi)| > 2−40n logn−2τP ·M(zi)
−5n·σ(zi, P)5·|P ′(zi)|5.

Thus, ξ fulfills the bound (37).

The point ξ is a special point of type (P3): The same argument as in the preceding case also
works here. Namely, each disk ∆ := ∆2w(J)(ξj) with radius 2w(J) centered at the point ξj
contains at least two roots, and thus we can use Lemma 10 with ε := w(I) · 2−dlogn+5e and

K := w(J)
w(I) · 2

dlogn+6e.

The point ξ is a special point of type (P4): The Newton-Test is only performed if the 0-Test and the
1-Test have failed. Hence, we must have var(P, I) ≥ 2, and thus, each disk ∆ := ∆2w(I)(x0) with
radius 2w(I) centered at any point x0 ∈ I contains at least two roots. We use this fact x0 = aj1,j2
and x0 = bj1,j2 and obtain, using Lemma 10 with ε := w(I)

NI
· 2−dlogn+5e and K := NI · 2dlogn+4e,

|P (ξ)| > 2−4n−1 ·K−µ(∆)−1 · σ(zi, P) · |P ′(zi)| > 2−8n logn ·N−µ(∆)−1
I · σ(zi, P) · |P ′(zi)|. (40)

If the subdivision step from J to I is linear, then NI ≤ NJ ≤ 4w(Ik)/w(J), where k is the unique
index with J ⊆ Ik. If the step from J to I is quadratic, then NI = N2

J ≤ (4w(Ik)/w(J))2. Now,
the same argument as in the type (P2) case (see (39) and the succeeding computation) shows that

N
−µ(∆)−1
I ≥

(
4w(Ik)

w(J)

)−µ(∆)−1

≥
(
210 ·M(zi)

2 · w(J)−2
)−µ(∆)−1

≥ 2−32n−2τP ·M(zi)
−5n · σ(zi, P)4 · |P ′(zi)|4,

and thus

|P (ξ)| > 2−8n logn ·N−µ(∆)−1
I ·σ(zi, P) · |P ′(zi)| > 2−40n logn−2τP ·M(zi)

−5n ·σ(zi, P)5 · |P ′(zi)|5.

The point ξ is a special point of type (P5): The same argument as in the previous case works
since the Boundary-Test is only applied if var(P, I) ≥ 2.

33

We can now derive our final result on the bit complexity of ANewDsc:

Theorem 31 (Restatement of Theorem 1). Let P = Pnx
n + . . . + P0 ∈ R[x] be a real

polynomial with 1/4 ≤ |Pn| ≤ 1. The algorithm ANewDsc computes isolating intervals for all
real roots of P with a number of bit operations bounded by

Õ(n · (n2 + n log Mea(P) +

n∑
i=1

logM(P ′(zi)
−1))) (41)

= Õ(n(n2 + n log Mea(P) + logM(Disc(P)−1))). (42)

The coefficients of P have to be approximated with quality

Õ(n+ τP + max
i

(n logM(zi) + logM(P ′(zi)
−1))).

Proof. We first derive an upper bound on the cost for processing an interval I ∈ T . Suppose that
∆(I) contains at least one root: When processing I, we consider a constant number of special
points ξ with respect to I. Since each of these points fulfills the inequality (37), we conclude from
Lemma 8 that the computation of all special points ξ uses

Õ(n(n+ τP + n logM(zi) + logM(σ(zi, P)−1) + logM(P ′(zi)
−1))) (43)

bit operations, where zi is any root contained in ∆(I). We remark that when applying Lemma 8,
we used (23) which implies that logM(x) ≤ 2(1 + logM(zi)) for all x ∈ I and all zi ∈ ∆(I).

In addition, Corollary 18 and Corollary 21 yield the same complexity bound as stated in (43)
for each of the considered 0-Tests and 1-Tests. Since we perform only a constant number of such
tests for I, the bound in (43) applies to all 0-Tests and 1-Tests.

It remains to bound the cost for the computation of the values λ̃j1,j2 in the Newton-Test:
According to the remark following Step (2.2) in the description of the Newton-Test, it suffices to
evaluate P and P ′ at the points ξ∗j1 and ξ∗j2 to an absolute precision of

O(log n+ logNI + logM(P (ξ∗j1)−1 + logM(P (ξ∗j2)−1) + logM(w(I)−1) + logM(w(I))).

Thus, according to Lemma 5 and Lemma 30, the total cost for this step is bounded by

Õ(n(n+ τP + n logM(zi) + logM(σ(zi, P)−1) + logM(P ′(zi)
−1))

bit operations, where zi is any root contained in ∆(I). Here, we used the fact that 2w(I) > σ(zi, P)
(notice that var(P, I) ≥ 2, and thus, the two-circle region of I contains at least two roots) and
that logNI = O(logM(σ(zi, P)−1) + logM(zi)) as shown in the proof of Lemma 30. In summary,
for any interval I whose one-circle region contains at least one root, the cost for processing I is
bounded by (43). A completely analogous argument further shows that, for intervals I whose
one-circle region does not contain any root, the cost for processing I is also bounded by (43),
where zi is any root in ∆(J) and J ∈ T is the parent of I.

Since we can choose an arbitrary root zi ∈M(I) (or zi ∈M(J) for the parent J of I if M(I)
is empty) in the above bound, we can express the cost of processing an interval I in terms of
the root associated with I. Since any root of P has at most O(smax log n + log Γ) many roots
associated with it, the total cost for processing all intervals is bounded by

Õ(n · (n2 + n log Mea(P) +

n∑
i=1

logM(σ(zi, P)−1) +

n∑
i=1

logM(P ′(zi)
−1)))

bit operations, where we used that
∑n
i=1 logM(zi) = log Mea(P)

|Pn| , τP ≤ n+ log Mea(P), and that

the factor smax log n+log Γ is swallowed by Õ. We can further discard the sum
∑n
i=1 logM(σ(zi, P)−1)

34

in the above complexity bound. Namely, if zk denotes the root with minimal distance to zi, then
(we use inequality (20))

σ(zi, P) ≥ |P ′(zi)|
|Pn| ·

∏
j 6=k,i |zj − zi|

≥ |P ′(zi)|
Mea(P (z − zi))

≥ |P ′(zi)|
2τP · 2n ·M(zi)n

,

and thus,
∑n
i=1 logM(σ(zi, P)−1) = O(n2 + n log Mea(P) +

∑n
i=1 logM(P ′(zi)

−1). Since the

cost for the computation of Γ is bounded by Õ(n2ΓP) = Õ(n2 ·M(log Mea(P))) bit operations,
the bound follows.

For the alternative bound, we use inequalities (19) and (21).

For the special case where the input polynomial p has integer coefficients, we can specify the
above complexity bound to obtain the following result:

Corollary 32 (Restatement of Theorem 2). For a polynomial p(x) = pn ·xn+ · · ·+p0 ∈ Z[x]
with integer coefficients of absolute value 2τ or less, the algorithm ANewDsc computes isolating
intervals for all real roots of p with Õ(n3 + n2τ) bit operations. If p has only k non-vanishing
coefficients, the bound becomes Õ(n2(k + τ)) bit operations.

Proof. We first compute a t ∈ N with 2t−1 ≤ |pn| < 2t. Then, we apply ANewDsc to
the polynomial P := 2−t · p whose leading coefficient has absolute value between 1/2 and
1. The complexity bound now follows directly from Theorem 31, where we use that τP ≤ τ ,
Mea(P) ≤ Mea(p) ≤ (n+ 1)2τ (inequality (15)), Disc(P) = 2−(2n−2)t ·Disc(p), and the fact that
the discriminant of an integer polynomial is integral.

For a polynomial with k non-vanishing coefficients, ANewDsc needs O(k · (log n+ log(Γ +
logM(σ−1

p)))) = O(k · log(nτ)) iterations to isolate the real roots of p, where k is defined as the
number of non-vanishing coefficients of p, by Theorem 29. The bound stated follows.

5 Root Refinement

In the previous sections, we focused on the problem of isolating all real roots of a square-free
polynomial P ∈ R[x]. Given sufficiently good approximations of the coefficients of P , our
algorithm ANewDsc returns isolating intervals I1 to Im with the property that var(P, Ik) = 1 for
all k = 1, . . . ,m. This is sufficient for some applications (existence of real roots, computation of the
number of real roots, etc.); however, many other applications also need very good approximations of
the roots. In particular, this holds for algorithms to compute a cylindrical algebraic decomposition,
where we have to approximate polynomials whose coefficients are polynomial expressions in the
root of some other polynomial.17

In this section, we show that our algorithm ANewDsc can be easily modified to further
refine the intervals Ik to a width less than 2−κ, where κ is any positive integer. Furthermore,
our analysis in Sections 5.2 and 5.3 shows that the cost for the refinement is the same as for
isolating the roots plus Õ(n · κ). Hence, as a bound in κ, the latter bound is optimal (up to
logarithmic factors) since the amortized cost per root and bit of precision is logarithmic in n and κ.

Throughout this section, we assume that z1 to zm are exactly the real roots of P and that
Ik = (ak, bk), with k = 1, . . . ,m, are corresponding isolating intervals as computed by ANewDsc.
In particular, it holds that var(P, Ik) = 1. According to Theorem 12, the Obreshkoff lens Ln of

17For instance, when computing the topology of an algebraic curve defined as the real valued zero set of a
bivariate polynomial f(x, y) ∈ Z[x, y], many algorithms compute the real roots α of the resultant polynomial
R(x) := res(f, fy ; y) ∈ Z[x] first and then isolate the real roots of the fiber polynomials f(α, y) ∈ R[y]. The second
step requires very good approximations of the root α in order to obtain good approximations of the coefficients of
f(α, y).

35

each interval Ik is also isolating for the root zk. Hence, from the proof of [36, Lemma 5] (see
also [36, Figure 3.1]), we conclude that

|x− zj | >
min(|x− ak|, |x− bk|)

4n
for all x ∈ Ik and all j 6= k. (44)

5.1 The Refinement Algorithm

We modify ANewDsc so as to obtain an efficient algorithm for root refinement. The modification
is based on two observations, namely that we can work with a simpler notion of multipoints and
that we can replace the 0-Test and the 1-Test with a simpler test based on the sign of P at the
endpoints of an interval. In ANewDsc, we used:

(A) computation of an admissible point m∗ ∈ m[ε], where

m[ε] := {mi := m+ (i− dn/2e) · ε ; i = 0, . . . , 2 · dn/2e}

is a multipoint of size 2 · dn/2e+ 1.

(B) execution of the 0-Test/1-Test for an interval (a′, b′) ⊂ (a, b), where a′ and b′ are admissible
points of corresponding multipoints contained in I.18

The reason for putting more than n points into a multipoint was to guarantee, that at least one
constituent point has a reasonable distance from all roots contained in the interval. Now, we
are working on intervals containing only one root, and hence, can use multipoints consisting of
only two points. An interval known to contain at most one root of P contains no root if the
signs of the polynomial at the endpoints are equal and contains a root if the signs are distinct
(this assumes that the polynomial is nonzero at the endpoints). We will, therefore, work with the
following modifications when processing an interval I ⊂ Ik:

(A’) computation of an admissible point m∗ ∈ m[ε]′, where

m[ε]′ = {m′1,m′2} := {m− dn/2eε,m+ dn/2eε} ⊂ m[ε]

consists of the first and the last point from m[ε] only.19

(B’) execution of a sign-test on an interval I ′ = (a′, b′) ⊂ (a, b) (i.e., the computation of
sgn(f(a′) · f(b′))), where a′ and b′ are admissible points in some m[ε]′.20

We now give details of our refinement method which we denote Refine. As input, Refine
receives isolating intervals I1 to Im for the real roots of P as computed by ANewDsc and a
positive integer κ. It returns isolating intervals Jk, with Jk ⊂ Ik and width w(Jk) < 2−κ.

Algorithm: Refine

Input: A polynomial P (x) as in (2), isolating intervals Ij for the real roots of P with
var(P, Ij) = 1 for j = 1, . . . ,m, and a positive integer κ.

Output: Isolating intervals I ′j for the real roots of P with I ′j ⊆ Ij and w(I ′j) < 2−κ for

18Notice that this step also uses the computation of admissible points.
19In fact, one can show that choosing two arbitrary points from m[ε] does not affect any of the following results.
20More precisely, we compute s := sgn(P (a′) · P (b′)). If s > 0, then I′ contains no root. If s < 0, then I′

isolates the root zk. Since var(P, Ik) = 1, it follows that s > 0 if and only if var(P, I′) = 0, and s < 0 if and only if
var(P, I′) = 1.

36

j = 1, . . . ,m.

(1) A := {(Ij , 4)}j=1,...,m and O := ∅.

(2) while A 6= ∅ do

(2.1) Choose an arbitrary pair (I,NI) from A, with I = (a, b), and remove (I,NI)
from A

(2.2) Run the Boundary-Test and the Newton-Test with input P and I, where the
steps in (A) and (B) are replaced by the respective modifications in (A’) and (B’).

(2.3) If one of the tests in Step (2.2) returns True and an interval I ′ ⊆ I, then add I
to O if w(I ′) < 2−κ, and add (I ′, NI′) = (I ′, N2

I) to A if w(I ′) ≥ 2−κ. Then, go
to Step (2.1).

(quadratic step)

(2.4) Compute an admissible point m∗ ∈ m(I)[w(I)
2d2+logne]

′ using the algorithm Admis-
sible Point.

(2.4.1) I ′ := (a,m∗), I ′′ := (m∗, b), and NI′ := NI′′ := max(4,
√
NI).

(2.4.2) If P (a′) · P (m∗) < 0 and w(I ′) < 2−κ, add I ′ to O.

(2.4.3) If P (a′) · P (m∗) < 0 and w(I ′) ≥ 2−κ, add (I ′, NI′) to A.

(2.4.4) If P (a′) · P (m∗) > 0 and w(I ′′) < 2−κ, add I ′′ to O.

(2.4.5) If P (a′) · P (m∗) > 0 and w(I ′′) ≥ 2−κ, add (I ′′, NI′′) to A.

(linear step)

(3) return O

The reader may notice that, in comparison to ANewDsc, there are only a constant number of
polynomial evaluations at each node, and thus, there is no immediate need to use an algorithm
for fast approximate multipoint evaluation.21 Namely, when processing a certain interval I ∈ A,
we have to compute admissible points m∗ ∈ m[ε]′ for a constant number of m[ε]′, and each m[ε]′

consists of two points (i.e., m′1 = m − dn/2e and m′2 = m + dn/2e) only. For computing an
admissible point m∗, we evaluate P (x) at x = m′1 and x = m′2 to an absolute error less than 2−L,
where L = 1, 2, 4, 8 We stop as soon as we have computed a 4-approximation for at least one
of the values P (m′1) and P (m′2). The cost for each such computation is bounded by

Õ(n(τp + n log max(M(m′1),M(m′2)) + logM(max(|P (m′1|, |P (m′2)|)−1))) (45)

bit operations; see the proof of Lemma 5.

5.2 Analysis

We first derive bounds on the number of iterations that Refine needs to refine an isolating
interval Ik to a size less than 2−κ.

Lemma 33. For refining an interval Ik to a size less than 2−κ, Refine needs at most

smax,k · |M(Ik)| = O((log n+ log(logM(zk) + κ))) · |M(Ik)|

iterations, where smax,k has size O(log n+ log(logM(zk) +κ)) = O(log n+ log(Γ +κ)) and M(Ik)
is the set of roots contained in the one-circle region of Ik. The total number of iterations to refine
all intervals Ik to a size less than 2−κ is Õ(n(log n+ log(Γ + κ))).

21However, we will later show how to make good use of approximate multipoint evaluation in order to improve
the worst case bit complexity.

37

Proof. Similar as in the proof of Lemma 24, we first derive upper and lower bounds for the values
NI and w(I), respectively, where I ⊂ Ik is an active interval produced by Refine. According
to property (23), we have w(I) ≤ w(Ik) ≤ 4 ·M(zk)2. Hence, it follows that either NI = 4 or
w(I) ≤ w(Ik)/

√
NI ≤ 4 ·M(zk)2/

√
NI , and thus, (notice that w(I) ≥ 2−κ)

NI ≤ 16 · M(zk)4

w(I)2
≤ 24(Γ+1)+2κ.

Furthermore, for each interval I ⊂ Ik produced by Refine, we have

min(2Γ, 4M(zk)2) ≥ w(I) ≥ w(J)

NJ
≥ 2−3κ−4(Γ+1),

where J is the parent interval of I of size w(J) ≥ 2−κ. The bound for the number of iterations is
then an immediate consequence of Lemma 23 and of our considerations in the proof of Lemma 26.
Namely, exactly the same argument as in the proof of Lemma 26 shows that the maximal length of
any path between splitting nodes, denoted s′max,k, is O(log n+ log(logM(zk) + κ)),22 and thus the

path from Ik to the refined interval Jk ⊂ Ik of size less than 2−κ has length s′max,k · |M(Ik)|.

In the next step, we estimate the cost for processing an active interval I.

Lemma 34. For an active interval I ⊂ Ik of size w(I) ≥ σ(zk, P)/2, the cost for processing I is
bounded by

Õ(n(n+ τP + n logM(zi) + logM(P ′(zi)
−1))),

where zi is any root contained in the one-circle region of I. If w(I) < σ(zk, P)/2, the cost for
processing I is bounded by

Õ(n(κ+ n+ τP + n logM(zk) + logM(P ′(zk)−1))).

Proof. Suppose that w(I) ≥ σ(zk, P)/2, and let ξ ∈ m[ε]′ be an admissible point that is computed
when processing I. For at least one of the two points (w.l.o.g. say m′1) in m[ε]′, the distance to
the root zk as well as the distance to both endpoints of I is at least dn/2e · ε ≥ n · ε/2. Hence,
from inequality (44) we conclude that the distance from m′1 to any root of P is at least ε/8. Now,
exactly the same argument as in the proof of Lemma 10 (with xi0 := m′1) shows that

|P (ξ)| > 2−6n−1 ·K−µ(∆)−1 · σ(zi, P) · |P ′(zi)| for all zi ∈ ∆,

where K ≥ 2 · dn/2e is any positive real value, such that the disk ∆ := ∆K·ε(m) contains at least
two roots of P . Since w(I) ≥ σ(zk, P)/2, it further follows that the disk ∆2w(I)(m(I)) contains
at least two roots. Thus, we can use the same argument as in the proof of Lemma 30 (type
(P2)-(P5) cases) to prove that the inequality (37) holds for ξ. In addition, inequality (37) also
holds for the endpoints of Ik (as already proven in the analysis of the root isolation algorithm),
and thus, by induction, it holds for the endpoints of any node I ⊂ Ik. Hence, when processing I,
there are a constant number of approximate polynomial evaluations with a precision bounded by

O(n log n+ τP + n logM(zi) + logM(σ(zi, P)−1) + logM(P ′(zi)
−1))

O(n log n+ τP + n logM(zi) + logM(P ′(zi)
−1)), (46)

where we again used that logM(σ(zk, P)−1) = O(n logM(zi) + τP + logM(P ′(zi)
−1)). This

proves the first part; see the proof of Theorem 31 and Lemma 5.

22For Refine, a node I is splitting if either I is terminal (i.e., w(I) < 2−κ) or M(I) 6=M(I′) for the child I′

of I. If I∗k denotes the first node whose one-circle region isolates the root zk (i.e. |M(I∗k)| = 1), then it follows
that the path connecting I∗k with Jk has length less than or equal to s′max,k.

38

For the second part, we now assume that w(I) < σ(zk, P)/2. Let ξ ∈ m[ε]′ be an admissible
point that is considered when processing I. Then, the disk ∆w(I)(m(I)) contains the root zk but
no other root of P . Hence, for any x ∈ I, it holds that

|P (x)| = |Pn| · |x− zk| ·
∏
i 6=k

|x− zi| ≥ |Pn| · |x− zk| ·
∏
i 6=k

|zk − zi|
4

= |x− zk| ·
|P ′(zk)|
22(n−1)

.

Since the distance of at least one of the two points in m[ε]′ (w.l.o.g. say m′1) to the root zk is
larger than or equal to nε/2 ≥ w(I)/(8NI), it follows that

|P (ξ)| ≥ |P (m′1)|
4

≥ 1

4
· w(I)

8NI
· 2−2(n−1) · |P ′(zk)|

≥ w(I)3

29M(zk)4
· 2−2(n−1) · |P ′(zk)| > 2−4Γ−3κ−2n−7 · |P ′(zk)|,

where we used the bounds for w(I) and NI as computed in the proof of Lemma 33. Furthermore,
the endpoints of I fulfill the inequality (37), and thus all approximate polynomial evaluations
(when processing I) are carried out with an absolute precision of

O(logM(w(I)−1) + n log n+ τP + n · logM(zk) + logM(σ(zk, P)−1) + logM(P ′(zk)−1)) =

O(κ+ n log n+ τP + n · logM(zk) + logM(P ′(zk)−1)) (47)

This proves the second claim.

Combining Lemma 33 and Lemma 34 now yields the following result:

Theorem 35. The cost for refining Ik to an interval of size less than 2−κ is bounded by

Õ(nκ+
∑

i:zi∈M(Ik)

n(n+ τP + n logM(zi) + logM(P ′(zi)
−1))).

The cost for refining all isolating intervals to a size less than 2−κ is bounded by

Õ(n2κ+ n(n2 + n log Mea(P) +

n∑
i=1

logM(P ′(zi)
−1))). (48)

Proof. We split the total cost into those for refining the interval Ik to a size less than σ(zk, P)/2
and into those for the additional refinement steps until the interval has size less than 2−κ.
For the latter cost, we remark that |M(I)| = 1 if I is an isolating interval for zk of width
w(I) < σ(zk, P)/2. Hence, there are at most s′max,k refinement steps of I, each of cost Õ(n(κ+

n + τP + n logM(zk) + logM(P ′(zk)−1))). It remains to bound the cost for refining Ik to a
width of less than σ(zk, P)/2. According to Lemma 34, the cost for processing an interval I of
width w(I) ≥ σ(zk, P)/2 is bounded by Õ(n(n+ τP + n logM(zi) + logM(P ′(zi)

−1))), where we
can choose an arbitrary root zi ∈ M(I). If we choose the root zi that is associated23 with I,
then each root in M(Ik) is considered at most s′max,k many times. Thus, the first complexity
bound follows. The bound (48) for the total cost for refining all intervals follows immediately
from the first bound and from the fact that the one-circle regions of the intervals Ik are pairwise
disjoint.

23Essentially, we use the the same definition as in Section 4.2. More precisely, we say that a root zi is associated
with I if zi ∈M(I) and the number of children I′ ⊂ I with zi ∈M(I′) is minimal for all roots in M(I). Notice
that each root zi ∈ ∆(Ik) is associated with at most s′max,k intervals; see Lemma 33.

39

5.3 Asymptotic Improvements

In this section, we show that our complexity bound (48) for refining all intervals can be further
improved, that is, the term n2κ can be replaced by nκ. We achieve this result by using fast
approximate multipoint evaluation. For an integer l, with 0 ≤ l ≤ log κ+ 1, we consider all active

intervals in the refinement process whose width is larger than or equal to 2−2l . We call each such
interval an l-active interval. We start with l = 0 and proceed in rounds: For a fixed l, let (w.l.o.g.)
I ′1, . . . , I

′
m(l), with m(l) ≤ m and I ′k ⊂ Ik, be all l-active intervals. The crucial idea is now to

carry out the polynomial evaluations for each of the l-active intervals ”in parallel” by using fast
approximate multipoint evaluation. That is, instead of computing admissible points m∗k of mk[εk]′

for each interval I ′k independently, we aggregate these evaluations in one multipoint evaluation.

We continue refining all l-active intervals in this way until all intervals have size less than 2−2l .
Once this happens, we proceed in the same manner with l := l + 1. Notice that after a few

iterations (for a fixed l) some of the l-active intervals might become smaller than 2−2l , whereas

other intervals are still l-active. Intervals which become smaller than 2−2l are then not considered
anymore in this round. The cost for each multipoint evaluation is comparable to the cost of the
most expensive individual evaluation multiplied by a logarithmic factor. Furthermore, in each
iteration, a constant number of multipoint evaluations is sufficient because for each interval I ′k,
there are only constantly many evaluations. Hence, the cost for each iteration is bounded by

Õ(n(2l + n+ τP + n · logM(zi) +M(P ′(zi)
−1)), (49)

where zi is any root in the one-circle region of the interval I ′k0 , and I ′k0 is the interval for which the

highest precision is needed; see (46) and (47), and use that w(I ′k0) ≥ 2−2l . We now distinguish
the following three cases:

(1) l = 0: The cost in (49) is bounded by

Õ(n(n+ τP + n · logM(zi) +M(P ′(zi)
−1)).

We allocate the cost to a root zi that is associated to the interval I ′k0 .

(2) l > 0 and there exists an interval I ′k with M(I ′k) > 1: Since 2−2l−1

> w(I ′k) ≥ 2−2l , each

root zi in M(Ik) has separation σ(zi, P) < 2−2l−1

, and thus, replacing the term 2l in (49)
by logM(σ(zi, P)−1) yields

Õ(n(logM(σ(zi, P)−1) + n+ τP + n · logM(zj) +M(P ′(zj)
−1)),

where zi is some root in M(I ′k) and zj is some root in M(I ′k0). We allocate the cost to
roots zi and zj that are associated to the intervals I ′k and I ′k0 , respectively.

(3) l > 0 and M(I ′k) = 1 for all k = 1, . . . ,m(l): We allocate the cost to a root zi that is
associated to I ′k0 .

It remains to sum up the cost over all iterations. The sum over all iterations of type (1) and
(2) is bounded by

Õ(n(n2 + n log Mea(P) +

n∑
i=1

logM(σ(zi, P)−1) +

n∑
i=1

logM(P ′(zi)
−1))) =

Õ(n(n2 + n log Mea(P) +

n∑
i=1

logM(P ′(zi)
−1)))

40

because the cost of an iteration is allocated to a certain root zi only a logarithmic number of
times. For the sum over all iterations of type (3), we remark that, for a certain l, there can be
at most maxk=1,...,m s

′
max,k iterations of type (3). Namely, the number of iterations to refine a

certain interval I ′k with M(I ′k) = 1 to a size less than 2−κ is bounded by s′max,k. Hence, the sum

of the first term n · 2l in (49) over all l is bounded by maxk=1,...,m smax,k · n · κ. The sum over
the remaining term is again bounded by

Õ(n(n2 + n log Mea(P) +

n∑
i=1

logM(P ′(zi)
−1)))

because the cost of an iteration is allocated to a certain root zi only a logarithmic number of
times. We summarize:

Theorem 36 (Restatement of Theorem 3). Let P = Pnx
n + . . . + P0 ∈ R[x] be a real

polynomial with 1/4 ≤ |Pn| ≤ 1, and let κ be a positive integer. Computing isolating intervals of
size less than 2−κ for all real roots needs a number of bit operations bounded by

Õ(n · (κ+ n2 + n log Mea(P) +

n∑
i=1

logM(P ′(zi)
−1))) (50)

= Õ(n · (κ+ n2 + n log Mea(P) + logM(Disc(P)−1))). (51)

The coefficients of P have to be approximated with quality

Õ(κ+ n+ τP + max
i

(n logM(zi) + logM(P ′(zi)
−1))).

For a polynomial P with integer coefficients of size less than 2τ , computing isolating intervals of
size less than 2−κ for all real roots needs Õ(n(n2 + nτ + κ)) bit operations.

6 Conclusion

We have introduced a novel subdivision algorithm, denoted ANewDsc, to compute isolating
intervals for the real roots of a square-free polynomial with real coefficients. The algorithm can
also be used to further refine the isolating intervals to an arbitrary small size.

In our approach, we combine the Descartes method with Newton iteration and approximate
(but certified) arithmetic. As a result, ANewDsc uses an almost optimal number of iterations,
and the precision demand as well as the working precision are directly related to the actual
geometric locations of the roots; hence, the algorithm adapts to the actual hardness of the input.
The bit complexity of our method matches that of Pan’s method from 2002, which is the best
algorithm known and goes back to Schönhage’s splitting circle method from 1982. By comparison,
our approach is completely different from Pan’s method and, in addition, it is simpler. Because
of its simpleness, we consider our algorithm to be well suited for an efficient implementation.
Furthermore, it can be used to isolate the roots in a given interval only, whereas Pan’s method
has to compute all complex roots at the same time.

The first author, A. Kobel, and F. Rouillier are currently working on an implementation of
ANewDsc. More precisely, they are considering a randomized version of the algorithm, where
admissible (subdivision) points at chosen randomly and not via approximate multipoint evaluation
as proposed in this paper (see Section 2.2). They expect the randomized version to show good
practical behavior. It may even have an expected bit complexity comparable to the algorithm
presented in this paper.

41

References

[1] J. Abbott. Quadratic Interval Refinement for Real Roots. Communications in Computer
Algebra, 28:3–12, 2014. Poster presented at the International Symposium on Symbolic and
Algebraic Computation (ISSAC), 2006.

[2] A. G. Akritas and A. Strzeboński. A comparative study of two real root isolation methods.
Nonlinear Analysis:Modelling and Control, 10(4):297–304, 2005.

[3] A. Alesina and M. Galuzzi. A new proof of Vincent’s theorem. L’Enseignement Mathematique,
44:219–256, 1998.

[4] D. Bini and G. Fiorentino. Design, Analysis, and Implementation of a Multiprecision
Polynomial Rootfinder. Numerical Algorithms, 23:127–173, 2000.

[5] M. Burr and F. Krahmer. Sqfreeeval: An (almost) optimal real-root isolation algorithm.
Journal of Symbolic Computation, 47(2):153–166, 2012.

[6] G. E. Collins. Continued fraction real root isolation using the Hong bound. Journal of
Symbolic Computation, 2014. in press.

[7] G. E. Collins and A. G. Akritas. Polynomial real root isolation using Descartes’ rule of signs.
In Symposium on symbolic and algebraic computation (SYMSAC), pages 272–275, 1976.

[8] Z. Du, V. Sharma, and C. Yap. Amortized bounds for root isolation via Sturm sequences.
In Symbolic Numeric Computation (SNC), pages 113–130, 2007.

[9] A. Eigenwillig. Real Root Isolation for Exact and Approximate Polynomials Using Descartes’
Rule of Signs. PhD thesis, Saarland University, 2008.

[10] A. Eigenwillig, L. Kettner, W. Krandick, K. Mehlhorn, S. Schmitt, and N. Wolpert. A
Descartes algorithm for polynomials with bit-stream coefficients. In Computer Algebra in
Scientific Computation (CASC), pages 138–149, 2005.

[11] A. Eigenwillig, V. Sharma, and C. K. Yap. Almost tight recursion tree bounds for the
descartes method. In International Symposium on Symbolic and Algebraic Computation
(ISSAC), pages 71–78, 2006.

[12] I. Z. Emiris, V. Y. Pan, and E. P. Tsigaridas. Algebraic algorithms. In Computing Handbook,
Third Edition: Computer Science and Software Engineering, pages 10: 1–30. 2014.

[13] S. Fortune. An iterated eigenvalue algorithm for approximating roots of univariate polyno-
mials. Journal of Symbolic Computation, 33(5):627–646, 2002.

[14] X. Gourdon. Combinatoire, Algorithmique et Géométrie des Polynomes. PhD thesis, École
Polytechnique, 1996.

[15] M. Hemmer, E. P. Tsigaridas, Z. Zafeirakopoulos, I. Z. Emiris, M. I. Karavelas, and
B. Mourrain. Experimental evaluation and cross-benchmarking of univariate real solvers. In
Symbolic Numeric Computation (SNC), pages 45–54, 2009.

[16] J. R. Johnson and W. Krandick. Polynomial real root isolation using approximate arithmetic.
In International Symposium on Symbolic and Algebraic Computation (ISSAC), pages 225–232,
1997.

[17] N. Kamath. Subdivision Algorithms for Complex Root Isolation: Empirical Comparisons.
Master’s thesis, Kellogg College, University of Oxford, 2010.

42

[18] M. Kerber and M. Sagraloff. Root refinement for real polynomials using quadratic interval
refinement. Journal of Computational and Applied Mathematics, 280:377–395, 2015. a
preliminary version appeared in the proceedings of the International Symposium on Symbolic
and Algebraic Computation (ISSAC), 2011.

[19] P. Kirrinnis. Partial fraction decomposition in (z) and simultaneous newton iteration for
factorization in C[z]. Journal of Complexity, 14(3):378–444, 1998.

[20] A. Kobel, F. Rouillier, and M. Sagraloff. personal communication.

[21] A. Kobel and M. Sagraloff. Fast approximate polynomial multipoint evaluation and applica-
tions. CORR, abs/1304.8069, 2013.

[22] A. Kobel and M. Sagraloff. On the complexity of computing with planar algebraic curves.
Journal of Complexity, 31(2):206–236, 2014.

[23] J. M. McNamee. A 2002 update of the supplementary bibliography on roots of polynomials.
Journal of Computational and Applied Mathematics, 142(2):433–434, 2002.

[24] J. M. McNamee. Numerical Methods for Roots of Polynomials. Number 1 in Studies in
Computational Mathematics. Elsevier Science, 2007.

[25] J. M. McNamee and V. Y. Pan. Numerical Methods for Roots of Polynomials. Number 2 in
Studies in Computational Mathematics. Elsevier Science, 2013.

[26] K. Mehlhorn, M. Sagraloff, and P. Wang. From approximate factorization to root isolation
with application to cylindrical algebraic decomposition. Journal of Symbolic Computation,
66:34–69, 2015. A preliminary version appeared in the proceedings of the International
Symposium on Symbolic and Algebraic Computation (ISSAC), 2013.

[27] M. Mignotte. Mathematics for Computer Algebra. Springer, 1992.

[28] N. Obreshkoff. Verteilung und Berechnung der Nullstellen reeller Polynome. VEB Deutscher
Verlag der Wissenschaften, 1963.

[29] N. Obreshkoff. Zeros of Polynomials. Marina Drinov, Sofia, 2003. Translation of the
Bulgarian original.

[30] V. Pan. Univariate Polynomials: Nearly Optimal Algorithms for Numerical Factorization
and Root Finding. Journal of Symbolic Computation, 33(5):701–733, 2002.

[31] V. Pan and E. Tsigaridas. On the boolean complexity of real root refinement. In International
Symposium on Symbolic and Algebraic Computation (ISSAC), pages 1–8, 2013.

[32] V. Y. Pan. Solving a polynomial equation: Some history and recent progress. SIAM Review,
39(2):187–220, 1997.

[33] J. Renegar. On the worst-case arithmetic complexity of approximating zeros of polynomials.
Journal of Complexity, 3(2):90–113, 1987.

[34] P. Ritzmann. A fast numerical algorithm for the composition of power series with complex
coefficients. Theoretical Computer Science, 44(0):1 – 16, 1986.

[35] F. Rouillier and P. Zimmermann. Efficient isolation of [a] polynomial’s real roots. Journal of
Computational and Applied Mathematics, 162:33–50, 2004.

43

[36] M. Sagraloff. When Newton meets Descartes: A simple and fast algorithm to isolate the real
roots of a polynomial. In International Symposium on Symbolic and Algebraic Computation
(ISSAC), pages 297–304, 2012.

[37] M. Sagraloff. A near-optimal algorithm for computing real roots of sparse polynomials. In
International Symposium on Symbolic and Algebraic Computation (ISSAC), pages 359–366,
2014.

[38] M. Sagraloff. On the complexity of the Descartes method when using approximate arithmetic.
Journal of Symbolic Computation, 65(0):79 – 110, 2014.

[39] M. Sagraloff and C. K. Yap. A simple but exact and efficient algorithm for complex root
isolation. In International Symposium on Symbolic and Algebraic Computation (ISSAC),
pages 353–360, 2011.

[40] I. Schoenberg. Über variationsvermindernde lineare Transformationen. Mathematische
Zeitschrift, pages 321–328, 1930.

[41] A. Schönhage. The fundamental theorem of algebra in terms of computational complexity,
1982; updated 2004. Manuscript, Department of Mathematics, University of Tübingen.

[42] V. Sharma. Complexity of real root isolation using continued fractions. Theoretical Computer
Science, 409:292–310, 2008.

[43] E. P. Tsigaridas and I. Z. Emiris. On the complexity of real root isolation using continued
fractions. Theoretical Computer Science, 392(1-3):158–173, 2008.

[44] J. van der Hoeven. Fast composition of numeric power series. Technical Report 2008-09,
Université Paris-Sud, France, 2008. http://www.texmacs.org/joris/fastcomp/fastcomp.
html.

[45] J.-C. Yakoubsohn. Finding a cluster of zeros of univariate polynomials. Journal of Complexity,
16(3):603 – 638, 2000.

[46] C. K. Yap. Fundamental Problems of Algorithmic Algebra. Oxford University Press, 2000.

44

http://www.texmacs.org/joris/fastcomp/fastcomp.html
http://www.texmacs.org/joris/fastcomp/fastcomp.html

	1 Introduction
	1.1 Algorithm and Results
	1.2 Related Work
	1.3 Structure of Paper and Reading Guide

	2 The Basics
	2.1 Setting and Basic Definitions
	2.2 Approximate Polynomial Evaluation
	2.3 Descartes' Rule of Signs in Monomial and in Bernstein Basis
	2.4 Descartes' Rule of Signs with Approximate Arithmetic
	2.5 Useful Inequalities

	3 The Algorithm
	3.1 Initialization
	3.2 The Newton-Test and the Boundary-Test

	4 Complexity Analysis
	4.1 Size of the Subdivision Tree
	4.2 Bit Complexity

	5 Root Refinement
	5.1 The Refinement Algorithm
	5.2 Analysis
	5.3 Asymptotic Improvements

	6 Conclusion

