11,734 research outputs found

    Computing on Masked Data to improve the Security of Big Data

    Full text link
    Organizations that make use of large quantities of information require the ability to store and process data from central locations so that the product can be shared or distributed across a heterogeneous group of users. However, recent events underscore the need for improving the security of data stored in such untrusted servers or databases. Advances in cryptographic techniques and database technologies provide the necessary security functionality but rely on a computational model in which the cloud is used solely for storage and retrieval. Much of big data computation and analytics make use of signal processing fundamentals for computation. As the trend of moving data storage and computation to the cloud increases, homeland security missions should understand the impact of security on key signal processing kernels such as correlation or thresholding. In this article, we propose a tool called Computing on Masked Data (CMD), which combines advances in database technologies and cryptographic tools to provide a low overhead mechanism to offload certain mathematical operations securely to the cloud. This article describes the design and development of the CMD tool.Comment: 6 pages, Accepted to IEEE HST Conferenc

    ODIN: Obfuscation-based privacy-preserving consensus algorithm for Decentralized Information fusion in smart device Networks

    Get PDF
    The large spread of sensors and smart devices in urban infrastructures are motivating research in the area of the Internet of Things (IoT) to develop new services and improve citizens’ quality of life. Sensors and smart devices generate large amounts of measurement data from sensing the environment, which is used to enable services such as control of power consumption or traffic density. To deal with such a large amount of information and provide accurate measurements, service providers can adopt information fusion, which given the decentralized nature of urban deployments can be performed by means of consensus algorithms. These algorithms allow distributed agents to (iteratively) compute linear functions on the exchanged data, and take decisions based on the outcome, without the need for the support of a central entity. However, the use of consensus algorithms raises several security concerns, especially when private or security critical information is involved in the computation. In this article we propose ODIN, a novel algorithm allowing information fusion over encrypted data. ODIN is a privacy-preserving extension of the popular consensus gossip algorithm, which prevents distributed agents from having direct access to the data while they iteratively reach consensus; agents cannot access even the final consensus value but can only retrieve partial information (e.g., a binary decision). ODIN uses efficient additive obfuscation and proxy re-encryption during the update steps and garbled circuits to make final decisions on the obfuscated consensus. We discuss the security of our proposal and show its practicability and efficiency on real-world resource-constrained devices, developing a prototype implementation for Raspberry Pi devices

    ODIN: Obfuscation-based privacy-preserving consensus algorithm for Decentralized Information fusion in smart device Networks

    Get PDF
    The large spread of sensors and smart devices in urban infrastructures are motivating research in the area of the Internet of Things (IoT) to develop new services and improve citizens’ quality of life. Sensors and smart devices generate large amounts of measurement data from sensing the environment, which is used to enable services such as control of power consumption or traffic density. To deal with such a large amount of information and provide accurate measurements, service providers can adopt information fusion, which given the decentralized nature of urban deployments can be performed by means of consensus algorithms. These algorithms allow distributed agents to (iteratively) compute linear functions on the exchanged data, and take decisions based on the outcome, without the need for the support of a central entity. However, the use of consensus algorithms raises several security concerns, especially when private or security critical information is involved in the computation. In this article we propose ODIN, a novel algorithm allowing information fusion over encrypted data. ODIN is a privacy-preserving extension of the popular consensus gossip algorithm, which prevents distributed agents from having direct access to the data while they iteratively reach consensus; agents cannot access even the final consensus value but can only retrieve partial information (e.g., a binary decision). ODIN uses efficient additive obfuscation and proxy re-encryption during the update steps and garbled circuits to make final decisions on the obfuscated consensus. We discuss the security of our proposal and show its practicability and efficiency on real-world resource-constrained devices, developing a prototype implementation for Raspberry Pi devices

    From usability to secure computing and back again

    Full text link
    Secure multi-party computation (MPC) allows multiple parties to jointly compute the output of a function while preserving the privacy of any individual party’s inputs to that function. As MPC protocols transition from research prototypes to realworld applications, the usability of MPC-enabled applications is increasingly critical to their successful deployment and widespread adoption. Our Web-MPC platform, designed with a focus on usability, has been deployed for privacy-preserving data aggregation initiatives with the City of Boston and the Greater Boston Chamber of Commerce. After building and deploying an initial version of the platform, we conducted a heuristic evaluation to identify usability improvements and implemented corresponding application enhancements. However, it is difficult to gauge the effectiveness of these changes within the context of real-world deployments using traditional web analytics tools without compromising the security guarantees of the platform. This work consists of two contributions that address this challenge: (1) the Web-MPC platform has been extended with the capability to collect web analytics using existing MPC protocols, and (2) as a test of this feature and a way to inform future work, this capability has been leveraged to conduct a usability study comparing the two versions ofWeb-MPC. While many efforts have focused on ways to enhance the usability of privacy-preserving technologies, this study serves as a model for using a privacy-preserving data-driven approach to evaluate and enhance the usability of privacy-preserving websites and applications deployed in realworld scenarios. Data collected in this study yields insights into the relationship between usability and security; these can help inform future implementations of MPC solutions.Published versio

    Measuring the Impact of Spectre and Meltdown

    Full text link
    The Spectre and Meltdown flaws in modern microprocessors represent a new class of attacks that have been difficult to mitigate. The mitigations that have been proposed have known performance impacts. The reported magnitude of these impacts varies depending on the industry sector and expected workload characteristics. In this paper, we measure the performance impact on several workloads relevant to HPC systems. We show that the impact can be significant on both synthetic and realistic workloads. We also show that the performance penalties are difficult to avoid even in dedicated systems where security is a lesser concern

    Protecting privacy of users in brain-computer interface applications

    Get PDF
    Machine learning (ML) is revolutionizing research and industry. Many ML applications rely on the use of large amounts of personal data for training and inference. Among the most intimate exploited data sources is electroencephalogram (EEG) data, a kind of data that is so rich with information that application developers can easily gain knowledge beyond the professed scope from unprotected EEG signals, including passwords, ATM PINs, and other intimate data. The challenge we address is how to engage in meaningful ML with EEG data while protecting the privacy of users. Hence, we propose cryptographic protocols based on secure multiparty computation (SMC) to perform linear regression over EEG signals from many users in a fully privacy-preserving(PP) fashion, i.e., such that each individual's EEG signals are not revealed to anyone else. To illustrate the potential of our secure framework, we show how it allows estimating the drowsiness of drivers from their EEG signals as would be possible in the unencrypted case, and at a very reasonable computational cost. Our solution is the first application of commodity-based SMC to EEG data, as well as the largest documented experiment of secret sharing-based SMC in general, namely, with 15 players involved in all the computations
    • …
    corecore