3 research outputs found

    Differential Evolution Methods for the Fuzzy Extension of Functions

    Get PDF
    The paper illustrates a differential evolution (DE) algorithm to calculate the level-cuts of the fuzzy extension of a multidimensional real valued function to fuzzy numbers. The method decomposes the fuzzy extension engine into a set of "nested" min and max box-constrained op- timization problems and uses a form of the DE algorithm, based on multi populations which cooperate during the search phase and specialize, a part of the populations to find the the global min (corresponding to lower branch of the fuzzy extension) and a part of the populations to find the global max (corresponding to the upper branch), both gaining efficiency from the work done for a level-cut to the subsequent ones. A special ver- sion of the algorithm is designed to the case of differentiable functions, for which a representation of the fuzzy numbers is used to improve ef- ficiency and quality of calculations. The included computational results indicate that the DE method is a promising tool as its computational complexity grows on average superlinearly (of degree less than 1.5) in the number of variables of the function to be extended.Fuzzy Sets, Differential Evolution Method, Fuzzy Extension of Functions

    Metaheuristic versus tailor-made approaches to optimization problems in the biosciences

    Get PDF
    corecore