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1

Introduction

In many aspects of this world, there is one common principle, namely the search

for an optimal state. Several examples can be given. At nanoscale, atoms that

approach each other form a bond when this lowers the overall free energy of

these atoms. The atoms interact in order to achieve an optimal state of minimal

free energy [1]. Another example is the heating and then slowly cooling down

of solid bodies. While the solid body is slowly cooled down, the molecules are

trying to minimize their energy by forming an organized crystal lattice. In general,

the adaptive strategy and evolutionary behaviour of organisms to a continuously

changing environment can be seen as an optimization strategy guided by the search

for a minimal energy state. This leads to the science of optimization, which is one

of the oldest and most important sciences [2].

Optimization is more general than the search for a minimal energy state and

refers to a branch of computational science that deals with finding acceptable

solutions to given problems. These solutions are determined by the characteristics

and requirements of the problem [3]. Optimization problems occur in diverse

fields such as engineering [4, 5], manufacturing [6, 7], finance [8], medicine [9],

computational art and music [10], physics [11], chemistry [12], etc. A large number

of algorithms have been developed to solve this type of problems. Dependent on

the characteristics of the problem, different algorithms are available. Therefore, in

Part I of this dissertation, an overview is given of different categories of optimization.

Next to the general concept of optimization, the different optimization algorithms

used in this dissertation are discussed in detail.

In this dissertation, optimization problems are encountered in a variety of en-

gineering applications related to the biosciences. Not all of these problems are

optimization problems in their original formulations and tailor-made approaches

to solve these problems can be found in the literature. However, it is often time-

consuming and complex to develop a tailor-made solution method for every problem

one is faced with. We therefore compare these methods with more general algo-

rithms, based on universal concepts that are common to all optimization problems

of a certain type or with certain characteristics. In particular, we will use the class

of algorithms referred to as metaheuristics, a term that is explained in Chapter 2.

These algorithms are generally applicable and we now examine whether they are

equally capable of solving the problems at hand as the tailor-made approaches
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Chapter 1. Introduction

constructed in the literature. If the original problem is not an optimization problem,

we have to formulate an objective function so that an optimizer of this objective

function is also a solution of the original problem. Whether this objective function

is a simple function or a complex model, the metaheuristic algorithm is expected to

find a suitable optimizer as long as certain general assumptions about the problem

are fulfilled.

The flowchart in Figure 1.1 explains which parts and chapters of this dissertation are

related and presents the order in which to read these chapters. Part I reviews some

background material that is required for the work presented in this dissertation.

Chapter 2, entitled ‘General concepts of optimization’, summarizes the different

categories of optimization and introduces the concept of metaheuristics. We then

discuss in more detail a number of metaheuristic optimization algoritms, both for

continuous problems in Chapter 3 entitled ‘Continuous optimization methods’ and

for discrete optimization problems in Chapter 4 entitled ‘Combinatorial optimization

methods’.

Part II discusses a subset selection problem, more specifically subset selection from

a multi-experiment data set (Chapter 5). In this part, conventional subset selection

methods are compared with an optimization approach based on combinatorial

optimization methods, more specifically the metaheuristics Genetic Algorithms and

Ant Colony Systems (Chapter 6). Therefore, for a complete understanding of this

part, it is strongly recommended to first study Chapter 4. These subset selection

methods are then applied to an agricultural case study (Chapter 7) concentrated

around a large data set containing the concentration of 45 fatty acids in a large

number of milk samples. These milk samples belong to multiple experiments.

The objective is to select a subset of 100 milk samples that is informative for the

total data set. At the same time the different experiments have to be sufficiently

represented. When reading this part it is obvious that the recommended order is

Chapter 5, followed by Chapters 6 and 7 and at last Chapter 8.

Part III discusses the calibration of a hydrologic model, more specifically a water

and energy balance model (Chapter 11). A hydrologic model always consists

of some model parameters that have to be determined before the model can be

applied. In most cases, these model parameters can not be measured directly and

an alternative strategy is required. When measured data for the output is available

during a test period, we can try to find the set of model parameters for which the

model best reproduces the measured output. The calibration is thus transformed

into an optimization problem. As hydrologic models mostly result in a large number

of output variables, we have to take into account all these variables to estimate

the model parameters. However, the values of these output variables and the

corresponding observations can have a different order of magnitude, which makes

working with all these variables not straightforward (Chapter 9). A possible solution

is the transformation of this problem to a multi-objective optimization problem,

2



Chapter 1. Introduction

Figure 1.1: Flowchart that presents the connection between the different parts and
chapters of this dissertation.

with as different objective functions the Root Mean Square Error (RMSE) of the

different output variables, and construct a Pareto front. However, in case of a large

number of output variables, this results in a high-dimensional Pareto front which

makes this approach complicated. A problem specific solution is to work with the

Multistart Weight-Adaptive Recursive Parameter Estimation (MWARPE) method.

In this method, all variables are explicitly taken into account during the parameter

update. A disadvantage of this method is that in MWARPE matrices have to be

inverted with dimensionality equal to the number of observations, resulting in a

restriction on the number of observations (Chapter 10) in the parameter estimation.

It is also possible to merge the different objective functions into one objective

3



Chapter 1. Introduction

function and to optimize the latter objective function. In order to do this, the

output variables should have the same order of magnitude and therefore the data

should be rescaled. The objective of this part of this dissertation is to compare

the MWARPE approach with the combination of the different objective functions

into a single objective function. As optimization algorithm for the latter approach,

we apply the metaheuristic Particle Swarm Optimization (PSO) (Chapter 10).

Therefore, we recommend reading Chapter 3 before starting with this part. As in

Part II, this part should be studied in the order Chapter 9, Chapter 10, Chapter 11

and finally Chapter 12.

The last part of this dissertation, Part IV, handles the propagation of uncertainty

through mathematical equations, models, etc. (Chapter 13). Based on Zadeh’s

extension principle and the α-cut approach of Nguyen for non-interactive variables,

we have also transformed this problem into an optimization problem (Chapter 14).

The ability of PSO to solve complex continuous optimization problems was already

proven in Part III, so that we also use PSO as optimization algorithm in this part.

In order to reconfirm the power of this optimization algorithm, we compared this

algorithm with a simple approach using a Gradient Descent approach based on

Sequential Quadratic Programming and with another global optimization algorithm,

namely Simplex Simulated Annealing (SIMPSA). This part is thus also based on

continuous optimization and therefore it is necessary to first read Chapter 3.

As Part III shows the capability of PSO, it is also interesting to read this part

before going to Part IV. The objective of the current part is thus to develop

a Fuzzy Calculator that makes uncertainty propagation through mathematical

equations and models possible. First, we have to determine a suitable number of

α-cuts. As it is difficult to determine the ideal number of α-cuts, we followed two

approaches: either a fixed predetermined number is used, or an initially (very)

small number is chosen that is subsequently increased according to a linearity

criterion. Both a non-parallel and a parallel implementation are designed. The

parallel version is restricted to work with PSO and employs communication to

optimize its (internal) performance by exploiting the dependence between the

various optimization problems (Chapter 14). The different configurations of the

Fuzzy Calculator are evaluated on a set of benchmark functions (Chapter 15). Then,

based on a generalization of Nguyen’s α-cut approach for interactive variables,

the Fuzzy Calculator is adapted to work with interactive variables as well. For

this section, we restricted ourselves to the Fuzzy Calculator leading to the best

results in the case of non-interactive variables and to interactivity described by

the basic triangular norms (Chapter 15). Finally, the practical applicability of the

Fuzzy Calculator is investigated in a case study (Chapter 16) making use of the

inverse Integral Equation Model (IEM). This model relates the soil moisture to

the backscatter values and roughness parameters. While backscatter values can

easily be obtained from radar images, the determination of roughness parameters

is more complex resulting in uncertainty. To describe the interactivity between

4



Chapter 1. Introduction

these parameters, the possibilistic Gustafson Kessel clustering algorithm is used.

The Fuzzy Calculator is thus used to propagate the uncertainty of the roughness

parameters through this model. As in previous parts, the recommended order

to read this part is starting with Chapter 13, followed by Chapter 14, 15, 16

and 17.

Finally, the general conclusions, which can be drawn from this dissertation, are

formulated. Obviously, this part can only be read after reading the total disserta-

tion.
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Part I

Overview of optimization
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2

General concepts of optimization

This chapter outlines the general concepts of optimization problems [13]. Firstly,

a categorization of optimization problems is given in Section 2.1. In this section,

we briefly describe the different optimization problems that can be distinguished.

Secondly, the theoretical concepts of continuous and discrete optimization are

summarized in Sections 2.2 and 2.3. Finally, in Section 2.4, we briefly explain the

term metaheuristics and illustrate when this branch of optimization algorithms

will be applied.

2.1. Categorization of optimization problems

This dissertation will deal with optimization problems on many occasions. We

always assume to have been provided with an objective function

f : S → K (2.1)

that maps input arguments from a general set S to a scalar output in K. In order

for optimization to be meaningful, K has to be a totally ordered set if we assume

not to be dealing with multiple objective optimization. For simplicity, in this

chapter we always assume to be dealing with a minimization problem. Typically,

the output value is a real value — thus K = R — and we are thus looking for an

argument x ∈ S that minimizes this output value. Maximization can be obtained

by using (−f) as objective function. Whereas the set S describes the type of input

arguments x that are taken by f , there might be additional constraints on the

allowed input arguments, which are also expressed using functions ci : S → R. A

general optimization problem can then be defined as follows

min f(x) , x ∈ S

subject to

{
ck(x) = 0 , for all k ∈ E = {1, . . . ,m}
cl(x) ≥ 0 , for all l ∈ I = {m+ 1, . . . ,m+ p}

(2.2)

with m the number of equality constraints and p the number of inequality con-

straints.

9



Chapter 2. General concepts of optimization

Two branches of optimization problems can be distinguished, depending on the

properties of the set S. In continuous optimization, S (Eq. (2.2)) can be mapped

onto (a part of) Rn. This means that we are dealing with an objective function f

that depends on n real input parameters xi (i = 1, . . . , n), which we denote as a

vector x ∈ Rn, and outputs a real value y = f(x) ∈ R. Note that a complex input

parameter can always be written using two independent real parameters. On the

other hand, in discrete optimization, S (Eq. (2.2)) represents a countably infinite

set. Within the class of discrete optimization problems, an important role is played

by the class of combinatorial optimization problems. Here the input arguments

represent permutations, combinations or selections and are thus further restricted.

Specialized methods for this type of problem exist.

When additional constraints are present, we can define the feasible region Ω

as

Ω = {x | (∀k ∈ E)(ck(x) = 0) ∧ (∀l ∈ I)(cl(x) ≥ 0)} . (2.3)

The feasible region thus contains all points x that satisfy the equality and inequality

constraints. The optimization problem can then be reformulated as

min f(x) , x ∈ Ω . (2.4)

A global solution x∗ of an optimization problem is called a minimizer and should

satisfy

f(x∗) ≤ f(x) , ∀x ∈ Ω . (2.5)

A general minimization problem can have any number of minimizers, ranging from

zero to infinity. A necessary condition for a function to have at least one minimum

is that the range of the function, i.e. the set f(Ω) = {y | (∃x ∈ Ω)(y = f(x))} is

bounded from below. When the feasible region is finite or compact, this is always

the case, if we assume that the objective function does not diverge in any point of

Ω.

For continuous optimization problems, in case of a metrical space S, there is a

natural notion of a neighbourhood for every point x, by defining

S(x, ε) = {y | ||x− y|| < ε} , (2.6)

with || · || the standard norm following from the metric. The optimization problem

can then also have local solutions x∗ that satisfy

(∃ε > 0)(∀x ∈ S(x∗, ε) ∩ Ω)(f(x∗) ≤ f(x)) .

For discrete optimization problems, this natural notion of a neighbourhood cannot

longer be used for the definition of a local solution, since for ε sufficiently small,

the neighbourhood of a point contains only this point and every point would then

10



§2.2. Theoretical concepts of continuous optimization

be a local solution. For this type of optimization problems, it depends on the

application, or on the algorithm used, which notion of neighbourhood can be used

in order to define local optima.

2.2. Theoretical concepts of continuous optimization

This section summarizes the theoretical foundations of multidimensional continuous

optimization problems. Necessary and sufficient conditions for local optima of

(twofold) continuously differentiable objective functions f are stated. It is useful to

first treat the unconstrained case, where any point x ∈ Rn is allowed. Constrained

optimization will be studied afterwards. The contents of this section is based on

[13].

2.2.1. Unconstrained optimization

The unconstrained continuous optimization problem is given by

min f(x), x ∈ Rn . (2.7)

If the function f is continuously differentiable at x∗, then a necessary condition

for x∗ to be a local minimizer is that

∇xf(x∗) = [
∂f

∂x1
(x∗), . . . ,

∂f

∂xn
(x∗)]T = 0 , (2.8)

with ∇xf(x) the gradient of the function f at the point x. If the function f is

continuously differentiable in Rn, then we can locate all candidate local minimizers

by solving the set of equations

∇xf(x) = 0 . (2.9)

Solutions x∗ to this equation are called stationary points. They can be minimizers,

maximizers or saddle points. If the function f is twofold continuously differentiable

at a possible solution x∗, then a necessary condition for this stationary point to be

a minimizer is that

∇xxf(x∗) =


∂2f

(∂x1)2 (x∗) ∂2f
∂x1∂x2

(x∗) . . .
∂2f

∂x2∂x1
(x∗) ∂2f

(∂x2)2 (x∗) . . .
...

...
. . .

 ≥ 0 , (2.10)

with ∇xxf(x) the Hessian of the function f at the point x. This implies that all

eigenvalues of the Hessian∇xxf(x∗) are greater than or equal to zero. The presence

11
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of zero eigenvalues indicates that x∗ cannot be shown to be a local minimizer by

restricting to a second order Taylor expansion, and higher order expansions will be

necessary. A sufficient (but not necessary) condition for x∗ to be a minimizer is

that ∇xxf(x∗) > 0.

2.2.2. Constrained optimization

A constrained continuous optimization problem can be formulated as

min f(x) , x ∈ Rn

subject to

{
ck(x) = 0 , for all k ∈ E = {1, . . . ,m}
cl(x) ≥ 0 , for all l ∈ I = {m+ 1, . . . ,m+ p}

(2.11)

withm the number of equality constraints and p the number of inequality constraints.

Note that Ω denotes the feasible region, i.e. all points x that satisfy all constraints.

For every point x ∈ Ω, we can define a set of indices, called the set of active

constraints A(x) as

A(x) = {i ∈ (E ∪ I) | ci(x) = 0} = E ∪ {i ∈ I | ci(x) = 0} . (2.12)

The active constraints are both the equality constraints and the inequality con-

straints for which x is at the boundary of the inequality.

If at a local minimizer x∗ both the function and the active constraints are continu-

ously differentiable, we can also formulate a set of necessary conditions. For that

purpose, we define a Lagrangian

L(x,λ) = f(x)−
∑
i∈E∪I

λici(x) , (2.13)

where the vector λ contains the Lagrange multipliers λi, for all i ∈ E ∪ I. The

Karush-Kuhn-Tucker (KKT) conditions state that when x∗ is a local minimizer,

there exists a Lagrange multiplier vector λ∗ such that

∇xL(x∗,λ∗) = 0

ci(x
∗) = 0 , for all i ∈ E

ci(x
∗) ≥ 0 , for all i ∈ I

λ∗i ≥ 0 , for all i ∈ I
λ∗i ci(x

∗) = 0 , for all i ∈ E ∪ I

(2.14)

The last line, known as the complementarity condition, states that the Lagrange

multiplier λ∗i = 0 for every inactive constraint i ∈ I \ A(x∗). It is thus no problem

if the gradient of an inactive inequality constrained is not defined at x∗. We can

12



§2.2. Theoretical concepts of continuous optimization

redefine the Lagrange function as

L(x,λ) = f(x)−
∑

i∈A(x)

λici(x) , (2.15)

However, continuous differentiability of the function f and the active constraints

ci, i ∈ A(x∗), at the point x∗ is not sufficient for the KKT conditions to hold. We

need additional conditions that ‘qualify’ the constraints. One possible condition for

which the KKT conditions will hold is known as the ‘Linear Independent Constraint

Qualification’ (LICQ) and requires∑
i∈A(x∗)

αi∇xci(x
∗) = 0⇔ ∀i ∈ A(x∗) : αi = 0 (2.16)

This condition states that the gradients of the active constraints should constitute

a linearly independent set of vectors. Other constraint qualifications are also

possible. Without them, the Lagrange multiplier vector λ∗ corresponding to a

local minimizer x might not be unique, or might even not exist.

We will briefly try to motivate the origin of the KKT conditions. If the functions

ci encompassing the constraints are continuously differentiable, we can define a

cone of feasible directions F1(x), in which we can move away from a point x ∈ Ω

without leaving Ω, in the following way:

F1(x) = {d ∈ Rn |(∀i ∈ E)(dT∇xci(x) = 0)

∧ (∀i ∈ A(x) ∩ I)(dT∇xci(x) ≥ 0)} .

If x∗ is a local minimizer, the function f must not decrease when moving away

from x∗ in a direction d ∈ F1(x∗). When taking an infinitesimal step from x∗

in the direction of d proportional to a small constant η > 0, a first order Taylor

expansion can be used, where terms of second and higher order in η (denoted

as O(η2)) are ignored. The function value in x∗ + ηd can thus be approximated

by

f(x∗ + ηd) ≈ f(x∗) + ηdT∇xf(x∗) ≥ f(x∗) ,

and we can infer that dT∇xf(x∗) ≥ 0, for all d ∈ F1(x∗). At this point, LICQ is

required in order to conclude from this condition that

∇xf(x∗) =
∑

i∈A(x∗)

λi∇xci(x
∗) , (2.17)

with λi ≥ 0, for all i ∈ I ∩ A(x∗). This is precisely the content of the KKT

conditions.

A point x∗ that fulfills the Karush-Kuhn-Tucker conditions with corresponding

Lagrange vector λ∗ is a stationary point of the function f(x) in Ω. Before trying

13
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to impose conditions on the Hessian of f , we define the concept of weakly active

constraints as those inequality constraints for which λ∗i = 0, and strongly active

constraints as the inequality constraints for which λ∗i > 0. Finally, we define strict

complementarity as λ∗i > 0, for all i ∈ I ∩ A(x∗). Thus, strict complementarity is

satisfied if all active constraints are strongly active.

When examining the second order effect of variations with respect to a stationary

point x∗, it is sufficient to look in feasible directions w for which wT∇xf(x∗) = 0.

We thus define the cone of directions

F2(x∗,λ∗) = {w ∈ F1(x) |
(
(∀i ∈ E)(wT∇xci(x

∗) = 0)
)

∧
(
(∀i ∈ A(x∗) ∩ I)(λ∗i > 0⇒ wT∇xci(x

∗) = 0)
)

∧
(
(∀i ∈ A(x∗) ∩ I)(λ∗i = 0⇒ wT∇xci(x

∗) ≥ 0)
)
} .

F2 includes all directions w in which the gradient ∇x is zero. If x∗ is a local

minimizer of f(x) in Ω, f is twofold continuously differentiable in x∗ and LICQ is

satisfied, then we have as necessary condition that

wT∇xxL(x∗,λ∗)w ≥ 0, for all w ∈ F2(x∗,λ∗) .

The appearance of directions w for which the equality to zero is satisfied indicates

that we have to investigate higher order terms in the Taylor expansion.

On the other hand, if x∗ is a point that satisfies the KKT conditions, and λ∗ is

the corresponding Lagrange multiplier vector, and

wT∇xxL(x∗,λ∗)w > 0, for all w ∈ F2(x∗,λ∗) ,

then x∗ is definitely a local minimizer. This sufficient (but not necessary) condition

does not require that LICQ is fulfilled.

Finally, when strict complementarity holds, then the cone F2(x∗,λ∗) is a vector

space and we can find a basis matrix B with columns that span F2(x∗,λ∗). We

can then rephrase the necessary (sufficient) condition in terms of the positive

semidefiniteness (positive definiteness) of the matrix BT∇xxL(x∗,λ∗)B.

2.3. Theoretical concepts of discrete optimization

For discrete optimization problems, there is no general definition of a neighbourhood

of a point x ∈ S. We only have the defining relation in Eq. (2.5) of a global optimizer.

In many applications — especially in combinatorial optimization problems [14, 15,

16] — the set Ω of feasible input arguments is finite, which ensures the existence

of a global minimum, even when there are multiple minimizers x∗ producing this

minimal function value. For a finite set, we can in theory find the global solution
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x∗ by performing an exhaustive search, i.e. by evaluating the objective function

f for all x ∈ Ω. We will always assume that we can easily construct a scheme

to generate all feasible solutions x ∈ Ω. However, many interesting problems

have an intrinsic notion of problem size, and are such that the number of feasible

solutions |Ω| increases faster than any polynomial — often exponentially fast —

in the problem size. The computation time of exact algorithms for obtaining the

global minimizer x∗ will often follow this “faster than any polynomial” scaling. A

theoretical categorization of different types of problems is possible by converting

them into decision problems. Converting an optimization problem to a decision

problem is possible by asking the question “Is there an x ∈ Ω such that f(x) < c”

with c some constant. If this decision problem has answer ‘yes’, then we can

decrease the value of c and ask the question again, until we have singled out the

global minimum. Decision problems are categorized in complexity classes. The

complexity class NP contains all nondeterministic polynomial time problems, i.e.

problems for which a given solution x can actually be checked to produce ‘yes’

by an algorithm with a computation time that is polynomial in the problem size.

Within the class NP, we can find problems for which we can actually find solutions

x that produce ‘yes’ in polynomial time. This subclass is labeled P. Though

unproven, it is generally believed that P is a strict subset of NP and thus P 6= NP.

The class NP then also contains problems which are much ‘harder’, in that one

cannot find an algorithm that constructs solutions x of the decision problem in

polynomial time. More generally, we can define any problem (not only decision

problems but also e.g. optimization problems) to be NP-hard if they are ‘at least

as hard as the hardest problem’ in NP. This definition requires that any problem

in NP can be converted into this NP-hard problem by a transformation that is

polynomial in the problem size. The set of NP-hard decision problems that are

in NP are called the subset of NP-complete problems (Figure 2.1) [17]. We can

Figure 2.1: Venn diagram for P, NP, NP-Complete, and NP-Hard set of problems.

thus categorize combinatorial optimization problems as being NP-hard or not. For
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NP-hard optimization problems, it is impossible to construct an algorithm that

exactly finds the global optimizer x∗ in a time that scales polynomial in the problem

size [18, 19]. Problems that can be solved exactly in a time that scales polynomial

are not NP-hard. Unfortunately, many interesting problems are NP-hard.

2.4. Metaheuristics

Section 2.2 summarizes the necessary and sufficient conditions that are satisfied

by local minimizers of continuous optimization problems. In many cases, the

number of local minimizers — or even the number of stationary points — is

finite, and finding them would result in an easy selection of the global minimizer.

Unfortunately, the necessary conditions generally constitute a highly complex set

of non-linear equations for which no exact solution method is available. There

are only few exceptions, such as convex optimization problems — where there is

a single optimum — or problems with a quadratic objective function and linear

constraints. In many applications, the function f itself is a complex model for

which the gradient and Hessian cannot be explicitly calculated or which does not

even satisfy the constraint of being continuously differentiable. Different algorithms

for converging an initial guess x0 towards a local minimizer exist. Some but not

all of them rely on continuous differentiability of the objective function. The local

minimum x∗ to which these algorithms converge depends on the initial solution x0,

and there is no guarantee that all local minima, and thus the global minimum has

been found. Most algorithms of this kind will iteratively create a path of solutions

along which the objective function monotonically decreases. In that sense, they

cannot escape from local minima and are local optimization algorithms. Examples

include gradient descent and sequential quadratic programming, or the simplex

algorithm as a derivative-free example.

For combinatorial problems that are NP-hard, one will also have to resort to

approximate algorithms if the problem size is large. In some cases, such algorithms

contain an intrinsic notion of a neighbourhood of candidate solutions x, and such

algorithms face the same problem as their continuous counterparts, i.e. they can

get stuck in local optima.

In order to avoid these problems, several general approaches, often called meta-

heuristics, have been proposed. The word heuristic has its origin in the old Greek

word ‘heuriskein’, which means the discovery of new strategies to solve problems.

The suffix ‘meta’, also a Greek word, means ‘upper level methodology’. A meta-

heuristic is thus a set of algorithmic concepts that can be used to define heuristic

methods applicable to a wide set of different problems. The central idea of any

metaheuristic algorithm is to iteratively generate new candidate solutions from old

solutions. These algorithms make few or no assumptions about the problem being
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optimized and they allow to tackle large-size problems by delivering satisfactory

solutions in a reasonable time [18, 20].

Many definitions of metaheuristics are proposed in literature [21], we will cite here

one of the most exhaustive [22]:

Metaheuristics are typically high-level strategies which guide an un-

derlying, more problem specific heuristic, to increase their performance.

The main goal is to avoid the disadvantages of iterative improvement

and, in particular, multiple descent by allowing the local search to escape

from local optima. This is achieved by either allowing worsening moves

or generating new starting solutions for the local search in a more ‘in-

telligent’ way than just providing random initial solutions. Many of the

methods can be interpreted as introducing a bias such that high quality

solutions are produced quickly. This bias can be of various forms and

can be cast as descent bias (based on the objective function), memory

bias (based on previously made decisions) or experience bias (based

on prior performance). Many of the metaheuristic approaches rely on

probabilistic decisions made during the search. But, the main difference

to pure random search is that in metaheuristic algorithms randomness

is not used blindly but in an intelligent, biased form.

The main reason for using metaheuristics is to try to construct a method that is

able to escape from local minima and has a non-zero probability of converging

to the global minimum. It is only legitimate to use metaheuristics to solve an

optimization problem if it is not possible to solve the problem using an efficient

exact algorithm, as is mostly the case for NP-hard optimization problems, where

exact algorithms would require too much search time. However, metaheuristics are

also used for P class problems with a large number of input variables, for P class

problems with hard real-time algorithms, for NP-hard problems with moderate size

and/or difficult structures of the input variables, or for optimization problems with

time-consuming objective functions and/or constraints. For continuous problems,

metaheuristic algorithms are used when derivative-based methods fail, because the

objective function is discontinuous, is strongly nonlinear or ill-conditioned [20]. It

is important to note that metaheuristics do not guarantee the optimality of the

obtained solution.

As metaheuristic algorithms are developed in order to avoid getting trapped in

local minima, the termination conditions of metaheuristic algorithms are more

complex than simple convergence to a fixed point x∗ or a fixed function value

f∗. Depending on the algorithm, different termination conditions exist, such as a

maximum CPU time, a maximum number of iterations, a maximum number of

iterations without improvement, etc.

Different classification schemes exist for metaheuristic algorithms. The underlying

principle can be nature-inspired or non-nature inspired. The algorithm can be
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population-based or single-solution-based. It can employ a dynamic or a static

objective function, one or multiple neighbourhood structures. Some algorithms

use memory to store and exploit information from previous decisions, while others

work instantaneous and only use the current candidate solution to generate the

next guess. This section will be restricted to the difference between single-solution-

based metaheuristics (S-metaheuristics) and population-based metaheuristics (P -

metaheuristics).

In S-metaheuristics, the solution moves along a trajectory in the search space S

of the problem. At every iteration, the current candidate solution is moved to

a new solution in its immediate neighbourhood. Examples of such algorithms

include Simulated Annealing, Simplex-Simulated Annealing and Tabu Search. P -

metaheuristics start with the initialization of a population. At every iteration, a

new population is generated that replaces the current population. P -metaheuristics

differ in the way populations are generated and in the search memory used during

the search. Many P -metaheuristics use nature-inspired rules to generate new popu-

lations. Some examples are evolutionary algorithms, Particle Swarm Optimization,

Bee Colony Optimization and Ant Colony Optimization [20].

Metaheuristic concepts can also be employed to deal with constraints. Different

strategies exist: reject strategies, penalizing strategies, repairing strategies, decoding

strategies and preserving strategies [20]. In the reject strategies, infeasible solutions

are discarded and only feasible solutions are kept during the search. Penalizing

strategies penalize the infeasible solutions by extending the unconstrained objective

function by a penalty function. Repairing strategies act by transforming an

infeasible solution into a feasible one. In the decoding strategies, a mapping R → S
is used that associates with each representation r ∈ R a feasible solution x ∈ S
in the search space. The whole optimization problem can then be defined in R.

Preserving strategies start with feasible initial solutions and will generate new

solutions by only applying operations that preserve the feasibility.
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3

Continuous optimization methods

This chapter describes a few continuous optimization algorithms, which will be

applied when studying continuous optimization problems in the remainder of

this dissertation (model calibration in Part III and uncertainty propagation in

part IV). The first optimization algorithm, Sequential Quadratic Programming

(Section 3.1), is a derivative-based algorithm that exploits the theoretical condi-

tions of continuous optimization as outlined in Section 2.2. The second and third

optimization algorithms, Particle Swarm Optimization and Simplex-Simulated

Annealing (Sections 3.2 and 3.3), belong to the metaheuristic optimization algo-

rithms. For Sequential Quadratic programming, we made use of the standard

implementation of the programming environment Octave. The implementation of

the Simplex-Simulated Annealing algorithm was taken from [23] and [24, 25] with

the author’s permission. On the other hand, Particle Swarm Optimization was

implemented from scratch and modified to suit our goals as will be explored in

later chapters.

3.1. Sequential Quadratic Programming

Sequential Quadratic Programming (SQP) is a very successful deterministic ap-

proach for solving continuous nonlinear constrained optimization problems. This

optimization algorithm is based on the theoretical concepts described in Sec-

tions 2.2.1 and 2.2.2 of Chapter 2. As in Section 2.1, S is the set of all possible

solutions, a possible solution of the optimization problem is denoted as x and the

constraints, Lagrange multipliers and objective function are presented by c, λ and

f . The key concept of SQP is to approximate, at every iteration k, the nonlinear

optimization problem by a quadratic problem with linear constraints. Solving this

quadratic problem defines a step px in which to look for a better approximation

x(k+ 1) = x(k) +αpx of the minimizer. At the same time, the algorithm will also

determine a better approximation λ(k + 1) for the Lagrange multipliers.

It is possible that the objective function is bounded from below in the feasible

region Ω, but that it will become unbounded in the region determined by the linear

approximation of the nonlinear constraints. A way to include the nonlinear effects

of the constraints is by using the full nonlinear Lagrangian L(x,λ(k)) rather than
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the objective function f(x) in the quadratic approximation of the optimization

problem. Having obtained the solution x(k) and the corresponding Lagrange

multiplier vector λ(k), the next step is to solve

min
1

2
pT
x∇xxL(x(k),λ(k))px + ∇xL(x(k),λ(k))Tpx

subject to


ci(x(k)) + ∇xci(x(k))Tpx = 0,

for all i ∈ E = {1, . . . ,m}
cj(x(k)) + ∇xcj(x(k))Tpx ≥ 0,

for all j ∈ I = {m+ 1, . . . ,m+ p}

(3.1)

Let us first consider the case where there are only equality constraints. Solving

the quadratic problem is then quite easy, as it comes down to solving the linear

system[
∇xxL(x(k),λ(k)) −∇xc(x(k))

(∇xc(x(k)))T 0

][
px

pλ

]
=

[
−∇xL(x(k),λ(k))

−c(x(k))

]
(3.2)

with −∇xL(x(k),λ(k)) = −∇xf(x(k)) + ∇xc(x(k))λ(k), and where we have

symbolically denoted the Jacobian of the constraints as

∇xc(x) =


∂c1
∂x1

(x) ∂c2
∂x1

(x) · · ·
∂c1
∂x2

(x) ∂c2
∂x2

(x) · · ·
...

...
. . .

 . (3.3)

We can then set x(k + 1) = x(k) + px and λ(k + 1) = λ(k) + pλ. This approach

is equivalent to applying the Newton method for finding solutions of a set of

nonlinear equations to the set of KKT conditions. The matrix in the left-hand side

of Eq. (3.2) can be called the KKT Jacobian or KKT matrix. It can be shown

that the KKT matrix is nonsingular in a neighbourhood of a minimizer x∗ that

satisfies the sufficient condition for a minimum and constraints satisfying the LICQ

condition. The KKT matrix is however indefinite and there are different algorithms

for solving this linear system optimally, depending on the number of (equality)

constraints m and the number of degrees of freedom n−m.

When inequality constraints are also present, we have to use an algorithm for

quadratic programming to solve the quadratic subproblem at every iteration.

In particular, the chosen algorithm —active set methods are typically chosen—

will yield a descent direction px. If ∇xxL(x(k),λ(k)) is positive definite in the

tangent space of the active constraints, the search direction follows from solving

Eq. (3.2) with all active constraints at the current iterate x(k) included. If, however,
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§3.1. Sequential Quadratic Programming

∇xxL(x(k),λ(k)) contains negative eigenvalues in the tangent space of the active

constraints, then a direction px is sought that is both a negative curvature direction

and a non-ascent direction.

To determine a new iterate x(k + 1) from x(k), different strategies are possible. In

the trust-region methods, the quadratic subproblem is modified in such a way that

the step px is automatically limited to a region where the quadratic approximation

is assumed to be good. One can then safely set x(k+1) = x(k)+px. Typically, this

also solves the problem of negative eigenvalues in the reduced Hessian. Line-search

algorithms search a value of α such that x(k + 1) = x(k) + αpx minimizes the

objective function without violating the constraints. Often, rather than using

simply the objective function, one uses a merit function to control the step size α.

Merit functions also use information about the constraints and are supposed to

help converging from a remote starting point to the global solution. They are also

used in trust-region methods, to determine whether the trust region radius has to

be modified. A typical merit function to be used in combination with SQP is the

augmented Lagrangian, which is given by

LA(x,λ;µ) = f(x)−
∑
i∈E

λici(x) +
1

2µ
ci(x)2 (3.4)

when only equality constraints are present. For inequality constraints, one has to

introduce slack variables in the formulation of the augmented Lagrangian. One

can show that for µ sufficiently small, the optimizer x∗ will be an unconstrained

strict local minimizer of LA(x,λ∗;µ) and that the Hessian of LA is positive

definite.

Finally, there are also different methods for calculating or approximating the Hessian

in the quadratic subproblem. Since this object contains all second derivatives of the

objective function and the constraints, the computation of the Hessian is a very time

costly operation (if no exact result is provided). The general strategy is to update

the Hessian ∇xxL(x(k + 1),λ(k + 1)) from the previous value ∇xxL(x(k),λ(k))

using an update scheme such as the rank-two Powell-Symmetric-Broyden (PSB)

update [13] or the rank-two Broyden-Fletcher-Goldfarb-Shanno (BFGS) update [13].

Some algorithms do not use the Hessian of the Lagrangian but rather the Hessian

of the augmented Lagrangian LA(x,λ;µ), which will always be positive definite

for µ sufficiently small.

Clearly, a complete SQP algorithm is very complex, and many different variants

and modifications are possible. We refer to [26, 13] for further information.

21



Chapter 3. Continuous optimization methods

3.2. Particle Swarm Optimization

Particle Swarm Optimization is a population-based optimization algorithm, inspired

by the social behaviour of group-forming animal species.

3.2.1. Biological background

The concept of group formation can be observed for many animal species. For

some species, e.g. lions and baboons, the group has a social hierarchy with a leader

on top. The behaviour of the individuals is then strongly determined by their place

at the hierachical ladder. More interesting is the collective behaviour of individuals

in decentralized, self-organizing systems. The individuals of these groups have no

information about the global behaviour of the group or the environment. Based

on local interactions with each other and the environment, the individuals are

able to form groups and move together. These local interactions can lead to the

development of complex behaviour and the accomplishment of complex objectives,

a behaviour that is called swarm behaviour. Examples of such systems in nature

are abundant: ant colonies, swarms of birds, schools of fish, etc.[27, 28].

Based on simple rules, the members of such swarms are able to move synchronously

without collisions (see Figure 3.1). The movement of the total swarm is the result

of keeping an optimal distance between the individuals, without following the

orders of a leader or guidelines of a global plan. This behaviour can lead to many

advantages, in tasks such as the protection against predators or the search for

food.

Figure 3.1: Examples of synchronized movements: swarms
of birds (left) and schools of fish (right).

3.2.2. The origin of Particle Swarm Optimization

Many scientists have studied the synchronized movements made by different animal

groups. In 1986, Reynolds made a computer model, named Boids, of coordinated
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animal movements like flocking birds and schooling fish [29]. These simulations

showed that the basis of swarm behaviour follows from local interactions, charac-

terized by simple rules. The model consists of 3 simple principles that describe the

movement of an individual based on the positions and velocities of the neighbouring

individuals. These principles are called separation, alignment and cohesion. Separa-

tion moves the individuals away from each other in order to avoid local obstructions

and collisions (Figure 3.2(a)). Alignment is responsible for moving the individuals

in the same direction as their neighbours. The velocity of the individuals is then

adapted to the velocity of their neighbours (Figure 3.2(b)). Cohesion moves the

individuals to the center of their neighbours, such that the individuals remain close

to the other swarm members (Figure 3.2(c)).

(a) (b) (c)

Figure 3.2: The 3 principles of the computer model Boids: separation (a), alignment
(b) and cohesion (c).

Heppner & Grenander independently developed a similar swarm model and added

an attractor —a common attraction point for all members of the swarm— to the

model. These simulation models have a lot of applications (e.g. games, animation

movies, optimization) [30].

Particle Swarm Optimization (PSO) was first introduced by Kennedy for the

simulation of social behaviour and was later proposed as an optimization method

[28]. Particle Swarm Optimization is an optimization algorithm that categorizes

under Swarm Intelligence, which is a general name for artificial intelligence tech-

niques based on the collective behaviour that exists in decentralized, self-organizing

systems such as the ones discussed above. All swarm intelligence methods are

thus inspired by the social behaviour of insects and other animals. These systems

consist of a population of individuals that interact locally with each other and the

environment. These interactions can indeed lead to complex behaviour and the

accomplishment of certain goals.

3.2.3. Social network structures

PSO is also based on local interactions between the particles of the swarm, namely

the particles in the swarm learn from their neighbours and move similarly as their

best neighbour. In other words, the successful neighbours have more influence than
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the less successful ones. Therefore, the performance of PSO strongly depends on

the structure of the social network. More specifically, the information flow through

the network depends on the connection between the particles of the network, the

amount of clustering and the average shortest distance between two particles. A

strong connection leads to a fast flow of information and therefore to a faster

convergence. The disadvantage is that a strong connection results in a higher

susceptibility to local optima, because the search space is less thoroughly explored

than with lesser connected networks. Lesser connected networks with a lot of

clusters can have the problem that there will be little information flow between

the different clusters [3].

Different network structures are developed for PSO (Figure 3.3). The first structure

is the ‘Star’ (Figure 3.3(a)), in which all particles are connected and each particle

can communicate with the other particles. Therefore, each particle is attracted by

the best particle of the total swarm. This is also known as the ‘global best’ PSO.

Another network structure is the ‘Ring’, where each particle communicates with m

neighbours, where in most cases m = 2. As the information flows slower through

the network, a larger part of the search space is explored. However, the convergence

will be slower. This structure is also known as the ‘local best’ PSO.

It is also possible to isolate the particles. One particle then serves as a central

point and all information flows through that particle. This particle compares the

performance of the particles of the neighbourhood and adapts his position to that

of the best neighbour and communicates this position to the other particles. This

structure is called the ‘Wheel’ structure (Figure 3.3(c)). Other examples of social

network structures are the ‘Pyramid’ structure, the ‘Four cluster’ structure and

the ‘Vonn-Neumann’ structure (Figures 3.3(d), (e) and (f) respectively).

Every network structure allows to define for each particle i in the population a

neighbourhood Ei, containing the indices of the particles with which each particle i

can communicate. Thus Ei lists the indices of all the particles that are connected

to i by the social network structure.

3.2.4. The algorithm

The PSO algorithm is a population-based metaheuristic, which starts with the

initialization of a population of N particles with randomly chosen position and

velocity vectors. The position of each particle represents a candidate solution

of the optimization problem. In an n-dimensional search space the position and

velocity of the ith particle, with i = 1, . . . , N , are denoted by n-dimensional vectors

xi = (xi1, xi2, . . . , xin) and vi = (vi1, vi2, . . . , vin), respectively. In a next step, the

objective function f is evaluated for each particle i and this value is assigned as a

fitness value fi to the particle. For each particle i a vector pi = (pi1, pi2, . . . , pin)

is defined that points to the best position that particle i has reached up to this
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3: Different network structures: (a) star, (b) ring, (c) wheel, (d) pyramid, (e)
four clusters and (f) Von-Neumann [3].

point in the iteration cycle; it is also called the personal optimum of this particle.

In other words, it is the position with the best fitness value this far in the particle’s

trajectory. In the neighbourhood Ei of particle i, the particle that reached the

best fitness function value until this point will be identified and labeled gi. This

fitness corresponds to the function value at the position given by the vector pgi
[3, 31].

At each iteration step (from step k to step k + 1) the position and velocity of each

particle will be updated through the following equations (Figure 3.4):

vi(k + 1) = vi(k) + c1 · r1(k) · [pi(k)− xi(k)]

+ c2 · r2(k) · [pgi(k)− xi(k)] , (3.5)

xi(k + 1) = xi(k) + vi(k + 1) . (3.6)

The positive constants c1 and c2 are the so-called cognitive and social parameters.
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The factors r1(k), r2(k) are random numbers between 0 and 1, and are regenerated

in each iteration step.

previous velocity
social velocity

cognitive velocity
new velocity

previous velocity
social velocity

cognitive velocity
new velocity

Figure 3.4: Velocity and position update for one particle in two dimensions (left:
iteration step j, right: time step j + 1.

The first part of Eq. (3.5), vi(k), is the momentum part that states that the

velocity cannot change abruptly, and is based on the current velocity. The second

part, c1 · r1(k) · [pi(k)− xi(k)], is the ‘cognitive’ or personal part, indicating that

the particle learns from its own experience and fitness. The effect of this part

of the equation is that the particles are attracted to their own best position.

The third part, c2 · r2(k) · [pgi(k)− xi(k)], is the social part and represents the

cooperation with the other particles of the neighbourhood or the learning from the

flying experience of the neighbourhood. The particles are attracted to the globally

best position of the neighbourhood. The contribution of the cognitive and social

component is weighed by a stochastic quantity c1 · r1(k) and c2 · r2(k). The update

of the position is given by Eq. (3.6).

After the velocity and the position are updated, a new fitness value for the particles

is evaluated as fi(k+ 1) = f(xi(k+ 1)), and it is further checked whether pi needs

to be adapted:

pi(k + 1) =

{
pi(k), if fi(k + 1) ≥ f(pi(k)) ,

xi(k + 1), if fi(k + 1) < f(pi(k)) .
(3.7)

The best position within particle i’s neighbourhood Ei is memorized with the index

gi:

gi = arg min
t∈Ei

[
f(pt(k + 1))

]
, (3.8)

The steps described above are repeated until a certain stopping criterion is met,

usually a minimal change in fitness of the best Nbest particles (1 ≤ Nbest ≤ N) or

a maximal number of iterations K. The pseudocode of this algorithm can be found
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in Algorithm 1.

Algorithm 1: A basic PSO algorithm

Data: Parameters

Result: Best solution

Initialize a population of particles at random;

Evaluate the particles of the population;

while stopping criterion is not reached do

for each particle of the population do

Calculate new velocity and position;

Evaluate fitness of each particle;

Select personal best solution;

Select global best solution;

A disadvantage of updating the velocity as described in Eq. (3.5) is that velocities

on the one hand may become too high and therefore cause particles to pass good

solutions, or on the other hand may become too small such that the search space

will be explored insufficiently. We thus have to control the velocity and the details of

the control mechanism will influence the exploration-exploitation ratio. Exploration

is the capability to test different regions in the search space in order to have a fair

probability of locating the global optimum. Exploitation, on the other hand, is

the capability to concentrate the search around a promising candidate solution

and precisely locate the optimum. Giving preference to exploration leads to a

thorough inspection of the search space and a robust localization of the optimum,

with as disadvantage a large number of function evaluations before convergence is

obtained. On the other hand, giving preference to exploitation results in a fast and

accurate convergence to a possibly local optimum. Therefore, the ratio between

these contradictory objectives is very important. In Particle Swarm Optimization,

these objectives are directly related to how the velocity is controlled. Different

mechanisms exist to control the velocity, namely the application of a maximum

velocity vmax or the introduction of an inertia weight w or of a constriction

parameter χ.

Restriction of the velocity

In the first applications of PSO, it was noticed that the velocity can quickly explode,

in particular for particles that are located at a large distance from the personal

best and the global best position of the neighbourhood. As a consequence, the

particles make large changes in position and are located outside the boundaries of

the search space. To control the global exploration of the particles, the velocity has

to be restricted between certain boundaries. Therefore, a maximum velocity vmax

is determined. If the velocity component |vid| of particle i exceeds the maximum
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velocity vd,max in direction d, the velocity vid is set to sign(vid)vd,max [3, 31].

The value of vmax is very important as it controls the exploration-exploitation ratio.

Large values of vmax facilitate exploration; small values on the other hand favour

exploitation. A suitable value of vmax has to be determined, in order to create a

balance between exploration and exploitation of the search space. To ensure this

balance, a fraction of the size of the domain of the search space is chosen as value

of vmax:

vmax = δ(xmax − xmin) (3.9)

where xmax and xmin contain the lower and upper bound for each component of the

search space (i.e. xd,min ≤ xd ≤ xd,max) and δ ∈ [0, 1]. The value of δ is problem

dependent.

Restricting the velocity has also disadvantages. Restricting the velocity does not

only change the step size of the particles, but also the direction of movement of

the particles (Figure 3.5), for example by reducing the maximum velocity in time

or by the introduction of an inertia weight w.

velocity update
position update

Figure 3.5: Change in direction of
movement after velocity restriction.

Inertia weight

The inertia weight w [3, 31] is an additional parameter added to the equation of

the velocity update:

vi(k + 1) = w · vi(k) + c1 · r1(k) · [pi(k)− xi(k)]

+ c2 · r2(k) · [pg(k)− xi(k)] , (3.10)

with 0 < w < 1. The inertia weight slows down the velocity of the particle at

the previous iteration step and consequently controls the impact of the previous
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velocity on the new velocity. In that way, w regulates the ratio between exploration

and exploitation. A large (small) w simplifies exploration (exploitation). The ideal

value of w leads to a balance between exploration and exploitation and results in a

reduction of the number of iterations needed to find the optimal solution.

Constriction parameter

An alternative for the inertia weight w is the constriction parameter χ [3, 31]. The

equation of the velocity update is then:

vi(k + 1) = χ(k)[vi(k) + c1 · r1(k) · [pi(k)− xi(k)]

+ c2 · r2(k) · [pg(k)− xi(k)]] . (3.11)

The objective of the constriction parameter is also to balance the exploration-

exploitation ratio. The difference between w and χ is that a mathematical model

is developed for χ, which takes into account the random factors r1(k) and r2(k).

The following relation appears to be ideal [3, 31]:

χ(k) =
2κ

|2− φ(k)−
√
φ(k)(φ(k)− 4)|

(3.12)

with φ(k) = c1r1(k)+c2r2(k). This expression is only properly defined for φ(k) ≥ 4.

If φ(k) < 4, we set φ(k) = 4, namely χ(k) = κ. The coefficient κ lies in the interval

[0, 1], small (large) values lead to faster (slower) convergence and little (much) time

spend for exploration.

3.2.5. Handling constraints

Another important aspect to be considered is the way of handling the boundaries

of the search space and thus of taking possible constraints into account. Two main

approaches are available to handle the constraints that limit the search space. The

first one exists in including the constraints in the objective function using penalty

functions. This can be accomplished using the general techniques that are also

used by other algorithms. The second approach, on the other hand, consists of

dealing with the constraints and the objective function separately. This approach

has some advantages, since no additional parameters need to be introduced in the

algorithm, and there is no limit to the number or format of the constraints [32, 33].

This approach can be implemented in several distinct ways. One possibility is to

neglect the boundaries and allow particles to be positioned outside the search space.

A disadvantage of this approach is that the global best particle can possibly be
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located outside the search space. Another approach is to allow particles to cross the

boundaries, but to disallow particles outside the boundaries to become the globally

best particle. It is also possible to set the velocity of the particle outside the search

space equal to zero, or to reinitialize the particles that are located outside the

search space. We can also rescale the velocity of the particle outside the search

space, such that the particle is positioned on the boundary. Or we can position

the particle on the boundary and set the velocity to zero or reflect the velocity. In

order to accomplish the reflection of the velocity, the sign of the components of the

velocity, in the dimensions where the boundary is crossed, is changed.

3.2.6. Possible stopping criteria

When selecting a certain stopping criterion, two aspects have to be considered:

• PSO should not converge too early, as this would lead to suboptimal solutions.

• For preventing large computational costs, the number of function evaluations

should not be too high. There should be a lot of evaluations in areas where

the fitness is low and few evaluations in areas where the fitness is high.

The following stopping criteria, each having their own disadvantage, are possi-

ble:

• A maximal number of iterations: when the maximal number of iterations is

too small, the algorithm will stop before the optimal solution is reached.

• An acceptable solution: the algorithm is stopped when the error is lower than

a predetermined value ε. However, for this criterion, we need information

about the optimum.

• Lack of improvement: The disadvantage of this stopping criterion is that it

is not always easy to find an objective quantity and corresponding tolerance

level that measures the lack of improvement. Improvement can be measured

in different ways. When the mean change in position of the particles is small,

we can assume that the swarm has converged. An alternative is to stop the

algorithm when the velocity of the particles is close to zero, then the change

in position will also be minimal.

3.2.7. Description of the parameters

As for all heuristic optimization algorithms, the performance of the algorithm

largely depends on the choice of the parameter values. The parameters that have

to be determined are the population size N , the cognitive and social parameters c1
and c2, the size of the neighbourhood, the number of iterations K.
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The size of the population determines the initial diversity of the swarm. When the

particles are uniformly initialized, the diversity will increase when a higher number

of particles is present. A larger swarm will explore a larger part of the search space

per iteration and less iterations will be necessary to find a good solution. Too large

populations will lead to a larger computational cost and the particles will degrade

to a parallel random search. In literature [3], it is shown that with a population

size of 10 to 30 particles, the optimal solution is often found for a wide range of

problems. Nevertheless, the perfect population size is problem dependent.

The size of the neighbourhood is responsible for the range of the social interactions

in the swarm. In smaller neighbourhoods there will be less social interactions than in

large neighbourhoods, therefore convergence is slower in small neighbourhoods than

in large neighbourhoods. Although there is a slower convergence, the convergence

is more reliable in small neighbourhoods and the particles are less susceptible to

local optima.

The number of iterations needed to obtain a good solution is problem dependent. A

balance has to be made between the computational cost and the necessary accuracy

of the solution.

Together with the random parameters r1 and r2, the cognitive c1 and social c2
parameters control the stochastic influence of the cognitive and social components of

the velocity of the particle. In other words, these parameters determine the relative

influence of the personal and global optimum. The value of these parameters

is problem dependent. When only c1 > 0, the particles can be interpreted as

independent hill climbers, namely each particle searches for the best position in

his neighbourhood. When only c2 > 0, the total swarm is attracted to one point.

When c1 and c2 are small, the particles are only weakly influenced by the personal

and global best position and are allowed to explore the complete search space. On

the other hand, large values of c1 and c2 cause an increase in velocity with abrupt

movements to better regions.

3.3. Simplex-Simulated Annealing

The Simplex-Simulated Annealing (SIMPSA) algorithm [34] is an optimization

algorithm based on a combination of the nonlinear Simplex algorithm [35] and the

Simulated Annealing algorithm [36]. In this section, we will briefly describe the

nonlinear Simplex algorithm and the Simulated Annealing algorithm in order to

then present the Simplex-Simulated Annealing algorithm.

31



Chapter 3. Continuous optimization methods

3.3.1. Nonlinear Simplex

The nonlinear Simplex algorithm is a derivative-free algorithm for finding the local

minimum of the function f in the neighbourhood of a randomly chosen starting

point x0 = (x0,1, . . . , x0,n) around which a simplex, i.e. a polytope determined by

n+ 1 vertices, is created. The n vertices xi (i = 1, . . . , n) are created by shifting x

along each of the coordinate axes separately. The function values fi = f(xi) at the

vertices of the simplex, x0, . . . ,xn, are compared and the simplex is encouraged

to move away from the worst vertex. The latter is performed by evolving the

simplex at each iteration through reflections, expansions and contractions in one

or all directions. More specifically, let us assume that the vertices are ordered such

that x0 is the best vertex and xn is the worst vertex. The aim is to define a new

simplex by moving xn. Let us define xr as the reflection of xn through the centroid

xo =
∑n−1
i=0 xi/n of the remaining vertices:

xr = xo − (xn − xo) = 2xo − xn . (3.13)

If f0 ≤ f(xr) < fn−1, then we replace xn by xr. If f(xr) < f0, then we can hope

to find an even better solution by expanding xr to xe which is given by

xe = xo − γ(xn − xo) = (1 + γ)xo − γxn , (3.14)

with γ > 1 (γ = 2 in a typical implementation). If f(xe) < f(xr), then we replace

xn by the expanded point xe, else by the reflected point xr. This was under the

assumption that f(xr) < fn−1. If f(xr) > fn−1, then we will try to contract by

computing xc as

xc = xo + ρ(xn − xo) = (1− ρ)xo + ρxn , (3.15)

with ρ < 1 (ρ = 1/2 in a typical implementation). If f(xc) < fn, then we replace xn
by xc. If not, we decide to reduce the whole simplex by setting xi = x0 +σ(xi−x0)

for all i = 1, . . . , n (thus for all points but the best) with σ < 1 (σ = 1/2 in a typical

implementation). Convergence is stopped if the edges of the simplex are shorter

than a given tolerance value. As the simplex method uses downhill movements in

case of a minimization problem, it is a local optimization algorithm.

3.3.2. Simulated Annealing

In contrast to the nonlinear Simplex algorithm, the Simulated Annealing algorithm

[36, 37] is a global optimization algorithm based on the physical thermal process

of annealing. When a metal is first melted by heating it, and then slowly cooled

down, it will eventually be frozen in a minimal energy state. Thermal equilibrium

at a given temperature is characterized by a Boltzmann distribution function of
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the energy states P (E) ∼ exp(−E/KT ). At thermal equilibrium the energy is

probabilistically distributed among all different energy states E. This probability

distribution shows that the system can go uphill as well as downhill, but the

lower the temperature, the smaller the probability of going uphill. These ideas

are captured by Metropolis (1953) [37] into numerical equations to search for the

minimum of a function. Before starting the algorithm, some parameters have to be

initialized, namely the initial temperature (Tmax), the number of iterations (K), the

cooling ratio (τ) and the freezing temperature (Tmin). If the current solution after

k iterations is given by x(k) = (x1(k), . . . , xn(k)), then, at iteration k + 1, a point

x(k+ 1) = (x1(k+ 1), . . . , xn(k+ 1)) is randomly selected in the neighbourhood of

x(k), and accepted with probability p(k + 1), which is given by:

p(k + 1) =

exp
(
−(f(x(k+1))−f(x(k))

T (k+1)

)
, if f(x(k + 1)) > f(x(k))

1, if f(x(k + 1)) < f(x(k))
(3.16)

with T (k + 1) the current system temperature.

3.3.3. Simplex-Simulated Annealing

Simulated Annealing was initially developed as a discrete optimization algorithm.

In case of continuous optimization problems, we need a strategy to generate

next possible solutions in the neighbourhood of the current solution. This leads

to the development of the Simplex-Simulated Annealing (SIMPSA) algorithm.

In the SIMPSA algorithm, the nonlinear Simplex algorithm and the Simulated

Annealing algorithm are combined. The Simplex algorithm is used to determine

the next possible solution of the problem. Simulated Annealing is used to allow

wrong-way movements [34]. The same parameters as for Simulated Annealing are

required, except for the initial annealing temperature, which is optimized by the

algorithm itself. The ideal value for the initial temperature T (k) is estimated to

be solving:

ζ =
m1 +m2 exp(−4f

+

T (k) )

m1 +m2
, (3.17)

where the acceptance ratio ζ is typically set to 95%, m0 = 100 · n, m1 represents

the number of successful moves, m2 represents the number of unsuccessful moves

and 4f+ the average increase in cost for the m2 unsuccessful moves. In order to

apply Eq. (3.17), a preliminary high temperature is estimated by multiplying the

absolute value of the objective function corresponding to the starting solution by a

large positive value. As cooling schedule, the Aarst and van Laarhoven [38] scheme

is used:
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T (k + 1) = τ · T (k) =
T (k)

1 + T (k) ln(1+δ)
3σ

, (3.18)

with k the current iteration, τ the cooling ratio, δ the parameter that controls the

cooling rate and σ the standard deviation of all cost configurations at the current

temperature. In the original Simulated Annealing algorithm, the cooling schedule

is only after a large number of iterations enforced, this because equilibrium has

to be reached at each temperature level. However, to reduce the computational

cost, it is also possible to apply the cooling schedule at the moment an improved

solution is obtained. This adaptation is applied in the SIMPSA algorithm and is

known as the non-equilibrium variant of the SIMPSA algorithm.

The first step of the SIMSPA algorithm consists of generating the initial simplex. For

unconstrained optimization problems, this simplex is generated as follows:

xi = x0 + (0.5− r)2|x0,i|ei , (3.19)

with x0 a random point in the search space, r a random number between 0 and 1

and ei the unit vector in direction i. For constrained problems, the initial simplex

is generated by

xi = x0 + (0.5− r)K(k) · (xmin,i − xmax,i)ei , (3.20)

with xmin and xmax the boundary constraints, K(k) a variable factor and k the

current global iteration. Important to note is that Eq. (3.20) only guarantees

feasibility when the initial solution vector x0 obeys all boundary constraints.

In order to incorporate the Simulated Annealing property of allowing wrong way

movements, in case of a minimization problem, the function values of the vertices

of the simplex are randomly perturbed proportional to the temperature control

parameter by adding a positive logarithmically distributed value. In the same

way, from the function value of every new replacement point x∗h a similar random

quantity is subtracted. This is presented by following equations:

f(xi)perturbed = f(xi)− T ln(r) ; i = 1, . . . , n+ 1 (3.21)

f(x∗h)perturbed = f(x∗h) + T ln(r) , (3.22)

with f(xi) the function value for vertex i, f(x∗h) the function value of the re-

placement point xh and f(x)perturbed the perturbed function value and T the

temperature control parameter. Then, the original simplex algorithm is performed

on these perturbed function values.
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3.3.4. Handling constraints

During the run of the algorithm, we also have to deal with constraints. This

is done by replacing the points that do not satisfy the constraints by randomly

generated points centered around the current best vertex by using Eq. (3.20), with

x0 denoted as the best vertex. It is still possible that infeasible points are replaced

by infeasible points, but now they are centered around the best vertex and can be

forced to obey all boundary constraints. All infeasible points are then penalized by

assuming a very large positive value in case of a minimization problem. If all points

in the simplex are penalized, it is still possible to make a quantitative comparison

between these points, by making the random perturbation proportional to the

temperature control parameter presented in Eqs. (3.21) and (3.22) [34].

3.3.5. Possible stopping criteria

The next aspect to be discussed is the termination criterion of the SIMPSA

algorithm. The algorithm includes two convergence tests. The first one is inherent

to the simplex method [39] and is a measure of collapse of the centroid. The

second one is based on an averaged gradient of the objective function with respect

to the number of function evaluations. When a maximum number of iterations

is reached or when the change in the objective value is less than a predefined

tolerance, SIMPSA is stopped [34].

3.3.6. Description of the parameters

The performance of this algorithm also depends on the choice of the parameter

values, which are problem dependent. The parameters that have to be chosen

are the cooling ratio τ , the freezing temperature Tmin and a maximum number of

iterations. In the beginning of the algorithm, the initial temperature T , determined

by the algorithm itself, will be high. This means that exploration is favoured

with respect to exploitation. During the algorithm, this temperature will decrease,

which will change the exploration-exploitation ratio. At the end, at the minimum

temperature Tmin exploitation is favoured with respect to exploration. The cooling

ratio determines how fast the algorithm makes the transition of exploration to

exploitation. A too small cooling ratio τ will result in a faster convergence, but the

algorithm is then more susceptible to local optima. On the other hand, a too large

cooling ratio τ will result in a slow convergence, with the risque of overstepping

the global optimum. The freezing temperature Tmin determines the exploration-

exploitation ratio at the end of the algorithm. As at the end of the algorithm,

exploitation is important for the convergence, a small freezing temperature Tmin

is preferred. For the maximum number of iterations a balance has to be made

between the computational cost and the required accuracy of the solution.
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Combinatorial optimization methods

As mentioned in Chapter 2, combinatorial optimization problems are a class of

discrete optimization problems, where the input arguments encode permutations,

combinations or variations. In case this type of optimization problem is NP -hard,

we have to rely on metaheuristics, to which we refer in this setting as combinatorial

optimization. In this chapter, two combinatorial optimization algorithms are

presented. As in Chapter 3, we restrict ourselves to the algorithms that are used in

further chapters of this dissertation (in particular to the problem of subset selection

in Part II), namely Genetic Algorithms and Ant Colony Systems. Both algorithms

are metaheuristics and were implemented to fit our needs. Nevertheless, we here

discuss the general version of these algorithms and postpone the discussion of our

modifications to the relevant part (Part II).

4.1. Genetic Algorithms

Genetic algorithms belong to the class of evolutionary algorithms, a particular

kind of nature-based algorithms. Evolutionary algorithms use concepts inspired

by evolutionary biology such as mutation, selection and crossover. First, we will

discuss the biological background of Genetic Algorithms.

4.1.1. Biological background

Living organisms consist of one or more cells. Each cell contains genetic material,

which is called the genome. More specifically, each cell is composed of a set of

chromosomes consisting of different genes, representing blocks of DNA. Each gene

encodes a trait —possible settings for a trait are called alleles— and has its own

position on the chromosome, which is also known as the locus.

The particular set of genes possessed by an individual is called the genotype. The

characteristics and qualities of an individual are known as the phenotype of the

individual.

When reproductions (recombinations) between organisms occur, a combination of

genes of the parents leads to the genes of the children, a process which is defined
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as crossover. During the copying of these genes errors can occur, i.e. it is possible

that the genes are slightly changed, which is called mutation. This mutation is

responsible for the preservation of the diversity in the population.

In nature, the reproduction of parents is controlled by survival of the fittest. Fit

individuals have more possibilities for food, water and partners. Therefore, fit

individuals have higher reproduction possibilities. These concepts are also included

in Genetic Algorithms [40].

4.1.2. The algorithm

A genetic algorithm is a population-based optimization algorithm. This algorithm

starts at k = 0 with an initial population P (k) of N chromosomes. Each chromo-

some i (i = 1, . . . , N) encodes a candidate solution xi of the optimization problem

and is assessed by the objective function f , resulting in a fitness fi = F (f(xi)),

where F is any monotonically decreasing function. A good choice of F will depend

on the range of function values f(x). The optimization process runs through

a number of iterations K which are appropriately called generations. In each

generation a new population P (k) is created, according to the following recipe.

Firstly, a population of chromosomes is initialized. Secondly, the chromosomes

are evaluated by the objective function. Thirdly, parents are chosen using some

selection procedure. Fourthly, children are created through crossover and mutation

of the selected parents. These children constitute the new population. These

steps are repeated until a stopping criterion is reached, e.g. a maximal number

of generations. [41, 40]. The pseudocode of the basic algorithm can be found in

Algorithm 2.

Algorithm 2: A basic Genetic Algorithm

Output: Best solution

k ← 0;

Initialize population P (0) at random;

while stopping criterion is not reached do

foreach individual in P (k) do

Evaluate the chromosome;

Select parents through some selection procedure;

Reproduce children through crossover and mutation;

k ← k + 1 ;

4.1.3. Representation

Depending on the problem, the chromosomes can encode possible solutions x in

the search space S in different ways depending on the type of problem and the

38



§4.1. Genetic Algorithms

structure of the solution space. The binary representation is the first developed

representation and is ideal for problems that can be formulated in terms of a set of

boolean decision variables such as subset selection problems. The chromosome is

then a string of binary values, which is also called a bit-string. The length of the

chromosome is problem dependent. In this representation, all possible bit-strings

have to represent valid solutions and it is important that all possible solutions can

be represented as a bit-string. The permutation representation is used for order

based problems. For discrete problems that are not of combinatorial nature, there is

also an integer representation where the genes can take values out of a set integers.

And finally, Genetic Algorithms can be applied to continuous optimization using

the real space representation where the genes can take values in a real interval.

We will restrict the further discussion to the binary representation, as this is the

optimal choice for the applications in this dissertation and in a wide range of

problems for which Genetic Algorithms performs well [40].

4.1.4. Parent selection

For the creation of the children, we have to select parents from the population.

Different parent selection procedures exist, such as fitness-based selection, rank-

based selection and tournament selection [41, 40].

In fitness-based parent selection, the probability of selecting individual i is fi∑N
g=1 fg

.

These probabilities can be plotted on a roulette wheel, where each probability is

then presented by a segment of the roulette wheel (Figure 4.1). In this way, a

random selection is made similar to how the roulette wheel is rotated. The parent

that is selected by rotating the wheel corresponds to the parent where the pointer

of the wheel ends. In order to select N parents, the roulette wheel is rotated N

times independently.

Pr(C)

Pr(B)

Pr(A)

Figure 4.1: Fitness-based parent selection

The advantage of this representation is its simplicity. Better individuals are strongly

favoured and take over the population very quickly, which can often be a drawback.

When the difference in fitness between the individuals is rather small, the selection
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is more or less random. The biggest disadvantage of this strategy is that the roulette

wheel is used N times independently, resulting in a high variance in the number

of children attributed to each individual. A solution is provided by ‘Stochastic

Universal Sampling’, where N proportionally distributed pointers are plotted on

the roulette wheel and the wheel is then used only one time (Figure 4.2). In this

way, the N parents are simultaneously selected.

Pr(C)

Pr(B)

Pr(A)

Figure 4.2: Stochastic Universal Sampling

Rank-based selection is based on the disadvantages of the fitness-based selection

procedure. Firstly, the individuals of the population are sorted according to their

fitness. Secondly, selection probabilities are calculated based on the rank of the

individuals. Then, the same principle is used as in the fitness-based selection

procedure.

A completely different strategy is to use tournament selection. Of two randomly

selected chromosomes, the one with the highest fitness is kept as a suitable par-

ent. This process is repeated until the number of parents equals the number of

chromosomes in the population. Not every chromosome will be a parent, and some

chromosomes will act as parent more than once. The advantages of this procedure

are its simplicity and the invariance under rescaling of the fitness. However, the

high variance in the number of children attributed to each individual is sometimes

disadvantageous.

4.1.5. Recombination

Recombination consists of crossover and mutation [40]. Crossover is the genetic

operator that performs the recombination of the genes of the parents to produce

the children. First, a crossover probability rc is determined. Then, for each couple

of parents a random number between 0 and 1 is created. If this random number is

smaller than or equal to the crossover probability, the children are created through

crossover of the parents. On the other hand, if this random number is larger than

the crossover probability, the children are exact copies of the parents. There exist

different crossover operators, the most important ones are: one-point crossover,

M -point crossover and uniform crossover. In one-point crossover, two parents are
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randomly chosen. Then, a random point of the chromosome is chosen as breaking

point and the tails of the parents are exchanged. The newly formed chromosomes

are the children.

In M -point crossover, two parents are randomly chosen. The chromosomes of the

parents are broken in M segments and the children are created by alternatingly

taking parts of the two parents. In uniform crossover, again two parents are

randomly chosen. In this crossover procedure, the genes are treated separately.

More specifically, each gene is randomly chosen from one of the two parents

Mutation is a random change in the genes of the chromosomes. First, the mutation

probability rm has to be determined. For each gene of the chromosome, a random

number between 0 and 1 is created. If the random number is smaller than or

equal to the mutation probability, the corresponding gene is mutated, which will

correspond to a bit flip in the binary representation. If the random number is

larger than the mutation probability, the original value of that gene is kept.

4.1.6. Handling constraints

There are three standard methods to deal with constraints and infeasible solutions

in GA [41, 42]. The best solution is of course to use a representation that ensures

that all solutions are feasible. When this is practically impossible, one can try

to design a repair operator which guarantees the transformation of an infeasible

solution to a feasible solution. If neither of these are possible, one can resort to the

application of a penalty function to penalize the fitness of an infeasible solution

without distorting the fitness landscape. In the second part of this dissertation, we

will discuss a modification of Genetic Algorithm’s standard crossover and mutation

operators in order to transform parents that satisfy a specific constraint into

children that satisfy this same constraint.

4.1.7. Description of the parameters

Before the algorithm can be used, different parameters have to be determined.

These parameters, i.e the population size N , the crossover probability rc, the

mutation probability rm and the number of generations K, are problem dependent.

The larger the population size the larger the explored part of the search space. Too

large populations, however, will lead to a large computational cost. The crossover

probability is a measure of interaction between the parents, a large interaction will

lead to a larger exploration-exploitation ratio. Mutation is responsible for keeping

the diversity in the population. However, as we want the algorithm to converge, we

do not want too much randomness in the population, and the mutation probability

should not be too high. For the number of generations, we have to make a balance

between the necessary accuracy and the computational burden [40].
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4.2. Ant Colony Systems

Just as Particle Swarm Optimization (Section 3.2), Ant Colony Optimization

(ACO) falls under swarm intelligence. ACO is a metaheuristic algorithm and

takes inspiration from the foraging behaviour of some ant species, which deposit

pheromones on the ground in order to indicate favourable paths that should be

followed by the other members of the colony. A similar mechanism is used to solve

optimization problems with ACO.

4.2.1. Biological background

A french entomologist Pierre-Paul Grassé [43, 44] discovered that some species of

termites react to certain stimuli. These reactions act as new significant stimuli

for both the insect that produced them and the other insects in the colony. This

type of communication is described by the term stigmergy, which is an indirect,

non-symbolic form of communication passed on by the environment and can only

be accessed by the insects that visit the place were the information was released.

Stigmergy can also be observed in some colonies of ants. The ants walking to and

from the food source deposit on the ground a substance called pheromone. The other

members of the colony observe the presence of the pheromones and tend to follow

the paths where the pheromone concentration is higher. The pheromone depositing

and following behaviour of ants is investigated thoroughly with experiments such

as the ‘double bridge’ [45].

ACO was initially proposed by Colorni, Dorigo and Maniezzo [46] as an optimization

algorithm to solve combinatorial optimization problems. In ACO, a number of

artificial ants build solutions to the considered optimization problem and exchange

information on the quality of these solutions through a communication strategy

that is similar to the one used by real ants. The original ACO algorithm is known

as Ant Systems (AS), which was then followed by a number of different algorithmic

variants that tried to improve the performance of the AS algorithm.

4.2.2. The algorithm

ACO is a population-based metaheuristic inspired by the behaviour of real ants. It

is applicable to problems where the set of possible solutions S can be mapped to a

graph. The vertices of the graph represent parts or components of the solution,

and the edges of the graph represent the path that the ants can follow in order

to construct a solution. ACO is thus a constructive metaheuristic, where the

artificial ants will extend an initially empty partial solution sequence by adding

solution components to it. The addition of solution components will continue until

the solution sequence is complete. This is called the construction phase. After
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all ants within a single iteration have completed their solution sequence x, the

pheromones are updated. These principles are the same for all ACO variants.

Initially ACO was applied to real problems in graph theory, such as the traveling

salesman problem [47]. Pheromones are deposited on either vertices or edges, and

a higher concentration of pheromones at a certain vertex (edge) increases the

probability for this vertex (edge) to be part of a solution in the next iteration. The

concentration of pheromones is thus chosen inversely proportional to the objective

function that has to be minimized, which is typically related to the total path

length in graph problems.

However, the ACO metaheuristic can be generalized to any combinatorial optimiza-

tion problem for which a constructive heuristic can be defined. In particular, any

problem that is formulated in terms of n discrete decision variables Xd (d = 1, . . . , n)

can be studied using ACO. In such problems, every decision variable Xd can take

a value from a set of md possible values Xd =
{
x1
d, . . . , x

md
d

}
. The construction of

solutions thus boils down to the successive assignment of values xjdd to the decision

variables Xd, with jd ∈ {1, . . . ,md}. To every possible assignment Xd = xjdd , we

associate a vertex vjdd of a graph. The construction of a solution is then mapped

to a directed graph problem by connecting the vertex vjdd for every jd = 1, . . . ,md

to every vertex v
jd+1

d+1 for every jd+1 = 1, . . . ,md+1 by a unidirectional edge, as

illustrated in Figure 4.3. This scheme to map the problem of decision variables to

a graph is not unique, as it depends on the order in which a value is assigned to

the different decision variables. The consequences of this observation are discussed

in the next section.

Figure 4.3: Directed graph representing the possible decisions the ants can make during
the construction of solutions.

In the construction phase, the ants construct solutions by each traversing the graph

from ‘Begin’ to ‘End’ along the directed edges. The partial solutions xp encoded

by the ants at ‘Begin’ are empty (xp = 〈〉). In every step d, a solution component

Xd = xjdd is added to the partial solution xp, depending on which vertex vjdd the ant

passes. To decide to which vertex vjdd with jd = 1, . . . ,md the ants traverse, they

use a probabilistic model depending on the pheromone concentration along the path.
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For this kind of problem, one typically adopts an algorithm where the ants deposit

pheromones on the vertices and not on the edges. We thus define a pheromone trail

parameter τ jdd assigned to every vertex vjdd . The probability of adding a solution

component Xd = xjdd to a partial solution xp is given by [18]:

p(xjdd | x
p) =

[τ jdd ]α[η(xjdd )]β∑
xtd∈R(xp)

[τ td]
α[η(xtd)]

β
, for all xjdd ∈ R(xp) . (4.1)

Here η(xjdd ) represents the heuristic information, which is a simple measure of the

a priori desirability of adding this component given the current partial solution.

In most applications, this value does not change during the run of the algorithm.

R(xp) is the set of possible solution components that can be used to extend the

partial solution xp. Typically, this set contains all values xjdd for jd = 1, . . . ,md,

unless some values xjdd can no longer be assigned to Xd due to constraints based on

previous assignments in the partial solution. The exponents α and β can be used

to control the influence of the a priori heuristic information and of the pheromone

concentration.

When the construction phase is finished and all ants have constructed a complete

solution, each ant will individually update the pheromone concentration depending

on the fitness of its solution. Then, a new iteration is started. Initially, all

pheromone trail parameters τ jdd (1) in the first iteration are chosen equal, which

should correspond to having an equal probability for all solutions. However, as

discussed in the next section, this is not always the case. Let us assume that

there are N ants within iteration k and that ant i has constructed a solution xi =

(x
j1,i
1 , . . . , x

jn,i
n ) with fitness f(xi). Every ant i deposits a number of pheromones

to the vertices v
jd,i
d along which it has traversed the graph, that is given by

F (f(xi)), where f is the objective function that has to be minimized, and F is

any monotonically decreasing function. A good choice for F will depend on the

range of function values f(x) of the objective function. The total update of the

pheromene trail parameters τ jdd from iteration k to iteration k + 1 is then given

by [18]:

τ jdd (k + 1) = (1− ρ) τ jdd (k) + ρ
∑

{i|x
jd,i
d =x

jd
d }

F (f(xi)) , (4.2)

for all jd = 1, . . . ,md and d = 1, . . . , n. In this equation, ρ represents the evapo-

ration rate and models that pheromones fade away over time. This evaporation

is required for the initial pheromone concentration along bad paths to decay, so

that in the end all pheromones are distributed along good paths and the ants

converge to the best solution. Equation (4.2) illustrates that solution components

xjdd belonging to solutions xi with lower values of the objective function, will receive

higher pheromone updates. The pseudocode of the AS algorithm can be found in
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Algorithm 3.

Algorithm 3: A basic ACO algorithm

Set parameters;

Initialize pheromones(T );

while no convergence do

Construct solutions x ;

Update pheromones τ ;

4.2.3. Representations and bias

In this section we discuss in more detail the construction and representation of

solutions to combinatorial optimization problems, and the possible pitfalls of using

these representations in combination with the ACO paradigm. ACO was originally

developed for the traveling salesman problem [47], where one is interested in the

optimal permutation of a set of n elements I = {I1, . . . , In}, such that e.g. the

total travel distance is minimized if the elements Id for d = 1, . . . , n represent

different cities that a salesman has to travel to. Following the general scheme of

the previous section, we can identify the decision variable Xd in step d with the

next item to select. Hence, every decision variable Xd can take a value in the set

Xd = I = {I1, . . . , In}, with of course the additional constraint that no item can be

selected that was already selected before and is thus already present in the partial

solution xp. To every possible solution of the problem corresponds a unique path

that can be taken by the ants and no bias is present. Note that we can represent

this construction as a directed graph using the general construction of the previous

paragraph, but that we can also associate it to the undirected graph in Figure (4.4).

Figure 4.4: Undirected graph representing the construction of permutations from the
set I = {I1, . . . , I4}. In every step of the construction, ants can travel from their current
position to every other element of the set that they have not visited before. This additional
constraint cannot be expressed on the graph.
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The same construction of solutions can be applied to subset selection problems.

Possible examples include knapsack problems [48, 49, 50]. A knapsack problem

refers to the problem of maximizing the value of a bag (knapsack) by filling the

bag with a number of samples, without exceeding the maximum weight of the

knapsack. For example, in the 0/1 dimensional knapsack problem, each item Id of

the set I has a value zi and a weight wi. The problem is then to select a subset of

items which maximizes the sum of the values of the items and does not exceed a

given weight constraint. Another example of a subset selection problem will be

studied in the second part of this dissertation. In subset selection problems, we are

interested in the optimal combination (without repetition) of elements from the

set I = {I1, . . . , In} instead of in a permutation of these elements. Hence, we do

not necessarily need to select all elements, and the order in which the elements

are selected does not matter for the value of the objective function. As before, we

can construct solutions by identifying Xd with the next item to select. Unlike in

the traveling salesman problem, a solution sequence can be complete before all

n items have been selected. The construction will stop when no more items can

be selected without violating the constraints or without increasing the objective

function or when all items have been selected. This representation of solutions is

therefore called the variable length representation (VLR). This representation was

proposed by Hinterding [51]. In the VLR, each item of the set Id ∈ I is assigned

one pheromone trail parameter τd and a heuristic information parameter ηd. The

probabilistic decision rule (Eq. (4.1)) for adding an item Id to a partial solution

xp is then replaced by:

p(Id | xp) =
[τd]

α[ηd]
β∑

Il∈R(xp)

[τl]α[ηl]β
, for all Id ∈ R(xp) . (4.3)

However, in the VLR a representation bias is present [48, 52]. Since the order

of selection is now unimportant, every solution corresponds to different paths

that can be taken by the ants, with the number of paths equal to the number

of permutations of the elements in the subset. When solutions with a different

number of selected items coexist, the solutions with a larger number of selected

items will be over-represented in the search space, since more permutations are

possible. Because of this bias, larger sequences will be favoured independently of

the fitness values of these solutions.

A second representation for the subset selection problem is the bit string represen-

tation (BSR) (Figure 4.5) [53], which corresponds to how solutions are encoded in

the chromosomes of GA [54]. This time we have exactly n decision variables Xd

(d = 1, . . . , n) that can take possible values in Xd = {x0
d = 0, x1

d = 1}, where the

value x1
d = 1 indicates that item Id is selected for the subset while the value x0

d = 0

indicates that item Id is not selected. The decision variables are assigned values in

a fixed order, starting with decision variable X1 and ending with decision variable
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Xn. Important to note is that in this representation, at each step d of the solution

construction process, only two solution components, more specifically the inclusion

or exclusion of item Id, compete for selection. To extend the solution with a given

solution component, we apply the following probabilistic rule

p(xjdd | x
p) =

[τ jdd ]α[ηjdd ]β∑
xkd∈R(xp)

[τkd ]α[ηkd ]β
, for all xjdd ∈ R(xp) . (4.4)

In contrast to the VLR, the BSR is non-redundant in the ACO framework, meaning

that there will be no bias due to overrepresentation of some parts of the solution

space. Every possible subset corresponds to exactly one path that can be taken by

the ants.

Begin End

Figure 4.5: Bit string representation for the selection of items from a given set I =
{I1, . . . , I4}

However, in the BSR, a construction bias is present which is specific to the way

ants construct these solutions in ACO. On the other hand, GA, which uses the

same representation to encode solutions to the subset selection problem in its

chromosomes, does not suffer from this bias. To explain this type of bias, we

make use of a tree representation of the search space for the knapsack problem

(Figure 4.6). The branches leading to infeasible solutions that violate the constraints

are represented by dashed lines. The root node of the tree represents the empty

partial solution. As the tree is traversed from top to bottom, the partial solution is

extended with solution components. Each node of the tree thus represents a partial

solution xp and the leaves of the tree represent the possible complete solutions.

For each node, the partial solution is presented between brackets 〈〉. Above each

partial solution, the conditional probability of constructing this partial solution

from the partial solution in the node above is presented in the first iteration of

the ACO algorithm, when all pheromone trail parameters τ jdd are equal. Note that

we would like to obtain equal probabilities for every possible solution when all

pheromone trail parameters are equal.

Figure 4.6 illustrates a negative bias. More specifically, this figure shows that

the different feasible solutions do not have an equal selection probability —the
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1/16 1/16 1/16 1/16 1/8 1/8 0 0 1/16 1/16 1/8 0 1/8 1/8 0 0

Figure 4.6: Possible tree representation of a simple knapsack problem for the BSR. The
dashed lines represent branches leading to infeasible solutions

selection probability can be obtained by multiplying the conditional probabilities

leading to the leaf— even though this was precisely attempted by choosing the

pheromone trail parameters all equal in the first iteration of the algorithm. This

bias is a consequence of a forced choice corresponding to an increased conditional

probability for branches that originate from a vertex that also contains branches

that produce infeasible solutions and can thus not be chosen. Clearly, the unequal

selection probabilities of the different solutions depend on the order in which the

different solution components are assigned. A different assignment order would

result in a different distribution of the unequal probabilities over the different

solutions.

As was first proposed by Verwaeren et al. [55], we should modify the probabilistic

decision rule in order to prevent this bias. As mentioned above, the nodes of the

tree represent partial solutions xp. The number of leaves or terminal nodes in

a subtree xp is denoted as N(xp). Each leaf corresponds to a complete solution

sequence that can be feasible or infeasible. The number of feasible solutions in

a subtree is denoted Na(xp). Using these new variables, we develop a variable

heuristic information parameter η(xjdd ):

η(xjdd ) =
Na
(
〈xj11 , . . . , x

jd
d 〉
)

Na
(
〈xj11 , . . . , x

jd−1

d−1 〉
) . (4.5)

The combination of Eqs. (4.4) and (4.5) leads to the following probabilistic decision
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rule

p
(
xjdd | 〈x

p〉
)

=


Na(〈xj11 ,...,x0

d〉)τ
0
d

Na(〈xj11 ,...,x0
d〉)τ0

d+Na(〈xj11 ,...,x1
d〉)τ1

d

, if jd = 0 ,

Na(〈xj11 ,...,x1
d〉)τ

1
d

Na(〈xj11 ,...,x0
i 〉)τ0

d+Na(〈xj11 ,...,x1
d〉)τ1

d

, if jd = 1 ,
(4.6)

where we now restrict to the choice α = β = 1. As the sum of the probability

of going right (p
(
x1
d | 〈xp〉

)
) and the probability of going left (p

(
x0
d | 〈xp〉

)
) in

the tree is equal to one, we can conclude that the probabilities are valid. When

the probabilistic decision rule in Eq. (4.6) is used and all pheromones are equal,

each leaf in the tree representing a feasible solution will be reached with equal

probability 1
Na(〈〉) .

However, when using this probabilistic decision rule, problems occur when the

pheromones are updated. For example, when we look at the tree in Figure 4.6, we

can see that under node 〈x0
1〉 6 feasible leafs are present and under node 〈x1

1〉 5

feasible leafs are present. Therefore, in case of equal pheromones, the probability

of not selecting item 1 (X1 = x0
1) is 6

11 and the probability of selecting item 1

(X1 = x1
1) is 5

11 . Although these probabilities are different, we do not want that

these different selection probabilities are reflected in the pheromone updates τ1
1

and τ0
1 . If this were the case, it would correspond to an a priori expectation that

solutions containing X1 = x0
1 have a better function value for all possible objective

function. In order to solve this problem, we introduce the concept of a ‘guided

choice’. The extension of a partial solution xp with a solution component xjdd is

guided if Na(〈xj11 , . . . , x0
d〉) 6= Na(〈xj11 , . . . , x1

d〉). This problem can be resolved by

using following pheromone update rule

τ jdd (k + 1) = (1− ρ) τ jdd (k)

+ ρ
∑

{i|x
jd,i
d =x

jd
d }

2(1−
Na(〈xj1,i1 x

j2,i
2 . . . x

jd,i
d 〉)

Na(〈xj1,i1 x
j2,i
2 . . . x

jd−1,i

d−1 〉)
)F (f(xi)) . (4.7)

A disadvantage of the adapted probabilistic decision rule (Eq. (4.6)) is that the

complete tree describing the search space of the problem has to be known in advance,

which is for some problems practically the same as doing an exhaustive search

of the complete search space. This disadvantage is not present when the number

of solutions beneath the different nodes is exactly known without constructing

these solutions, an example of which will be encountered in Part II, Chapter 7.

Important to note is that when the pheromone concentrations are not equal for

all samples, there is still bias present due to the fixed order of the samples. This

bias is known as assignment order bias. However, as this assignment order bias is

strongly related to the construction bias, solutions for the construction bias will

also partially solve this assignment order bias. Another possible solution is to

49



Chapter 4. Combinatorial optimization methods

randomize the order of the samples to be selected for each ant.

4.2.4. Handling constraints

Several methods exist to deal with constraints and infeasible solutions. Firstly, some

implementations prevent infeasible solutions from occurring. At every construction

step, only components that can lead to feasible solution sequences can be added

to the current partial solution. This approach was described in Section 4.2.3 for

the case of subset selection problems. Secondly, we can also make use of repair

operators. All combinations of solution components are then allowed during the

solution construction process. At the end of the construction procedure, sequences

resulting in infeasible solutions will be mapped to nearby feasible solutions. However,

avoiding infeasible solutions can result in the introduction of bias. For example,

when using the repair operators, the mapping of infeasible solutions to nearby

feasible solutions can introduce redundant representations. This bias is known as

construction bias [48].

4.2.5. Description of the parameters

As in the above described algorithms, here also we have to determine some parame-

ters. These parameters are the population size N , the number of iterations K, the

evaporation parameter ρ and the exponent α and β. Again, we have to make a bal-

ance between the necessary accuracy and the computational cost, which is reflected

in the population size and the number of iterations. The evaporation parameter

reflects the exploitation-exploration ratio. A small evaporation parameter results

in a lot of exploration and little exploitation and therefore minimizes the risk of

convergence to local optima. However, when the evaporation parameter is too

small, no convergence will be present. On the other hand, a too large evaporation

parameter will result in convergence to a local optimum. The exponents α and β

control the influence of the heuristic information and the pheromone concentration.

The optimal values of these parameters are problem dependent.
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Subset selection from
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5

Introduction

This part of the dissertation deals with the problem of subset selection. Subset

selection has become an important problem since advances in experimental tech-

niques have strongly increased the possibilities of data acquisition and data sharing.

Although the availability of a large amount of data is beneficial, the post processing

that has to be applied to these data might involve highly complex laboratory

analysis steps and are often highly cost and time expensive. Therefore, it is not

possible to apply these expensive and time-consuming analysis steps to the total

data set. Restricting the analysis to a subset of the total data set might then offer

a solution.

We assume to be dealing with data sets consisting of a large number of individual

samples which are described by numerical variables and can thus be represented

as vectors in some n-dimensional vector space. In addition, we allow to have

samples originating from E different experimental settings. This poses a new

problem, namely to develop a method to select an optimal subset of samples from

a multi-experiment data set. Ideally, the best subset is the one which leads to

the best result in the further analyses. Even if these analyses allow for a result

that is easy to quantify, testing different subsets is infeasible if these analyses are

cost and time expensive. Therefore, we endeavor to select an optimal subset by

imposing suitable conditions on the statistical nature of the subset. Of utmost

importance is that the subset is as informative as the total data set, i.e. that all

the variability of the total data set is also present in the subset. In addition, it

is important that the number of selected samples in each experiment is roughly

proportional to the size of that experiment, although some experiments might

require relatively more data points in a representative subset and slight deviations

should be permitted. Another way to look at this problem is from the point of view

of distributions. While for some applications it is useful to know which regions of

the sample space are more densely crowded by samples, all these different samples

will not provide new information in the further analytical steps. We thus want a

subset of samples which contains an equal number of samples from every region

in space where samples can possibly occur. The distribution of this subset should

thus, for each variable, be a flattened version of the original distribution, i.e. a

more uniform distribution. Put differently, we want the subset to have the same

variability over a smaller number of samples. This corresponds to higher variances.

We can thus reformulate the subset selection problem as an optimization problem,
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where the objective is to maximize the variance of each variable for the selected

subset.

It is clear that a random selection of samples does not result in an optimal

subset, as a random subset inherits the distribution of the total data set. Various

specific algorithms are available for selecting an optimal subset of samples. A

well-known and often used method is the Kennard and Stone algorithm [56, 57].

A more advanced version of the Kennard and Stone algorithm is the Optimisable

k-Dissimilarity Selection algorithm (OptiSim) [58], which is considerably faster

when a large subset must be selected [56]. For less uniformly distributed data

sets, techniques can be based on clustering methods such as k-means clustering.

A representative number of samples is then selected out of each cluster [56]. In

contrast to the deterministic Kennard and Stone algorithm, the latter two subset

selection algorithms are stochastic methods, i.e. the result can differ when the

algorithm is performed multiple times. While these algorithms are not optimization

methods, they also try to accomplish the goal of obtaining a subset which is more

uniformly distributed. The essential ingredients of each of these methods are

recapitulated in Chapter 6.

By formulating the subset selection problem as an optimization problem, we can

apply the combinatorial optimization algorithms introduced in Chapter 4 to the

subset selection problem. For Genetic Algorithms, the binary character of the

fundamental entities can be perfectly mapped to samples being selected or not.

Genetic Algorithms have been applied to the optimal subset selection problem

before, but with different modifications and different objective functions than

the ones introduced in this thesis. A major difference in [59] is the non-binary

representation of the chromosomes. However, precisely this binary representation

is our motivation for applying Genetic Algorithms, rather than other heuristic

optimization techniques, to the optimal subset selection problem. Instance selection

— the selection of representative samples from a large data set — is an important

aspect in a wider range of problems. The application of evolutionary algorithms

to the problem of instance selection has already been discussed in great detail in

[60, 61]. However, the context and the goal of instance selection in these papers is

strongly different, and not directly transferable to class of problems that is aimed

at in this part of the thesis. In order to compare Genetic Algorithms with another

biologically inspired algorithm, we also solve the subset selection problem with Ant

Colony Systems.

Chapter 6 thoroughly describes the different subset selection methods used in this

part of the dissertation. In Chapter 7, these subset selection methods are applied to

a case study consisting of a data set that contains the concentration of a number of

fatty acids in a large number of milk samples, stemming from multiple experiments.

The objective is to select a subset of milk samples in which each of the different

experiments is sufficiently represented. Chapter 7 thus evaluates and compares
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the different algorithms. At last, in Chapter 8 a conclusion about this part of the

dissertation is formulated.
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6

Methodology

This chapter deals with the methodology connected to subset selection problems.

Firstly, a definition of a subset selection problem is given (Section 6.1). Secondly,

in Section 6.2 the different subset selection algorithms are discussed.

6.1. Definition of the subset selection problem

In a general subset selection problem, the objective is to select an optimal subset

out of a total set I of n samples {I1, . . . , In}. The definition of optimal differs

according to the problem at hand and is often characterized by an objective function

which has to be optimized by the subset. Possible subsets are denoted as elements

x ∈ S = 2I , where 2I denotes the powerset of I, i.e. the set containing all possible

subsets of I. In addition, there is often one or more constraints that restrict the

subsets that are allowed. The objective function and the constraints depend on

the application at hand. A well-known example is the knapsack problem. In the

0/1 dimensional knapsack problem, the objective is to select a subset of samples

that maximizes the sum of the values of these samples. At the same time, the

sum of the weigths of the samples in this subset is upper bounded by a certain

value.

In this part of this dissertation, another kind of subset selection problem is tackled.

The objective is to select a subset of a given number nsubset of samples that is

representative of the total set of samples. For this type of subset selection problem

various problem-specific algorithms were developed to select an optimal subset of

samples, such as the Kennard and Stone algorithm, the k-means clustering based

algorithm and the OptiSim algorithm. These are not optimization algorithms.

In the remainder of this section, we define a quantitative objective function that

captures the essence of the qualitative requirement for the subset. This allows

us to also apply general combinatorial optimization algorithms, as described in

Chapter 4, to the aforementioned problem. The subset selection problem is then a

specific type of combinatorial optimization problem that can be written as

max
x∈2I

f(x), subject to #x = nsubset . (6.1)
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where the function f : 2I → R is the objective function to be optimized and #x

counts the number of samples in the subset x.

Finally, we construct a suitable objective function to quantify how representative

a subset is of the total data set. In the case where the samples solely consist of

numerical data, we can represent them as vectors X ∈ RD, where D represents

the number of dimensions of the samples, i.e. the number of variables that were

measured for each sample. As mentioned in the introduction, the aim is to have a

subset with a smaller number of samples that contains the same variability as the

total data set in each variable i = 1, . . . , D. This should result in an increase of

the variances. A well-considered fitness function is then given by

κ =
D

min
i=1

vari,sel

vari
. (6.2)

The abbreviation ‘sel’ in the subscript indicates that these variances are calculated

using the values Xi of variable i of all samples X in the subset, as opposed to

the variances calculated using the total data set. This ratio is calculated for all

variables i = 1, . . . , D of the data separately. Subsequently, the minimum of these

D ratios is computed. This fitness function is to be maximized.

In case of multi-experiment data sets, we can try to steer the partitioning of

the selected samples over the different experiments. Without predetermining the

number of samples per experiment, it is possible to use metaheuristics for discrete

optimization. To this end, we adapt the fitness function as follows:

κ∗ =
E

min
e=1

(
D

min
i=1

vari,e,sel

vari,e

)
, (6.3)

with e the index indicating the experiment and E the number of experiments.

Now, the numerator of each ratio in the right-hand side is calculated using the

values Xi of all samples X in the subset belonging to the experiment e. In the

denominator, the values Xi of all samples X belonging to experiment e in the

total data set are used. In order to have vari,e,sel > 0 for all values of i and e,

at least two samples of each experiment should be selected in the optimal subset.

Since optimization algorithms try to maximize this fitness function, they naturally

impose this minimal selection of two samples from each experiment.

6.2. Subset selection algorithms

While Genetic Algorithms and Ant Colony Systems are described in full generality

in Chapter 4, this chapter explains specific modifications that were introduced to

make them fully compatible with the optimal subset selection problem. For Genetic

Algorithms (Section 6.2.4), we introduce new mutation and crossover operators
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that allow to fix the total number of selected samples. For Ant Colony Systems

(Section 6.2.5), the computational cost to solve this class of subset selection problems

is considerable and a parallel implementation is constructed. In addition, we discuss

how Genetic Algorithms and Ant Colony Systems allow to take the multi-experiment

aspect of the data set into account, by constructing an appropriate fitness function.

Such an approach is not possible with the deterministic methods, unless the

number of samples to retain from each experiment is fixed in advance. Except

for the Kennard and Stone algorithm (Section 6.2.1), the only straightforward

way to take the different experiments into account, is to treat the experiments

independently.

6.2.1. The Kennard and Stone algorithm

The Kennard and Stone algorithm [56, 57] requires the definition of a distance

measure on the set of samples and aims at sequentially selecting samples that

are uniformly distributed over the range of the total data set. The starting point

is the sample that is closest to the mean. Each newly added sample fulfills the

requirement that it is located as far as possible from the set of already selected

samples. This requirement uses the notion of distance between a point and a

set of samples, which is defined as the minimum over all distances between the

single point and each of the samples in that set. The candidate sample with the

largest distance is then added to the set of selected samples. This procedure is

repeated until a predetermined number of selected samples is obtained [57]. A

slightly modified version of the Kennard and Stone algorithm has been developed

to select two or more independent subsets [62]. The pseudocode for the standard

Kennard and Stone algorithm can be found in Algorithm 4.

Algorithm 4: Kennard and Stone algorithm

Data: Total set of n samples
Result: Set of nsubset selected samples
Calculate distance between all the samples;
Calculate distance between all the samples and the mean;
Select as first sample the one closest to the mean;
Select as second sample the one that is most distant from the first;
Define the set of candidate samples as the remaining samples;
while number of selected samples < nsubset do

Calculate distance between candidate samples and the set of selected
samples;
Select as next sample the one for which this distance is maximal;
Increase number of selected samples with one;
Remove the selected sample from the set of candidate samples;
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For two samples X,Y ∈ RD, we can define the Euclidean distance:

dE(X,Y ) = ‖X − Y ‖ =
√

(X − Y )T (X − Y ) (6.4)

and the Mahalanobis distance:

dM (X,Y ) =
√

(X − Y )TQ−1(X − Y ) , (6.5)

where Q is the covariance matrix, calculated using the total data set. In contrast

to the Euclidean distance, the Mahalanobis distance takes into account the geo-

metrical form of the variations present in the data set, and is therefore data set

dependent.

In case of multi-experiment data sets, it is not straightforward to take the different

experiments into account. When the number of samples to be selected from each

experiment is fixed, there are two possibilities: the first possibility is to divide the

data set into separate data sets, one for each experiment, and to apply the Kennard

and Stone algorithm on these data sets independently, selecting the requested

number of samples from each experiment. The second possibility is to adapt the

Kennard and Stone algorithm. In this case, the algorithm has to keep track of the

number of already selected samples for each experiment. When the predetermined

number of samples is obtained for a certain experiment, it is no longer possible to

select samples from that experiment. The pseudocode for the adapted Kennard

and Stone algorithm can be found in Algorithm 5.

6.2.2. The k-means clustering based algorithm

As mentioned in the introduction, a clustering technique such as k-means clustering

can be used when the data set is less uniformly distributed. k-means clustering

is a stochastic clustering technique based on the Euclidean distance [63]. The

pseudocode can be found in Algorithm 6. We set the number of clusters k equal to

the number of samples we want to select (k = nsubset). After the data is clustered,

we select from each cluster the sample that is closest to the cluster center. These

samples constitute our group of selected samples. As in the case of the Kennard

and Stone algorithm, when dealing with multi-experiment data sets, we can only

take the different experiments into account when the number of selected samples

from each experiment is fixed in advance. For this algorithm, the best solution is

to subdivide the data set and to apply the algorithm on the different data sets

independently.
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Algorithm 5: Kennard and Stone algorithm for multi-experiment data

Data: Total set of n samples
Result: Set of nsubset selected samples
Determine how many samples have to be selected from each experiment e;
Calculate distance between all the samples;
Calculate distance between all the samples and the mean;
Select as first sample the one closest to the mean;
Select as second sample the one that is most distant from the first;
Define the set of candidate samples as the remaining samples;
while number of selected samples < nsubset do

Calculate distance between candidate samples and the set of selected
samples;
Select as next sample the one for which this distance is maximal;
Find to which experiment e this sample belongs;
Increase number of selected samples for the corresponding experiment
with one;
if number of selected samples exp. e = predetermined number of selected
samples exp. e then

Remove all samples belonging to experiment e from set of candidate
samples;

else
Remove selected sample from set of candidate samples;

Algorithm 6: The k-means clustering based algorithm

Data: Total set of n samples
Result: nsubset clusters
Make at random nsubset clusters;
Calculate cluster centers (the mean of each cluster);
while cluster centers at time k + 1 6= cluster centers at time k do

Calculate Euclidean distance between each sample and the cluster centers;
Unite each sample with the cluster for which this distance is minimal;
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6.2.3. The OptiSim algorithm

The OptiSim algorithm aims at constructing an optimal subset by selecting samples

uniformly over the total data set [56]. OptiSim requires some user-defined input

parameters: a threshold ε, which is the required minimum distance between two

selected samples (both the Euclidean and Mahalanobis distance can be used), the

number of samples k = nsubset that have to be selected and the size S of a temporary

subset that is created to render the computation less time consuming.

The algorithm runs through a number of iterations, in which four different sets

of samples are used. The set of available samples (= A) contains all samples at

the start of the algorithm. The final result is the set of selected representative

samples (= B). Furthermore, a temporary subset of S candidate samples (= Stemp)

and a recycle bin of candidate samples is constructed. The first sample that is

selected is the one closest to the mean and is immediately removed from the set of

available samples and moved to B. In each iteration step, a temporary subset of S

candidate samples is constructed. Samples are randomly chosen and removed from

the set of available samples. If they are separated by at least a distance ε from the

set of already selected samples, they are added to the temporary subset. These

steps are repeated until the number of samples in the temporary subset reaches

the user-defined value S. The sample in this temporary subset that is most distant

from the set of already selected samples is then selected as next sample. The other

candidate samples in the temporary subset are moved to the recycle bin. This

process is iterated until nsubset samples are selected. If at any time the number of

available samples reaches zero, the content of the recycle bin is moved to the set of

available data. The pseudocode for this algorithm is given in Algorithm 7.

Algorithm 7: OptiSim algorithm

Data: Total set of n samples (= A), parameters S and ε

Result: Set of nsubset selected samples (= B)

Calculate distance between all the samples and their mean;

Take as first sample the one closest to the mean and move it to B;

while size of B < nsubset do

while size of Stemp < S do

Select a random sample from A;

Remove sample from A;

if distance to B > ε then

Add sample to Stemp;

if number of available samples = 0 then
Move recycle bin to A

Move the sample from Stemp that is most distant from B, to B;

Move the remaining samples from Stemp to the recycle bin;
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The two algorithm-specific parameters are the temporary subset size S and the

threshold distance ε. Suitable values for these parameters were estimated in [56].

The default value for S is between 5 and 25 percent of the original data set size n.

When using the Euclidean distance, a good value for ε can be found by filling the

volume V of the data set with nsubset spheres with radius r = ε/2. The volume of

the data set is then given by [56]:

V = nsubset

√
πD

Γ(D/2 + 1)

( ε
2

)D
, (6.6)

where D is the dimensionality of the data set and Γ is Euler’s Gamma function.

The volume V of the data set can be calculated as [56]

V =

D∏
i=1

range(Xi) , (6.7)

where range(Xi) represents the range covered by the data set along the ith dimen-

sion.

Rewriting Eqs. (6.6) results in a maximum value for ε:

ε = 2

[
Γ(D/2 + 1)V

nsubset

√
πD

]1/D

, (6.8)

where we use Eq. (6.7) for the volume V . However, this formula can only serve

as an estimate for the order of magnitude of ε. The reason is that even with a

densest packing configuration, which is highly unlikely, the filling factor of the

spheres in the total volume decreases exponentially as 2−D [64]. A general cure for

this problem is to replace the factor 2 in the expression above with an arbitrary

constant c:

ε = c

[
Γ(D/2 + 1)V

nsubset

√
πD

]1/D

. (6.9)

A value c = 1 corresponds to the densest packing configuration. Therefore, for the

calculation of ε, we have chosen for a value 0 < c < 1.

As for the Kennard and Stone algorithm and the algorithm based on k-means

clustering, the number of selected samples from each experiment has to be fixed in

advance, in order to take the different experiments into account. The only possible

way to select these samples without compromising the mechanism of OptiSim, is

to subdivide the data set and to apply the OptiSim algorithm independently on

the different data sets corresponding to the different experiments.
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6.2.4. Genetic Algorithms

Genetic algorithms are extensively described in Section 4.1. For clarity, we briefly

recall the most important concepts. The optimization process runs through a num-

ber of generations. A genetic algorithm starts with the initialization of a population

of chromosomes. For the subset selection problem, the binary representation is the

most adequate representation for the chromosomes. The length of the chromosomes

then equals the total number of samples n in the data set. A sample is selected for

the subset when it has value one and is not selected when it has value zero in the

chromosome.

Each chromosome is assessed by a fitness function, for which we can choose Eq. (6.2),

when not taking into account the different experiments, or Eq. (6.3) when taking

into account the different experiments. We thus do not have to predetermine the

desired number of samples per experiment. In each generation a new population

is created through the selection of parents using tournament selection. Children

are then created through crossover and mutation of the parents, as explained in

the next paragraph. These children constitute the new population. The best

chromosome of the previous population can be preserved as a member of the new

population, a strategy that is called elitism [40]. The pseudocode of the algorithm

can be found in Algorithm 2 in Section 4.1.

The standard crossover operators, such as uniform crossover, one-point crossover and

m-point crossover [65], do not guarantee that the number of selected samples is fixed

to the value nsubset. As we want this number to equal a specified constant, we must

modify the crossover operator. How this is done, is illustrated in Algorithm 8.

Algorithm 8: Adapted crossover

Data: Parents

Result: Children

P1 = samples that are selected in parent 1;

P2 = samples that are selected in parent 2;

I = P1 ∩ P2;

C = (P1 \ I) ∪ (P2 \ I);

Take for child 1 at first the samples from I followed by a random selection of half of

the samples from C;

Remove this random part from C;

Take for child 2 at first the samples from I and for the remainder the remaining

samples from C;

The mutation is also altered. Whenever a one is changed into a zero another zero is

changed to one, or vice versa. In this way the number of selected samples remains

fixed.

Finally, we remark that we did not take into account the presence of bias for

Genetic Algorithms (where it is often called deception) [66]. As the results in
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Chapter 7 show, it is likely that no bias is present for the type of subset selection

problem discussed in this case study.

6.2.5. Ant Colony Systems

Section 4.2 gives a detailed description of Ant Colony Systems. In the general

AS algorithm, a population of artificial ants starts with an initially empty partial

solution sequence xp = 〈〉 and add solution components to it in each iteration

k, according to the probabilistic rule in Eq. (4.1) (Chapter 4, Section 4.2). This

continues until the solution sequence is complete. When this construction phase is

finished, the pheromones τ are updated by Eq. (4.2) (Chapter 4, Section 4.2).

For the subset selection problem, we can use both the variable length representation

(VLR) and the bit string representation (BSR). Since each sample of the total

set of nsubset selected samples has the same weight, the VLR is not plagued by

representation errors. The number of permutations is the same for every solution,

namely nsubset!. For the BSR, the representation error is always absent. However

another kind of negative bias can be detected, which can be resolved by introducing

some modifications as explained in Section 4.2.3. The VLR, BSR and adapted

BSR will be compared in Chapter 7.

As fitness function, we use Eq. (6.2) when not taking into account the different

experiments and Eq. (6.3) when taking into account the different experiments. As

in Genetic Algorithms, we do not need to predetermine the desired number of

samples per experiment.

As the employment of ACO to this particular subset selection problem is computa-

tionally very demanding, we have developed a parallel version of ACO. This parallel

algorithm was implemented using the Message Passing Interface (MPI) of Octave.

MPI is a library of routines that can be used to create parallel programs. A parallel

program makes use of two or more processes. Depending on the application, several

paradigms of parallel programs exist [67]. In this application, we have chosen for

a master-slave paradigm. Initially, only one process is used, this process is called

the master process, which controls the program. The master process is thus the

manager and decides which tasks have to be completed by the other processes,

which are called the slave processes. The slave processes then send the results of

the completed tasks back to the master process. The program is finished when the

master process sends a ‘timetoquit’ to the slave processes. The pseudocode of the
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parallel ACO is presented in Algorithm 9.

Algorithm 9: A parallel ACO algorithm

Initialize MPI;

Set parameters;

if master process then

while no convergence do

Send assignment to construct solution x to slaves;

Receive solutions constructed by slaves;

Update best solution ;

Update pheromones τ ;

Send timetoquit;

else

Timetoquit is false;

while timetoquit is false do

Receive messages from master;

Construct solution x;

Send solution x to master;
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Case Study

In this chapter, the subset selection algorithms, described in full detail in Chapter 6,

are applied to a case study. Section 7.1 describes the data set used in this case

study. This data set consists of the concentration of 45 fatty acids in a large number

of milk samples belonging to multiple experiments. Section 7.2 presents the results

of the different subset selection algorithms and discusses them thoroughly. In order

to do this, we make a distinction between the results obtained when not taking the

different experiments into account (Section 7.2.2) and the results obtained when

taking the different experiments into account (Section 7.2.3). In Section 7.2.4, this

analysis is repeated by restricting the data to the most important fatty acids only.

Section 7.2.5 discusses the statistical significance of the differences in the results

obtained with the different algorithms. Then, in Section 7.3 the distribution of the

optimal subset is compared with the distribution of the total data set.

7.1. Data description

This section describes the details of an example in agriculture where it is beneficial

to apply a very expensive post processing step to a small subset of the original

data set. This problem was presented to us by the research group of professor

V. Fievez of the Department of Animal Production of Ghent University and will

be used throughout this chapter to test the different subset selection methods that

were introduced in the previous chapter. The original data set, which was provided

to us by the Department of Animal Production, consists of measurements of the

concentration of D = 45 fatty acids in a large number n = 1033 of milk samples

that belong to E = 6 different experiments. The concentrations of the fatty acids

are expressed in terms of mass percentage. These fatty acids have been identified

as methylated fatty acids, after extraction and methylation according to [68], on a

Hewlett-Packard 6890 gas chromatograph (Hewlett-Packard Co., Brussels, Belgium)

with a CP-Sil88 column for fatty acid methyl esters (100 m × 0.25 mm × 0.2 µm;

Chrompack Inc., Middelburg, the Netherlands). The temperature program was set

according to [68]. We refer to this identification method as the simplified reference

method.

It has been shown that milk fatty acids have the potential to monitor nutrients

67



Chapter 7. Case Study

produced during digestive processes [68, 69] and diagnose metabolic disorders such

as acidosis and ketosis [70]. Milk fatty acids of particular importance in this respect

are odd and branched chain fatty acids and trans-isomers of C18:1 and cis/trans

C18:2. These fatty acids are called the priority fatty acids here. However, although

the highly polar cyanoalkyl polysiloxane stationary phase, that was used to obtain

the current data set, is most widespread, it cannot resolve all milk fatty acids.

Indeed, some trans C18:1, cis C18:1 and cis/trans C18:2 isomers are only partially

resolved and overlap of trans C16:1 with branched chain C17:0 fatty acids has been

reported [71]. Moreover, identification of several fatty acids is also challenging

due to the limited availability of standards. In parallel research the objective

is to construct the best possible calibration equations for the odd and branched

chain fatty acids and the trans-isomers of C18:1 and cis/trans C18:2 using the

spectra of raw milk or milk fat from different spectrophotometrical techniques

(such as mid-infrared (MIR), near-infrared (NIR) and Raman spectroscopy). Hence,

the separation of the different fatty acids and their isomers needs to be as high

as possible. Therefore, the best possible reference data is needed, which gives

a more accurate representation of the actual amounts of the fatty acids in the

samples.

However, for budgetary reasons we have to create a subset of nsubset = 100 ref-

erence samples on which a detailed milk fatty acid reference analysis is to be

performed using different GC-settings, which might include following methods: 1)

according to [68], a Hewlett-Packard 6890 gas chromatograph (Hewlett-Packard

Co., Brussels, Belgium) with a CP-Sil88 column for fatty acid methyl esters

(100 m × 0.25 mm × 0.2 µm; Chrompack Inc., Middelburg, the Netherlands)

but using different temperature programs, allowing to resolve a larger set of

individual fatty acids [72]; 2) according to [73] a Hewlett-Packard 6890 gas chro-

matograph (Hewlett-Packard Co., Brussels, Belgium) with a Solgel-wax column

(30 m × 0.25 mm × 0.25 µm; SGE Analytical Science, Victoria, Australia), which

does not allow separation of cis and trans C18:1 isomers, but results in an improved

resolution of branched chain and some trans-mono-unsaturated fatty acids and

3) a comprehensive two-dimensional GC, which is a multi-dimensional separa-

tion technique, allowing separation on two GC columns with different separation

mechanisms [71], which should allow improved separation and identification of

several milk fatty acid methyl esters. The reference data set created using these

gaschromatographic approaches will be used further to assess the prediction of

odd and branched chain and the trans/cis isomers of the C18:1 and C18:2 fatty

acids of interest. This prediction will be based on several spectrophotometrical

techniques for the analysis of the selected milk samples and will be used to improve

chemometrical methods applied for this prediction.

In order to have a wide range of concentrations of several milk fatty acids of interest,

milk samples of six experiments are considered, in which cows were subjected to

different diets. The total data set contains m = 1033 milk samples. In experiment 1
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[74], milk samples were obtained throughout the lactation period from 20 cows,

divided in two equal groups with limited or ad libitum access to the compound

feed. Experiment 2 [75] and 3 (unpublished results) consisted of a 6- and 12-weeks

trial in which twelve and four cows were subjected to a gradual increase of quickly

fermentable carbohydrates in the compound feed. In experiment 4 [76], three cows

in mid lactation were used to examine milk fatty acid composition responses to

micro algae feeding during 20 days. Milk samples of experiment 5 [77] were derived

from 16 cows during the first 12 weeks after parturition. Eight cows were offered

a standard diet, whereas the other eight animals received a compound feed with

micro algae, similar to the test feed of experiment 3. In experiment 6 (unpublished

results), three different linseed sources (extruded, rolled and rumen by-pass) were

fed to three groups of six cows during a period of six weeks. Since the subset

of samples has to be representative for the total data set, it is important that a

sufficient number of samples are selected from each experiment. A good guideline

is to have the number of selected samples in each experiment roughly proportional

to the size of that experiment, but this should not be a strict rule.

As mentioned in Section 6, it is important that the subset of nsubset = 100 samples

possesses the same variability as the total data set. Because the data stems from

different experiments, it is recommended to have all experiments represented in the

subset. Therefore, a good objective is to maximize the variance of each variable

for the selected subset. The presence of outliers might pose an issue with this

objective function. Because we want to maximize the variances, it is likely that

these outliers will be selected. Since each of the experiments have been checked

thoroughly before publication or internal reporting (of the unpublished results),

extreme values which remain in the current data set are not false measurements but

contain valuable information. Accordingly, in our case, the data are assumed to be

free from outliers. This is also verified by calculating the deviation between the

mean for the subset and the total data set for each variable. When the distribution

of the subset is not shifted into a particular direction with respect to the original

distribution, we can assume that no outliers are selected in the subset. Indeed, if

an outlier would be part of the subset, it would have a larger effect on the mean of

each fatty acid for the subset due to the smaller number of samples.

7.2. Results and discussion

This section presents the results and discusses our observations in detail. Results

are always displayed using a pair of graphs as explained in Section 7.2.1. In

Sections 7.2.2 and 7.2.3, we discuss the results obtained using all fatty acids, even

though we only plot data for a few fatty acids on the graph for clarity. We have

also repeated the analysis for a data set that is restricted to include only these few

fatty acids of particular interest. The results of that analysis are very similar, as
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stated in Section 7.2.4. Finally, in Section 7.2.5, we test the statistical significance

of our findings.

7.2.1. Representation of the results

The following sections display the resulting subsets selected by each of the algorithms

discussed in the previous chapter. The results of each algorithm will be illustrated

using a pair of graphs which always display the same content. Both graphs display

quantities which are calculated for each variable i = 1, . . . , n and for each of the

six experiments separately, i.e. these quantities are calculated using the values Xi

belonging to a certain experiment. The first graph demonstrates the gain (> 1) or

loss (< 1) of variance when only the selected samples are used. This number is

given by the ratio of the variance of each fatty acid for the selected subset to the

variance of the corresponding fatty acid for the total data set. The minimum of

all these values is precisely κ∗, as defined in Section 6.2.4, and serves as a good

quantification of our subset. This value will thus be included in the tables. It is

important to notice that if the concentration of a fatty acid is unknown for all the

samples of a certain experiment, it is impossible to calculate the variance of this

missing fatty acid, both for the total set of samples and for the optimal subset.

In this case the ratio vari,l,sel/vari,l, as needed in the calculation of κ∗, is set to

one. When the concentration of a fatty acid is zero for all the samples of a certain

experiment, the variance of this fatty acid for the total set of samples and for the

optimal subset is also zero. In this case the ratio vari,l,sel/vari,l is also set to one.

The second graph displays how much the mean of each fatty acid for the selected

samples deviates from the mean of the corresponding fatty acid for all the samples.

This difference is standardized by dividing it by the standard deviation of all the

samples. The difference is negligible when its absolute value is small compared to

one. Both quantities are easy to interpret. As explained before, our objective is an

increase in variance with a preservation of the mean for each variable. The increase

in variance ensures that extremal points and points in the outer region of the

original data set are more likely to be selected in the subset, while the preservation

of the mean ensures that the subset is still homogeneously distributed over the

set of all samples and not shifted to a particular direction. As discussed above, a

strong shift of the mean might also indicate the presence of outliers in the data set.

As we impose to maximize the variance of each fatty acid for the selected subset,

outliers will certainly be selected if they are present.

When no samples are selected from a certain experiment, this experiment will not

be displayed on the graphs. If only one sample is selected from a certain experiment,

all variances calculated using this selected sample will amount to zero. Since this

cannot be represented on a logarithmic scale, this experiment will also be omitted

from the graphs presenting loss or gain of variance.
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In order to make a statistical comparison between the different subset selection

algorithms, the stochastic techniques k-means, OptiSim, Genetic algorithms and

Ant Colony Systems were repeated 50 times. In the graphs, a single generic solution

is presented and in the tables the mean of the 50 repetitions is presented. As was

already stated at the beginning of this section, only a few fatty acids of particular

interest are represented on the graphs but all data is taken into account in the

comparative tables.

7.2.2. Without distinction between the experiments

In this section, we discuss the results obtained with the different subset selection

techniques as presented in Section 6. The techniques applied to obtain the results

in this subsection were not informed about the subdivision of the total data set

in six different experiments. In the next subsection, we will show how taking the

different experiments into account improves the results.

The Kennard and Stone algorithm

Euclidean distance (ED): Figure 7.1 illustrates that the variances of some

fatty acids are smaller for the selected subset than for the total data set when

not taking the different experiments into account. Table 7.1 shows that only one

sample is selected from experiment 4, which explains why the value of κ∗ is zero

and why this experiment is not presented in Figure 7.1. The value of κ indicates

that, even when no dinstinction is made between the experiments, for at least one

fatty acid a strong loss of variance is observed. Finally, Figure 7.2 demonstrates

that the means of some fatty acids for the selected subset deviate strongly from

the corresponding means computed using the total data set.

Mahalanobis distance (MD): When the Mahalanobis distance is used, samples

from each experiment are selected (Table 7.1). However, this only slightly improves

the values of κ and κ∗ with respect to the Euclidean case (Figure 7.3). The

deviations from the means are on average larger (Figure 7.4). We can argue that

the use of the Mahalanobis distance is not a proper choice for the optimal subset

selection problem. The definition of the Mahalanobis distance is such that the data

is transformed, and directions of high variance can no longer be distinguished from

directions of low variance. The Mahalanobis distance makes it harder to detect the

extremal values which are responsible for a large part of the variability of the data

set and which should be included in the set of selected samples.
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The k-means clustering based algorithm

With this technique samples are proportionally selected from each of the experiments

(Table 7.1). The deviations from the means between the selected subset and the

total data set are rather small in most cases (Figure 7.6). However, for certain

experiments, the variance of a large number of fatty acids is smaller for the selected

subset than for the total data set (Figure 7.5). This can also be noticed in Table 7.1

(κ and κ∗).

The OptiSim algorithm

Samples are selected from each experiment (Table 7.1). The variances of some

fatty acids are much lower for the subset selected with the OptiSim algorithm than

for the total data set, as indicated by the low values of κ and κ∗ (Figure 7.7). The

means of the fatty acids for the selected samples are also strongly shifted for some

fatty acids (Figure 7.8).

Genetic Algorithms

To determine the optimal values for the population size, the number of generations

and the crossover and mutation probability of Genetic Algorithms, we performed

an exhaustive search. We examined a crossover probability rc of 0.3, 0.6 and 0.9; a

mutation probability rm of 0.01, 0.001 and 0.0001; a population size N of 50, 100,

150 and 200 and a number of generations K of 200, 300, 400 and 500. Because

of the presence of mutation in genetic algorithms, we cannot expect the whole

population to converge to a single point, unless the mutation probability is gradually

turned to zero. However, we choose to fix the number of generations. Figure 7.9

(a) illustrates that the best objective function value is obtained with a number

of generations K = 400 or K = 500 and a mutation probability rm = 0.0001.

Figure 7.9 (b) shows that a crossover probability rc = 0.9 in combination with

a mutation probability rm = 0.0001 leads to the best objective function value.

Figures 7.9 (c) and (d) indicate that a population size N = 200 in combination

with a number of generations K = 400 or K = 500 results in a better objective

function value. At last, Figures 7.9 (e) and (f) illustrate that a crossover probability

rc = 0.9 gives better results than a lower crossover probability. Therefore, the

chosen parameter values are rc = 0.9, rm = 0.0001, K = 400 and N = 200.

As mentioned in Section 6.2.4, with the standard crossover and mutation operator,

it is not possible to fix the size of the selected number of samples. Because we

wanted a subset of roughly 100 samples, we adapted these standard operators.

However, to investigate if it is not possible to get a higher variance with a different

subset size, we also executed Genetic Algorithms with the standard crossover and

mutation operator.
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Fitness function κ (adapted operators): The optimization of the fitness

function κ results in the absence of samples from experiment 4. This fitness

function has a value above one, which indicates there is no loss of variance when

the different experiments are not taken into account (Table 7.1). This is not a

surprise, because the function κ was optimized. However, the variances of some

fatty acids are significantly smaller for the selected subset than for the total data

set when the different experiments are considered separately (Figure 7.10). For

most fatty acids, the deviation between the mean for the selected subset and the

total data set is rather small (Figure 7.11).

Fitness function κ (standard operators): With the standard operators, the

optimal subset consists of 117 samples. This, however, is surely not the best one

we can obtain, since the value of κ that we obtained with the adapted operators is

higher, although the number of samples is restricted to a fixed value of 100 in that

case. In this case, the variances of some fatty acids are also significantly smaller for

the selected subset than for the total data set when the different experiments are

considered separately (Figure 7.12). For most fatty acids, the deviation between

the mean for the selected subset and the total data set is again rather small

(Figure 7.13).

Ant Colony Optimization

When we want to apply the ACO algorithm to this subset selection problem, we

have to select an appropriate representation of the solution space. As mentioned

in Chapter 4 (Section 4.2.3), there are two possible representations for the subset

selection problem. The first representation is the variable length representation

(VLR), which seems to be suitable as in this case study no representation error is

present (all solutions have the same length). However, in a first test configuration

it seems that the ants are not able to converge and therefore the algorithm does

not stop. A possible explanation is that the different milk samples are closely

positioned to each other in the 45-dimensional space of concentrations of fatty

acids, so that different clusters of milk samples with nearly identical fatty acid

concentrations are formed and it does not matter which sample is selected in

such a cluster. Ants that have selected different samples of the same cluster will

have a similar objective function value and the samples selected by these ants will

have a similar pheromone concentration. Therefore, these ants will not converge

to a unique solution. Figure 7.14 illustrates the distance between the different

milk samples in this space. The black lines separate the different experiments. In

correspondence to our findings with the Kennard and Stone algorithm, we used

the Euclidean distance as this allows for the best detection of extreme distances

between samples that are worth selecting. However, as is shown by Figure 7.14,
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several groups of milk samples with little separation are present. More specifically

the samples belonging to the same experiment and the samples of experiments

1 and 4 are positioned very close to each other, resulting in very small distances

among them.

Consequently, we assume that the bit string representation, with the adapted

probabilistic decision rule and the adapted pheromone update, leads to better

results. The bias originating from the fixed order of the samples to be selected is a

favourable effect in this case. If this bias were resolved, we would face the same

problem as with the variable length representation. Because of the fixed order

of the milk samples, the ants always select the same samples out of the different

clusters of highly correlated samples and convergence is possible. To illustrate that

the results are better with the adapted probabilistic decision rule and the adapted

pheromone update rule, we will give an example of the results with the standard

probabilistic decision and pheromone update rule.

As with GA, we have to determine some parameters for the ACO algorithm, namely

the population size N , the initial pheromone concentration τ0 and the evaporation

rate ρ. As the algorithm runs until the ants are converged (as convergence tolerance,

we choose tol= 0.001), no number of iterations has to be determined. In order to

determine these parameters, we performed an exhaustive search. We tested the

ACO algorithm with a population size N of 10, 20, 30 and 40, an initial pheromone

concentration τ0 of 100, 500 and 1000 and an evaporation rate ρ of 0.1, 0.5 and 0.9.

Figure 7.15(a) illustrates that an evaporation rate of 0.1 in combination with a

population size of 30 or 40 gives the best results. Figure 7.15(b) shows that an initial

pheromone concentration of 1000 leads to higher values of the objective function

than an initial pheromone concentration of 100 or 500. Figure 7.15(c) confirms

our conclusions of Figures 7.15(a) and (b). We therefore choose a population size

N = 30, an initial pheromone concentration τ0 = 1000 and an evaporation rate

ρ = 0.1.

Fitness function κ (original AS algorithm): Figures 7.16 and 7.17 illustrate

that, in the case of the original AS algorithm and no distinction between the different

experiments, samples are only selected from experiments 1 and 2. Figure 7.16

shows that there is a strong loss of variance. This is also indicated by the value of

κ in Table 7.1. The deviation between the mean for the selected subset and the

total data set is rather small (Figure 7.17).

Fitness function κ (adapted AS algorithm): When using the AS algorithm

with the adapted probabilistic update rule and the adapted pheromone update rule,

samples are selected from every experiment (Figure 7.18 and 7.19). However, again

a strong loss of variance is present for the selected subset of samples (Figure 7.18).
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Figure 7.19 illustrates that the deviation between the mean for the selected subset

and the total data set is very strong for some fatty acids.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.9: Dependence of the objective function value on different values of the GA
parameters: (a) number of generations K versus mutation probability rm with a fixed
crossover probability rc = 0.6 and population size N = 50, (b) crossover probability rc
versus mutation probability with fixed number of generations K = 200 and population size
N = 100, (c) mutation probability rm versus population size N with a fixed number of
generations K = 200 and a fixed crossover probability rc = 0.9, (d) number of generations
versus population size with a fixed crossover probability rc = 0.9 and a fixed mutation
probability rm = 0.0001, (e) crossover probability versus population size with a fixed
mutation probability rm = 0.0001 and number of generations K = 400 and (f) crossover
probability versus number of generations with a fixed mutation probability rm = 0.0001
and population size N = 200
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§7.2. Results and discussion

Figure 7.14: Euclidean distance between the different milk samples.

89



Chapter 7. Case Study

(a)

(b)

(c)

Figure 7.15: Dependence of the objective function value on different values of the ACO
parameters: (a) evaporation rate ρ versus population size N with an initial pheromone
concentration of τ0 = 1000, (b) population size N versus initial pheromone concentration
τ0 with a fixed evaporation rate ρ = 0.1, (c) evaporation rate ρ versus initial pheromone
concentration τ0 with a fixed population size N = 30
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§7.2. Results and discussion

Table 7.1: Summary of the results of selecting a subset of samples out of 1033 samples
for all fatty acids. For each method the number of samples selected from each experiment
is presented. The results of the Kennard and Stone algorithm are presented with the
Euclidean Distance (ED) and with the Mahalanobis Distance (MD) as distance measure.
For Genetic Algorithms (GA) the results of both adapted operators (AO) and standard
operators (SO) are listed.

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 κ κ∗

All fatty acids

Total set
of samples

144 426 117 63 26 257 1 1

ED 8 32 19 1 8 32 0.4 0

MD 14 35 15 3 9 24 0.7 0.0001

k-means 14 40 12 6 2 26 0.5 0.0081

OptiSim 6 36 18 2 7 31 0.4 0.005

GA (κ) (AO) 19 37 17 0 3 24 1.3 0

GA (κ) (SO) 19 48 18 5 5 22 1.2 0.051

AS (κ) (OA) 68 32 0 0 0 0 0 0

AS (κ) (AA) 18 37 14 2 2 27 1.1 0.00047

Priority fatty acids

Total set
of samples

144 426 117 63 26 257 1 1

ED 7 16 6 2 19 50 1.1 0.3

MD 12 35 7 1 9 36 1.1 0

k-means 15 40 12 7 1 25 0.7 0.2

OptiSim 7 17 6 0 18 52 0.8 0.2

GA (κ) (AO) 15 31 22 0 9 22 2.4 0

GA (κ) (SO) 1 4 2 0 3 2 3.4 0

AS (κ) (OA) 71 29 0 0 0 0 0 0

AS (κ) (AA) 16 33 16 1 10 24 1.7 0
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7.2.3. Individual experiments

In this section, the multi-experiment aspect of the data is incorporated in the

subset selection procedure. For the conventional techniques this is only possible by

fixing the number of samples in advance. As it is difficult to determine the best

number of selected samples per experiment, we decided to perform the conventional

techniques twice, with a different number of selected samples per experiment. In

the first case, the number of selected samples per experiment is chosen to be more

or less equal; in the second case, the number of selected samples per experiment is

chosen proportional to the size of the experiment. As mentioned in Section 6.2.1,

for the Kennard and Stone algorithm, we can use either the adapted algorithm

(Algorithm 2) or apply the standard algorithm independently to the different data

sets corresponding to the different experiments. As the results of the Kennard and

Stone algorithm with the Mahalanobis distance were similar to the results with the

Euclidean distance in Section 7.2.2, we decided to only use the Euclidean distance

here. In case of the algorithm based on k-means clustering and the OptiSim

algorithm, we restricted to applying these algorithms on the divided data set. For

Genetic Algorithms and Ant Colony Systems, we use the same parameters as in

Section 7.2.2 and the fitness function κ is adapted and denoted as κ∗ . The adapted

fitness function was outlined in Section 6.1.

As mentioned before, the fitness function κ∗ equals the minimum value displayed

on the graph with the loss or gain of variance. Samples will now be selected to

maximize this minimal value.

The Kennard and Stone algorithm

The adapted algorithm, Euclidean distance (ED-adapted): Firstly, the

number of selected samples per experiment is kept more or less equal (ED-adapted-

1). Figure 7.20 illustrates that, even though the different experiments are taken

into account, the variances of some fatty acids are smaller for the selected subset

than for the total data set. This is also quantified by the value κ∗ in Table 7.2.

Figure 7.21 shows that for most fatty acids, the deviation between the mean for

the selected subset and the total data set is rather small.

Secondly, the predetermined number of samples per experiment is chosen propor-

tional to the size of the experiment (ED-adapted-2). The value of κ∗ in Table 7.2

indicates that for some fatty acids there is a strong loss of variance. Important to

notice is that the value of κ∗ is much lower now than in the previous case with

an equal number of selected samples per experiment. This lower value of κ∗ was

caused by the strong loss of variance of the C18:1 t11 fatty acid. We do not display

the corresponding figure, as it looks similar to the graph in Figure 7.20 (with

exception of the C18:1 t11 fatty acid). The deviations from the means are similar

to those represented in Figure 7.21.
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§7.2. Results and discussion

The standard algorithm, Euclidean distance (ED): For an equal number

of samples per experiment (ED-1), Figure 7.22 shows that only for a few fatty acids

there is a loss of variance. This loss of variance is also illustrated by the value of

κ∗ in Table 7.2. The deviations from the means (Figure 7.23) are rather small and

similar to the graph in Figure 7.21.

When the number of selected samples per experiment is chosen proportional to the

size of the experiment (ED-2), the variances of some fatty acids are much lower

for the selected subset than for the total data set, indicated by the value of κ∗

in Table 7.2 (Figure 7.24). This value is much lower than for the method ED-1,

precisely as was the case for method ED-adapted. The deviations from the means

are larger than for the method ED-1 (Figure 7.25).

The k-means clustering based algorithm

Figures 7.26 and 7.28 illustrate that both in the case of an equal number of selected

samples per experiment (k-means-1) as well as in the case of a number of samples

selected proportionally to the number of samples of each experiment (k-means-2),

there is a strong loss of variance for the selected subset with respect to the total

data set (Table 7.2, κ∗). In both cases, the deviations from the means are very

small (Figures 7.27 and 7.29).

The OptiSim algorithm

When the predetermined number of samples per experiment is proportional to the

size of the experiment (Figure 7.32), there is a stronger loss of variance than when

the number of samples per experiment is equal (Figure 7.30). This can also be

noticed in Table 7.2 (κ∗). The deviations from the means are small and similar in

both cases (Figures 7.31 and 7.33).

Genetic Algorithms

Fitness function κ∗ (adapted operators): In the function κ∗, the ratios are

restricted to the data per experiment separately. The minimum is now computed

over both the n variables and the six different experiments. The results (Figures 7.34

and 7.35, Table 7.2) indicate that samples from all experiments are selected, roughly

proportional to the size of the experiments. It is important that this can be

supervised by means of a good fitness function. The variance of each fatty acid is

for the selected subset greater than or more or less equal to the variance of the

corresponding fatty acid for the total data set. Since this was exactly our objective,

these results show that a collective maximization of these values is possible. This

was not the case with the conventional techniques. With the standard Kennard
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and Stone algorithm with an equal number of samples per experiment (ED-1)

(Figure 7.22), however, almost as good results were obtained for most of the fatty

acids. Nevertheless, the requirement for fixing the number of selected samples per

experiment in advance, is a major drawback of the Kennard and Stone algorithm.

The number of samples that have to be selected from each experiment, in order

to obtain a maximal variance, depends on many factors and is therefore not

straightforward to determine. Figure 7.35 illustrates that the deviations from the

means are rather small, which is a second confirmation that Genetic Algorithms

are capable of selecting an optimal subset of samples.

Fitness function κ∗ (standard operators): Table 7.2 indicates that 275 sam-

ples are selected by the Genetic Algorithm to optimize the fitness function κ∗.

However, the difference in the value of κ∗ obtained with the adapted operators

is rather small, which illustrates that the extra 175 samples do not contribute

significantly to the total variability. These results are also illustrated in Figures 7.36

and 7.37.

Ant Colony Optimization

Fitness function κ∗ (original AS algorithm): Figures 7.38 and 7.39 illustrate

that only samples selected from the first two experiments are selected. The

deviations from the means for this subset is rather small but there is a strong loss

of variance when the selected subset is used. This indicates that the AS algorithm

without the adapted probabilistic rule and the adapted pheromone update rule is

not capable of selecting a subset out of a multi-experiment data set.

Fitness function κ∗ (adapted AS algorithm): Table 7.2 shows that the

number of samples selected from each experiment is more or less proportional to

the size of the experiment. Figure 7.41 illustrates that only a small loss of variance

is present when the selected subset of samples is used, which is also indicated

by the value of κ∗ in Table 7.2. The deviations from the means are rather small

but larger than when Genetic Algorithms are used to select the optimal subset of

samples (Figure 7.41). This indicates that the adapted probabilistic decision rule

and the adapted pheromone update rule result in a better performance of the AS

algorithm for this particular subset selection problem.
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§7.3. Distribution of the optimal subset

7.2.4. Reanalysis with the priority fatty acids

In our case study the most important fatty acids were known. This enables us

to repeat the described algorithms using only these priority fatty acids. This is

essentially equivalent to a dimensionality reduction. This reanalysis confirmed the

potential of Genetic Algorithms for this problem (Tables 7.1 & 7.2).

7.2.5. Statistical significance of the differences

Tables 7.1 and 7.2 indicate that the results of the different subset selection algorithms

are clearly better when the multi-experiment aspect of the data is taken into account.

Therefore, we will only discuss the statistical significance of the differences for

this part of the results. Table 7.2 illustrates that there is a strong difference in

quality between the standard subset selection algorithms (Kennard and Stone,

OptiSim and k-means) and the subset selection algorithms presented here (Genetic

Algorithms, Ant Colony Optimization). For that reason we argue that it is not

necessary to make a statistical comparison between the standard subset selection

algorithms and the subset selection algorithms presented here. However, there is

only a small difference in quality between Genetic Algorithms with the adapted

operators and the adapted AS algorithm and a statistical comparison would be

appropriate. Since we have 50 repetitions, we can rely on the central limit theorem

for normality. Therefore, we can apply a two sample T-test with a Satterthwaite

correction for unequal variances to compare these two methods [78]. As the p-value

is smaller than 0.05, this test indicates that Genetic Algorithms are significantly

better than Ant Colony Optimization to select a subset of samples out of this data

set.

7.3. Distribution of the optimal subset

In this section, the distribution of the total data set is compared to the distribution

of the set of selected samples for some priority fatty acids. We restrict our

attention to the case of Genetic Algorithms with the fitness function κ∗, because

this algorithm produced the best results. Figures 7.42 and 7.43 illustrate that the

distribution of the selected samples is flattened, and it is also important to note

that the extreme regions are relatively more represented in the subset. This is a

confirmation that this method is capable of selecting a subset of samples that is as

informative as the total data set.
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Figure 7.42: Distribution of the concentration of some fatty acids (g/100 g) for the
total data set and for the set of selected samples.
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Figure 7.43: Distribution of the concentration of some fatty acids (g/100 g) for the
total data set and for the set of selected samples (continuation).
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Table 7.2: Summary of the results of selecting a subset of samples out of 1033 samples for
all fatty acids when the fitness function is based on separate calculations per experiment.
For each method the number of samples selected from each experiment is presented. The
results of the adapted and standard Kennard and Stone algorithm are presented with the
Euclidean Distance (ED-adapted and ED). For Genetic Algorithms (GA) the results of
both adapted operators (AO) and standard operators (SO) are listed.

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 κ∗

All fatty acids

Total set
of samples

144 426 117 63 26 257 1

ED-adapted-1 17 17 17 16 16 17 0.39

ED-adapted-2 14 41 11 6 3 25 0.01

ED-1 17 17 17 16 16 17 0.4

ED-2 14 41 11 6 3 25 0.023

k-means-1 17 17 17 16 16 17 0.089

k-means-2 14 41 11 6 3 25 0.023

OptiSim-1 17 17 17 16 16 17 0.1

OptiSim-2 14 41 11 6 3 25 0.089

GA (κ∗) (AO) 16 28 10 13 11 22 0.87

GA (κ∗) (SO) 44 115 19 19 11 67 0.9

AS (κ∗) (OA) 76 24 0

AS (κ∗) (AA) 18 24 17 13 6 22 0.8

Priority fatty acids

Total set
of samples

144 426 117 63 26 257 1

ED-adapted-1 17 17 17 16 16 17 0.32

ED-adapted-2 14 41 11 6 3 25 0.092

ED-1 17 17 17 16 16 17 0.49

ED-2 14 41 11 6 3 25 0.19

k-means-1 17 17 17 16 16 17 0.32

k-means-2 14 41 11 6 3 25 0.047

OptiSim-1 17 17 17 16 16 17 0.72

OptiSim-2 14 41 11 6 3 25 0.2

GA (κ∗) (AO) 18 28 8 9 8 29 1

GA (κ∗) (SO) 33 91 24 16 9 54 1

AS (κ∗) (AA) 17 24 14 11 10 24 1
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Conclusion

This part of this dissertation deals with subset selection problems, more specifically

with the problem of selecting a subset of samples out of a data set consisting of a

large number of samples that originate from different experimental settings. The

objective is to select a subset of samples in which each class of the experimental

settings is sufficiently represented. After a literature study, we decided to apply

some well-known and often used methods, namely the Kennard and Stone algorithm,

the Optimizable k-Dissimilarity Selection method (OptiSim) and an algorithm

based on clustering methods such as k-means clustering. The subset selection

problem can also be transformed to an optimization problem and we thus can also

make use of combinatorial optimization algorithms. Therefore, algorithms such

as Genetic Algorithm and Ant Colony Systems can also be applied to the subset

selection problem. Chapter 6 describes these different subset selection algorithms.

The performance of these algorithms was then evaluated through a case study

consisting of a data set that contains the concentration of 45 fatty acids in 1033 milk

samples. These milk samples belong to six different experiments. The objective of

this case study was to select a subset of 100 samples representing all the variability

present in the total data set. As a consequence, the different experiments have to

be sufficiently represented.

The results presented in Chapter 7 lead to the conclusion that Genetic Algorithms

and Ant Colony Optimization are very good candidates to obtain a representative

subset of samples from a multi-experiment data set. We introduced some modifica-

tions and proposed a possible objective function to accomplish this. We believe

that the maximization of the fitness function κ∗, defined in Eq. (6.3) (Chapter 6),

when calculated for all fatty acids and for each experiment separately, constitutes

a good criterion to select a representative subset for a multi-experiment data set.

Next to less good results, the conventional methods have a major disadvantage,

namely the requirement to fix the number of selected samples per experiment in

advance. As mentioned in Section 7.2.3 (Chapter 7), there is no straightforward

way to do this. As the simulations have shown, the results are strongly dependent

on the number of selected samples per experiment.

Important to note is that the results obtained with the adapted AS algorithm

are notably better than the results obtained with the original AS algorithm. The

adapted AS algorithm with the maximization of the fitness function κ∗ approximates
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the results of Genetic Algorithms. This confirms that, for this subset selection

problem, the adaptation of the probabilistic rule and the pheromone update rule

strongly improves the Ant Colony Optimization algorithm. However, the Ant

Colony Optimization algorithm is more time-consuming, even after parallelization

of the algorithm, than Genetic Algorithms. In addition, the results obtained with

Genetic Algorithms are still significantly better than the results obtained with the

Ant Colony Optimization algorithm.
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Calibration of a water and

energy balance model
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Introduction

This part of the dissertation deals with the calibration of hydrologic models. The

estimation of the values of various model parameters is a major problem in the

application of hydrologic models. Ideally, estimates of these values should be

obtained through direct in-situ observations. However, this is usually not possible

because of (1) a difference in the spatial scale between the measurement of model

parameters and the application of the model, (2) the non-physical meaning of

a number of parameters which hence cannot be measured, (3) an inconsistency

between the model physics and in-situ observed parameter values due to simplifica-

tions of reality by the model and (4) the huge number of model parameters to be

estimated in for instance spatially distributed models. Although advances have

been made in the use of remote sensing to determine model parameters, such as

soil hydraulic parameters [79, 80, 81, 82, 83] and Leaf Area Indices [84, 85, 86], a

large number of model parameters are still very difficult to measure in-situ and

even impossible to observe in a spatially distributed or catchment-averaged context.

In order to overcome this problem, model parameters are usually estimated by

tuning them to the value for which the outputs of the model correspond best to

observations [87, 88, 89, 90]. A number of problems arise when the parameters for

physically-based hydrologic models need to be estimated. These models generally

use a full set of meteorologic forcing data, combined with numerous topographic,

land cover, and soil parameters, and may result in a large number of output vari-

ables. However, these models are usually calibrated using only one or a limited

number of variables. Nevertheless, different model outputs are sensitive to different

parameter values. The use of observations of one variable for model calibration can

hence lead to parameter values that result in a good model performance for some

model outputs, but not for all. The use of observations of multiple variables in the

estimation of model parameters can be a solution to this problem. Examples of

such multi-variable calibration studies are the use of combinations of soil moisture

contents, soil temperatures, and sensible and latent heat flux observations [91], the

use of observations of latent heat fluxes, soil heat fluxes, and soil moisture values

[92], the use of remotely sensed surface skin temperatures and catchment discharge

[93], and the use of observations of groundwater levels and runoff rates [94].

A problem typically encountered in the use of observations of different variables for

model calibration is that these observations can be of different orders of magnitude.
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Chapter 9. Introduction

Without transformation of the data, it is thus difficult to define a single objective

function to be minimized, since one or a number of variables will dominate this

objective function. For this reason, the above-mentioned studies calculated separate

objective functions for each variable. Gupta et. al. [91], Houser et. al. [92], and

Madsen [94] then searched for the parameter values that determine the location of

the Pareto front. A different approach was adopted by Crow and Wood [93], in

which two different objective functions were normalized by the standard deviations

of the observations of the multiple variables. The resulting objective function was

then minimized.

The above-mentioned studies led to the conclusion that, for the calibration of

physically-based hydrologic models, as many non-redundant variables as possible

should be used. Using the approaches of Gupta et. al. [91], Houser et. al. [92],

and Madsen [94], this will lead to a large number of objective functions and,

consequently, a high-dimensional Pareto front. One solution to this problem

is the use of the Multistart Weight-Adaptive Recursive Parameter Estimation

(MWARPE) method [95], in which all variables are taken into account explicitly in

the parameter updating. This method iteratively uses the extended Kalman filter

equations in a Monte-Carlo framework. No RMSE values of the output variables

are optimized throughout the parameter estimation procedure and no weighing of

objective functions or rescaling of variables needs to be performed. Another solution

is to rescale, per variable, all observations (and the corresponding simulations) by

substracting the mean and dividing by the standard deviation, calculated over the

calibration period. This is similar to the approach in [93]. If, over all variables, the

objective functions are then added, a single objective function is obtained, which

can then be minimized. It is important to notice that this normalization of the

data is only required to ensure commensurability in a single-objective framework.

For this last calibration approach, we restrict ourselves to the Particle Swarm

Optimization (PSO) algorithm [28]. We choose this algorithm because we want to

investigate the capabilities of PSO to solve complex optimization problems. The

application of this optimization algorithm is a recurring theme in further parts of

this dissertation. The objective of this part of this dissertation is to thoroughly

compare both approaches, using observations of the energy balance and the soil

moisture profile. PSO and MWARPE have already been applied to the estimation

of parameters of hydrologic models [96, 97], but using only discharge data and not

in a multi-variate context.

Chapter 10 discusses MWARPE and PSO in full detail. In Chapter 11, MWARPE

and PSO are applied to the calibration of a relatively simple process-based water

and energy balance model, applied at the point scale. Chapter 12 presents the

conclusions of this part of this dissertation.
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Methodology

In this chapter, the algorithms used to calibrate a hydrologic model, discussed in the

case study, are described. This chapter is set out as follows. Section 10.1 introduces

some general definitions regarding the input and the output of the models we

would like to calibrate. Section 10.2 describes the MWARPE algorithm in the

application of calibration of hydrologic models. While Particle Swarm Optimization

is described in full detail in Section 3.2 of Chapter 3, Section 10.3 of this chapter

discusses the application of Particle Swarm Optimization to the calibration of

a hydrologic model. In Section 10.4, the advantages and disadvantages of both

methods are outlined.

10.1. Definition of the model calibration problem

We assume to be given a model that depends on r real-valued inputs whose values

are denoted using a vector o ∈ Rr. The output of the model consists of the value

of variables yj with j = 1, . . . , J that we can compare to available data yj,i at

different observation times i = 1, . . . ,mj . It is also useful to collect all output

observations in one large vector y ∈ Rm, where

m =

J∑
j=1

mj . (10.1)

In order to generate the outputs, the model also depends on some real-valued

parameters whose values are denoted using a vector x ∈ Rn and which are to be

estimated. The general relation between the input o, the parameters x and the

model output y is thus described by the model and denoted as

y = c(o,x). (10.2)

Since typically m� n, it is impossible to invert the relation between y and x for

given o and to find an exact solution x for a given set of observed output values y.

We thus need other methods to calibrate the model, i.e. to find an optimal set of

parameters x∗ such that the estimated output ŷ = c(o,x∗) closely resembles the

observed output y.
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10.2. Multistart Weight-Adaptive Recursive Parame-

ter Estimation

Multistart Weight-Adaptive Recursive Parameter Estimation (MWARPE) is a

method for parameter estimation, and thus model calibration, that is based on the

equations of the Extended Kalman filter for data assimilation. These equations

are used recursively in a Monte-Carlo framework, based on which the algorithm

can be referred to as Multistart Weight-Adaptive Recursive Parameter Estimation

(MWARPE) [95].

We first summarize the equations of the linear and extended Kalman filter, based on

the introduction in [98]. The discrete Kalman filter was developed by Kalman [99]

to estimate the state of a system that evolves in discrete time based on the previous

estimate and a current measurement of some properties of the system that depend

on its state. For the linear Kalman filter, all dependencies are assumed to be linear.

The state of the system at time k can be described using n real numbers and

is denoted as x(k) ∈ Rn. It evolves according to the linear stochastic difference

equation

x(k) = Ax(k − 1) +Bu(k − 1) +w(k − 1) . (10.3)

The vector u(k) ∈ Rl describes an optional input that drives or controls the system.

The stochastic component of the evolution is given by w(k − 1) ∈ Rn and is

assumed to be a Gaussian white noise term with zero mean and a covariance Q(k)

that possibly depends on the time k. The n × n matrix A and the n × l matrix

B describe the deterministic dependency of the state x(k) on the previous state

x(k − 1) and the input u(k − 1) respectively. In addition, m different real-valued

properties of the system are measured at every time k, resulting in a vector output

y(k) ∈ Rm that linearly depends on the state of the system according to

y(k) = Hx(k) + v(k) . (10.4)

The m×n matrix H describes the dependency and the vector v(k) the measurement

noise, which is also assumed to be white and distributed according to Gaussian

distribution with zero mean and a possibly time-dependent covariance R(k). The

Kalman filter provides a method to use measurement data of y(k) to improve the

estimation of the state of the system. Let x̂(k − 1) denote the last estimate of

the state of the system. We also define a corresponding estimate error covariance

P (k − 1), in such a way that

E[x(k − 1)] = x̂(k − 1) , (10.5)

E[(x(k − 1)− x̂(k − 1))(x(k − 1)− x̂(k − 1))T] = P (k − 1) . (10.6)

The next estimate x̂(k) is obtained in a two-step cycle, using a time update or
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Figure 10.1: Equations of the linear Kalman filter

prediction step and a measurement update or correction step. The corresponding

equations are summarized in Figure 10.1. Without the measurement data, an a pri-

ori estimate x̂−(k) for the state of the system is predicted using the linear difference

equation (10.3). In the correction phase, we then compute the mismatch

y(k)−Hx̂−(k) (10.7)

between the observed output y(k) and the estimated output based on the a priori

estimate x̂−(k), and use this to compute a corrected parameter estimate x̂(k).

Of central importance is the computation of an n ×m matrix that is called the

Kalman gain and is computed such that the new estimate x̂(k) minimizes the trace

of the corresponding estimate error covariance P (k).

Since many processes in nature are non-linear [98], the state of a system will

more generally evolve according to a nonlinear stochastic difference equation given

by

x(k) = f(x(k − 1),u(k − 1),w(k − 1)) , (10.8)

and the corresponding measurement will be related to the state by

y(k) = h(x(k),v(k)) . (10.9)

In that case, one should use the extended Kalman filter [98]. The a priori update

of the state estimate is given by

x̂−(k) = f(x̂(k − 1),u(k − 1), 0). (10.10)

To compute the a priori estimate error covariance, the extended Kalman filter uses

a first order Taylor expansion to linearize Eq. (10.8) to

x(k) = x̂−(k) +A(k)
(
x(k − 1)− x̂(k − 1)

)
+W (k)w(k − 1) , (10.11)
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where the entries of the n× n matrix A(k) and the n× n matrix W (k) are given

by

Ai,j(k) =
∂fi
∂xj

(x̂(k − 1),u(k − 1),0) , (10.12)

Wi,j(k) =
∂fi
∂wj

(x̂(k − 1),u(k − 1),0) . (10.13)

This results in the update equation

P−(k) = A(k)P (k − 1)A(k)T +W (k)Q(k − 1)W (k)T. (10.14)

To correct this a priori prediction, the output relation Eq. (10.9) is linearized at

x̂−(k), resulting in

y(k) = h(x̂−(k), 0) +H
(
x(k)− x̂−(k)

)
+ V v(k). (10.15)

where the entries of the m × n matrix H and the m × m matrix V are given

by

Hi,j(k) =
∂hi
∂xj

(x̂−(k),0) , (10.16)

Vi,j(k) =
∂hi
∂vj

(x̂−(k),0) . (10.17)

Having a measurement y(k), we can update the state estimate as

x̂(k) = x̂−(k) +K(k)
(
y(k)− h(x̂−(k), 0)

)
(10.18)

where the Kalman gain K(k) is now given by

K(k) = P−(k)H(k)T(H(k)P−(k)H(k)T + V (k)R(k)V (k)T)−1 (10.19)

and the estimate error covariance P (k) is updated as before.

In the calibration algorithm MWARPE [95], the set of model parameters is inter-

preted as the state of the system and thus denoted by x. For each iteration level k,

the entire calibration period is considered. The parameter vector is thus expected

not to change, except due to stochastic effects, so that the evolution equation is

given by

x(k) = x(k − 1) +w(k − 1). (10.20)

We thus have to use the n× n unit matrix for A and W in the equations of the

extended Kalman filter. The parameters x are ‘observed’ through the model output

y and compared to the measured data over the whole calibration period. The
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measurement of the system state is thus described by

y(k) = c(x(k)) + v(k). (10.21)

where c is the model that needs to be calibrated. This results in the m×m unit

matrix V and

Hi,j(k) =
∂ci
∂xj

(x(k)) (10.22)

for the entries Hi,j of the m × n matrix H. The extended Kalman filter is then

recursively applied, always using the same set of calibration data for the observations

y(k), until convergence in the parameter values x(k) is achieved or until a predefined

number of iterations has been reached. Following [95], this algorithm is applied

to a predefined number of starting points that are distributed uniformly in the

parameter space. For the different solutions resulting from these starting points,

the solution that produces the closest fit between the observations and the model

output is assumed to contain the best parameter values. The closeness of the fit is

evaluated using the Root Mean Square Error, which will be defined in the next

section [95].

10.3. Particle Swarm Optimization

As mentioned in Chapter 9, physically-based hydrologic models may result in a

large number of output variables. For the calibration of such models, all these

multiple outputs should be taken into account, as is done by the MWARPE method.

Alternatively, we can try to construct a single objective function that imposes that

all model outputs try to approximate the observed values. This objective function

has to be optimized and the calibration problem is cast to an optimization problem.

As objective function, we have chosen to work with the overall ‘Root Mean Square

Error’ (RMSE). The RMSE for a single output variable j can be calculated by using

the observed data yj,i at the different observation times i = 1, . . . ,mj in:

RMSEj =

√√√√√√
mj∑
i=1

(yj,i − ŷj,i)2

mj
(10.23)

with ŷj,i the simulated data of output variable j at observation time i. The overall

RMSE is then defined as the sum of the different standardized RMSE values of the

different output variables. Hence, for every output variable, both the observed data

and the model output are standardized by subtracting the mean of the observed

data and dividing by the standard deviation of the observed data. In this way,

equal weights are given to the different output components of the hydrologic model

in the objective function.
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Because the hydrologic model connecting the input variables to the output variables

cannot expected to be linear, we may assume that local minima would be present for

the overall RMSE. It is thus not possible to use a local optimization algorithm based

on the concepts discussed in Chapter 2, Section 2.2. For that reason, we choose to

work with Particle Swarm Optimization (PSO), which is a population-based global

optimization algorithm. For a detailed description of the PSO algorithm, we refer

to Chapter 3 (Section 3.2).

10.4. Advantages and drawbacks of both methods

A number of direct advantages and drawbacks can be identified for both algorithms.

Firstly, for MWARPE, no RMSE between the observations and corresponding

model simulations is optimized. Instead, Eq. (10.7) shows that the mismatch for

every observation is explicitly taken into account in the parameter updating. This

has as clear advantage that no weighing of the different RMSE values or rescaling

of the observations has to be performed if multiple variables with different orders

of magnitude are used in the model calibration. Further, as demonstrated in [95]

for a simple rainfall-runoff model, this will lead to parameter combinations that

will work well under both high and low flow conditions, as opposed to traditional

RMSE minimization methods, which tend to work well under only high or low

flow conditions, depending on the transformation of the observations. In other

words, this problem is the result of the focus on a single objective. The major

drawback of MWARPE is the high dimensionality m =
∑J
j=1mj of the matrix

[H(k)P−(k)H(k)T+R(k)] that needs to be inverted. If, for example, 5 variables are

used, and hourly simulations are used for one month (30 days), a 3600×3600 matrix

needs to be inverted. The major advantage of Particle Swarm Optimization is

that the algorithm is easy to understand and easy to implement. Furthermore, the

algorithm has a small tendency of getting trapped in local minima and the balance

between the global and local exploration of the search space can be controlled

[3, 100]. As a major drawback, a number of parameters inherent to the algorithm

have to be determined, for which the values depend on the problem at hand.
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Case Study

In this chapter, the two calibration algorithms described in Chapter 10 are applied

on a case study. For the purpose of this study, a very simple hydrologic model was

developed by professor V. Pauwels of the Department of Forest and Water Manage-

ment of Ghent University (Section 11.1). The data set used for the calibration of

the model is described in Section 11.2. Section 11.3 discusses the implementation of

the used calibration algorithms. In Section 11.4, the results of the two calibration

algorithms are presented and discussed.

11.1. Model description

The model applied in this case study gives a description of the water and energy

balance in time for one point on the earth’s surface. The model is thus one-

dimensional in space, where the coordinate z (m) labels the depth beneath the

surface. For the discretization of the differential equations used in this model, the

vertical coordinate z is defined positive upwards and the used number of nodes is

21 with a separation distance of 5 cm. The inputs needed by the model are the air

temperature Ta (K), dew point temperature (Td) (K), air pressure Pa (kPa), wind

speed u(z) (ms−1), incoming long wave radiation Lw,i (Wm−2), incoming solar

radiation Rs,i (Wm−2) and precipitation. The outputs generated by this model are

the soil moisture content at 5 cm depth θ1 (-), soil moisture content at 9 cm depth

θ2 (-), soil moisture content at 15 cm depth θ3 (-), soil moisture content at 25 cm

depth θ4 (-), the net radiation Rn (Wm−2), the latent heat flux LE (Wm−2), the

sensible heat flux H (Wm−2) and the ground heat flux G (Wm−2).

The movement of soil water in the unsaturated zone is modelled using a numerical

solution to the Richards equation [101]:

Cm(ψ)
∂ψ

∂t
=

∂

∂z

(
K(ψ)

∂ψ

∂z

)
+
∂K(ψ)

∂z
, (11.1)

with ψ the pressure head (m) (< 0 for unsaturated soils), Cm the specific moisture

capacity (m−1), t the time (s), z the vertical coordinate (m), and K the hydraulic

conductivity (ms−1). The relationship between K and ψ is modelled using the
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Brooks-Corey equations [102]:

K(ψ) =

 Ks(z)

(
ψ

ψc

)−2−3λ

if ψ < ψc ,

Ks(z) if ψ ≥ ψc ,
(11.2)

with Ks the saturated hydraulic conductivity (ms−1), ψc the air entry pressure

head (m), and λ the pore size distribution index (-). The relationship between the

volumetric soil moisture content θ (-) and the pressure head is also modelled using

the Brooks-Corey equations [102]:

θ(ψ) =

 θr + (θs − θr)
(
ψ

ψc

)−λ
if ψ < ψc ,

θs if ψ ≥ ψc ,
(11.3)

with θr and θs the saturated and residual soil moisture content (-) respectively.

The specific moisture capacity can be written as [102]:

Cm(ψ) =
∂θ

∂ψ
=

 −
λ

ψc
(θs − θr)

(
ψ

ψc

)−λ−1

if ψ < ψc ,

0 if ψ ≥ ψc .
(11.4)

The exponential decay of the hydraulic conductivity with the depth is written as

[103]:

Ks(z) = Ks0e
−fz , (11.5)

with Ks0 the value of Ks at depth 0 (m−1), z the depth below the surface (m),

and f the TOPMODEL parameter (m−1). Equation (11.1) is solved through

a Crank-Nicholson finite difference discretization and a Picard iteration scheme.

The boundary conditions are a Dirichlet condition (constant pressure head) at

the bottom of the profile, and a Neumann condition (imposed flux), calculated

as the difference between the precipitation and the evapotranspiration, at the

top of the profile. The hydraulic conductivity between the nodes is calculated as

the arithmetic mean of the hydraulic conductivity of the above and underlying

node. The evapotranspiration is calculated through an iteration for the surface

skin temperature as follows [104]:

Rs,i(1−α)+Lw,i−εσT 4
s =

Cpρa
Ψ

es(Ts)− ea
rav + rc︸ ︷︷ ︸
LE

+Cpρa
Ts − Ta
rah︸ ︷︷ ︸

H

+κ
Ts − T1

4z︸ ︷︷ ︸
G

, (11.6)

with α the surface albedo (-), ε the emissivity (-), σ the Stefan-Bolzmann constant

(Wm−2K−4), Ts the surface skin temperature (K), Cp the specific heat of moist

air (Jkg−1K−1), ρa the density of air (kgm−3), Ψ the psychrometric constant

(kgPa−1), es the saturated vapor pressure (kPa), ea the actual vapor pressure
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(kPa), rav the aerodynamic resistance to vapor transport (sm−1), rc the surface

resistance (sm−1), rah the aerodynamic resistance to heat transport (sm−1), κ

the soil thermal conductivity (Wm−1K−1), T1 the soil temperature below the first

soil layer (K), and 4z the depth of the first soil layer (m). The left-hand side of

Eq. (11.6) indicates the net radiation, the first term of the right-hand side the

latent heat flux (LE), the second term the sensible heat flux (H), and the third

term the ground heat flux (G). The aerodynamic resistances for heat or vapor

transport are calculated as follows [104]:

rav =
1

u(z)K2
v

ln2

(
z − d
z0v

)
, rah =

1

u(z)K2
v

ln2

(
z − d
z0h

)
, (11.7)

with u(z) the wind speed (ms−1), Kv the von Karman constant (' 0.4), d the

zero plane displacement height (m), z0v the roughness length for vapor transport

and z0h the roughness length for heat transport (m). The roughness length for

vapor transport z0v is equal to fvh, with h the vegetation height (m). For heat

transport z0h = fhh. The zero plane displacement height is equal to fdh. The

roughness length for vapor transfer fraction fv, the roughness length for heat

transfer fraction fh and the zero plane displacement height fraction fd are three

of the eleven parameters that must be calibrated. Since the height of the canopy

changed during the growing season, the following expression for h was used:

h =
hmax

1 + e−ph(i−ī) , (11.8)

with hmax known as 1 m, ph a parameter, for which observations of the canopy

(in this study winter wheat) height indicate that it can be assumed to be equal to

0.003 h−1 [105]. ī (h) is half the number of time steps during the simulation, and i

(h) the time step since the onset of the simulation.

The relationship between the saturated vapor pressure and the surface skin tem-

perature is [104]:

es(Ts) = 0.6108e

17.27 · Ts
237.3 + Ts . (11.9)

In this equation Ts is entered in degrees Celsius. The psychrometric constant can

be calculated as [104]:

Ψ =
PaCp

0.622lv
, (11.10)

with Pa the air pressure (kPa), and lv the latent heat of vaporization (Jkg−1),

which can be calculated as [104]:

lv = 2501000− 2361Ta . (11.11)

In this equation, Ta is entered in degrees Celcius. The density of air (kgm−3) can
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be calculated as [104]:

ρa = 3.486
Pa

275 + Ta
. (11.12)

In this equation, Ta is entered in degrees Celcius as well. Equation (11.6) is solved

through an iteration for the surface skin temperature Ts. A Newton-Raphson

iterative scheme is used for this purpose. T1 can be calculated through a numerical

solution to the heat conduction equation [106]:

∂CT

∂t
=

∂

∂z

[
κ
∂T

∂z

]
, (11.13)

with C the volumetric heat capacity of the soil (Jm−3K−1), T the soil temperature

(K), and z the vertical coordinate (m). C and κ are assumed to be constant and

homogeneous throughout the soil profile. Equation (11.13) is solved through a

Crank-Nicholson finite difference discretization. The boundary conditions for this

equation are a constant temperature at both the top and bottom of the profile.

At the top of the profile, this temperature is equal to Ts, and at the bottom it is

equal to a predefined temperature, i.e. a linearly increasing temperature of 10◦C at

the beginning of the study period to 15◦C at the end of the study period. These

values are based on measurements of the temperature during the AgriSAR 2006

campaign. The details of this campaign will be discussed in Section 11.2.

As a summary, eleven parameters need to be estimated: λ, ψc, Ks, f , α, κ, C, rc,

fd, fh, and fv. We acknowledge the fact that the model represents a very strong

simplification of the physical reality. A state-of-the-art land surface model could

have been used as well. However, this would have implied the application of a

sensitivity analysis, in order to select the calibrated model parameters. This would

have led to a similar amount of calibrated parameters as with this simple model.

Further, the focus of this case study is on the potential of two different calibration

methods to estimate parameter values for a model that generates the required

model output, not on the representation of all physical processes involved. For this

reason, the model is deemed sufficiently realistic.

11.2. Site and data description

The data used in this study have been acquired in the framework of the AgriSAR

2006 campaign (AGRIcultural bio/geophysical retrieval from frequent repeat pass

SAR and optical imaging), for which the test site was located in Mecklenburg-

Vorpommern in North-East Germany, approximately 150 km North of Berlin. More

specifically, Time Domain Reflectometry (TDR)-based soil moisture observations

and Bowen Ratio Energy Balance (BREB)-based observations of the energy balance

components in a large winter wheat field were available from April 20 through

July 5, 2006. The soil moisture was measured at a depth of 5, 9, 15, and 25 cm.
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Figure 11.1: Station set-up in the winter-wheat field. The soil moisture observations
are taken at the same location as the (BREB)-based observations [105].

Meteorologic data from the weather station at Görmin were used as model forcing.

All observations were converted to an hourly time step. Figure 11.1 shows a map

with the location of the Görmin weather station (point 1 on the map) and the

station for the (TDR)-based soil moisture and the (BREB)-based observations

(point 2 on the map). Points 3 and 4 on the map correspond to the location of

other measurement equipment. The observed data of this equipment was not used

in this case study. A detailed description of this data set is given in [105].

This data was processed by professor V. Pauwels of the Department of Forest and

Water Management of Ghent University. In order to remove outliers in the latent

and sensible heat fluxes, observations for which the Bowen ratio was between -0.7

and -1.3 were removed from the data set [107]. Section 11.1 shows that the model is

forced to close the energy balance. It is thus advisable that the data used to estimate

the model parameters close the energy balance as well, a requirement that is met

by the Bowen ratio method. Since the model calculates the net radiation and the

ground heat flux, these variables should be used in the parameter estimation. The

Bowen ratio method calculates the latent heat flux as a rest-term, while Section 11.1

shows that in the model a different approach is used. For this reason, both the

latent and sensible heat fluxes were used in the model parameter estimation.

This data set is used to determine the model parameters. The data set is divided into

two periods henceforth referred to as the first and second period, such that, when

taking into account the missing data points, both periods contain approximately

50 % of the available data. The first period contains data measured from April 20 -

June 21, whereas the second period contains data measured from June 22 - July 5.

Both periods are used in the search for optimal hydrologic parameters; either the

first period is used as training data set whereas the second period is then used as

validation data set, or vice versa. In short, the first validation period corresponds

to the second calibration period and the second validation period corresponds to
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the first calibration period.

As already described (see Section 10.2), a major drawback of the MWARPE method

is the high dimensionality, equal to the number of observations, of the matrix to

be inverted. Therefore, using all hourly observations would lead to an excessively

large matrix to be inverted, and hence the data set used for calibration was reduced

as follows. Since the terms of the energy balance show a very strong diurnal cycle,

only the observations at 1 PM and 1 AM were taken into account. Further, since

the soil moisture data are relatively constant on a daily basis, only soil moisture

observations at midday were used. This data set for the remainder of this chapter

is referred to as the reduced data set, whereas the data set consisting of all hourly

observations is further referred to as the hourly data set.

In contrast to the MWARPE method, PSO can easily handle all hourly observations

since it does not rely on matrix inversion. However, in order to have a fair

comparison between MWARPE and PSO, the training of PSO was firstly restricted

to the reduced data set (see Section 11.3.1). To evaluate the impact of this

restriction, the PSO-algorithm was also trained using the hourly data set (see

Section 11.4.2).

11.3. Implementation of the calibration methods

In this section, the determination of the parameters inherent to the calibration

algorithms is discussed.

11.3.1. Multistart Weight-Adaptive Recursive Parameter Esti-
mation

The diagonal values in the parameter model error covariance matrix Q(k) and

the initial parameter error covariance matrix P (0) were set equal to the square of

a fraction of the corresponding parameter value in the parameter vectors x−(k)

and x(0), respectively [95]. x(0) is the vector with the initial guesses of the

parameter values. Trial and error revealed that when this fraction was equal to

0.05, convergence in the parameter values was obtained relatively quickly (10-20

iterations), while oscillations in the parameter values occurred rarely. The noise in

the soil moisture observations was assumed to be equal to one percent. For the net

radiation and the latent and sensible heat fluxes the observation noise was assumed

to be equal to 25 Wm−2, and for the ground heat flux this was assumed to be

equal to 10 Wm−2. These values were also obtained by trial and error. Table 11.1

shows the acceptable range for the different model parameters, also referred to

as the parameter space. When a starting point is located outside this parameter

space, the parameters have been given the values of the nearest boundary. The
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Table 11.1: Parameter space of the different hydrologic model parameters.

parameter unit Description minimum maximum

λ - Pore size distribution index 0.1 5

ψc m Bubbling pressure -5 -0.1

Ks ms−1 Saturated hydraulic conductivity 2.78E-08 5.56E-05

f m−1 TOPMODEL exponential decay parameter 0.01 20

α - Albedo 0.01 0.9

κ Wm−1K−1 Soil thermal conductivity 0.01 5

C Jm−3K−1 Soil heat capacity 10E+04 15E+05

rc sm−1 Surface resistance 0.01 250

fd - Zero plane displacement height fraction 0.4 0.9

fh - Roughness length for heat transfer fraction 0.01 0.5

fv - Roughness length for vapor transfer fraction 0.01 0.5

algorithm is stopped when the parameter values do not change any more (difference

less than 1 %). During the iteration process, the differences in the magnitude

of the entries in the matrix to be inverted become very large. This can lead to

numerical instabilities in the matrix inversion and consequently to a strong loss in

numerical precision. When the error in the matrix inversion became larger than

0.0001, the algorithm is aborted. To compare the two calibration methods, the

number of starting points of MWARPE is set equal to the population size of the

Particle Swarm Optimization algorithm. However, in contrast to PSO, the different

starting points are treated independently by the MWARPE method, meaning that

the evolution of each particle is not influenced by the other particles.

11.3.2. Particle Swarm Optimization

As mentioned in Section 10.3, as objective function we choose the overall ‘Root

Mean Square Error’ (RMSE), which is defined as the sum of the different standard-

ized RMSE values of the different soil moisture observations and energy balance

measurements. Table 11.2 displays the values used to standardize the data, and this

for the different calibration and validation periods. The values used to standardize

the data for the first (second) calibration period are the same as the values used

for the first (second) validation period.

As mentioned in Section 11.3.1, the model parameters have to be positioned in a

particular parameter space (see Table 11.1). When a population member is trying

to move outside the parameter space during the PSO algorithm, the boundaries

act as perfect reflectors. Phrased differently, the direction of displacement of that

particle is inverted in order to keep it inside the parameter space.

The results of PSO also depend on the choice of several parameters: the population

size N , the cognitive parameter c1, the social parameter c2 and the inertia weight

w. According to Engelbrecht [3], a good value for the population size is given

by N = 30. In order to determine good values for the parameters c1, c2 and w,

an exhaustive search was performed for which the number of iterations is set to
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Table 11.2: Values used to standardize the data

First period Second period

units mean standard deviation mean standard deviation

θ1 - 0.170 0.055 0.120 0.045

θ2 - 0.183 0.53 0.135 0.035

θ3 - 0.181 0.049 0.124 0.027

θ4 - 0.185 0.050 0.106 0.028

G Wm−2 3.799 18.063 4.904 14.601

H Wm−2 31.934 63.457 43.775 87.580

LE Wm−2 30.239 112.638 74.107 136.790

Rn Wm−2 65.972 155.618 122.786 204.969

40. A suitable approach to determine the maximal number of iterations is further

described. The search procedure is carried out on the entire hourly data set.

The parameter c1 is varied between 0.8 and 1.7, c2 between 1 and 2.1, and w

between 0.2 and 0.5, with steps of 0.1. The parameter values are chosen in the

convergence domain of Particle Swarm Optimization, i.e. the region for which the

population will converge [108].

Figure 11.2 shows the dependence of the mean RMSE values, obtained after

40 iterations, on the different combinations of c1, c2 and w. Figure 11.2 (a)

presents this evolution for different combinations of c1 and c2 given a fixed inertia

weight (w = 0.4). This figure indicates that lowest RMSE values are obtained

for combinations of c2 = 1.7, ..., 2.1 with c1 = 1.4, ..., 1.7. Figure 11.2 (b) shows

the evolution of mean RMSE values for combinations of w and c1, given a fixed

parameter c2 (c2 = 1.9), for which it can be seen that the lowest mean RMSE value

is obtained with w = 0.4 and c1 = 1.5. Figure 11.2 (c) shows the evolution of mean

RMSE values for different values of w and c2 when c1 = 1.5. From this figure, the

same conclusion can be drawn, i.e. the lowest mean RMSE values are obtained for

c2 = 1.9 and w = 0.4 or w = 0.5. Therefore, the final parameter values are chosen

to be c2 = 1.9, c1 = 1.5 and w = 0.4.

Concerning the maximum number of iterations to be used in the search for the

optimal hydrologic parameters, it is not neccessary that the entire population

converges to the same position, as this would lead to an excessive number of

iterations in which the position of the best particle is not changed any further. A

possible condition is that one population member finds the optimal solution. This

could be accomplished by requiring that the RMSE value of the best population

member does not change during a certain number of iterations. However, in order

to avoid situations in which only one member satisfies the above criterion, it is

better to require a significant part of the population to converge and hence to

increase the probability that the global optimum is found by that part of the

population. Accordingly, the implementation used in this case study requires a
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Figure 11.2: Dependence of the RMSE on different values of the PSO parameters.
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convergence of half of the population as stopping criterion.

11.4. Results and discussion

In this section, the results are presented in detail and our observations are dis-

cussed. Firstly, the model parameters are estimated using the reduced data set

(Section 11.4.1). Secondly, the model parameters are estimated with the Particle

Swarm Optimization algorithm using the hourly data set in Section 11.4.2 and

compared with the results in Section 11.4.1.

11.4.1. Model parameter estimation using the reduced data set

For both methods, the hydrologic model parameters are estimated based on the

reduced calibration data set, whereas the validation was performed on the hourly

validation data set. The results of both calibration algorithms are compared. In

the first part of this section, results are presented for which the number of model

evaluations in the calibration process was not restricted. the second part of this

section then describes the results for which the number of model evaluations was

set to a predetermined value. As mentioned above, MWARPE was only used on

the basis of the reduced data set. PSO does not have this limitation, and was

firstly employed on the reduced data set, and secondly on the hourly data set.

The comparison of both calibration methods is based on the overall RMSE values

obtained by application of the hydrologic model on the validation data with the

hydrologic parameters, acquired by both calibration methods for the calibration

data. The non-standardized RMSE values of the individual variables (the different

energy balance terms and soil moisture values of the different layers) are presented

as well.

Unrestricted number of model evaluations

As the obtained RMSE values, for 20 repetitions, are not normally distributed

(p-values < 0.05 are obtained with the Lilliefors test [109]), a non-parametric test

was used to search for significant differences between the RMSE values obtained

on the basis of both methods. Therefore, the the Wilcoxon rank sum test seems to

be appropriate [109].

The RMSE values obtained with the two methods after calibration on the reduced

data set, for both calibration periods and validation periods, are given in Table 11.3.

Comparison of the mean RMSE values for the calibration period leads to the

conclusion that the MWARPE method gives better results than the PSO method

(Table 11.3). This is reflected in the result of the Wilcoxon rank sum test: p-values
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Table 11.3: Mean RMSE values and their standard deviations obtained for the two
calibration and the corresponding validation periods for MWARPE and PSO applied on
the reduced data set. The calibration RMSE values are calculated using the reduced data
set, while for the validation RMSE values the hourly data set is used.

First calibration period Second calibration period

Variable Units MWARPE PSO MWARPE PSO

Overall - 3.356 ± 0.051 3.420 ± 0.046 4.401 ± 0.005 4.606 ± 0.116

θ1 - 0.022 ± 0.001 0.024 ± 0.003 0.027 ± 0.000 0.030 ± 0.002

θ2 - 0.019 ± 0.001 0.020 ± 0.002 0.023 ± 0.000 0.026 ± 0.002

θ3 - 0.019 ± 0.001 0.019 ± 0.002 0.012 ± 0.000 0.012 ± 0.001

θ4 - 0.024 ± 0.003 0.022 ± 0.003 0.033 ± 0.001 0.035 ± 0.002

Rn Wm−2 43.928 ± 0.160 44.277 ± 0.564 39.906 ± 1.560 40.656 ± 4.384

LE Wm−2 62.466 ± 0.385 64.221 ± 1.000 62.904 ± 0.704 66.620 ± 5.083

H Wm−2 51.422 ± 0.415 53.005 ± 0.980 54.324 ± 0.872 54.592 ± 1.239

G Wm−2 9.731 ± 0.116 9.765 ± 0.313 8.627 ± 0.162 9.085 ± 0.294

Second validation period First validation period

Variable Units MWARPE PSO MWARPE PSO

Overall - 6.637 ± 0.124 6.605 ± 0.120 4.750 ± 0.130 5.014 ± 1.467

θ1 - 0.031 ± 0.002 0.033 ± 0.005 0.030 ± 0.001 0.033 ± 0.014

θ2 - 0.021 ± 0.001 0.026 ± 0.006 0.032 ± 0.002 0.034 ± 0.016

θ3 - 0.016 ± 0.001 0.014 ± 0.003 0.029 ± 0.002 0.032 ± 0.019

θ4 - 0.054 ± 0.003 0.049 ± 0.005 0.032 ± 0.002 0.036 ± 0.025

Rn Wm−2 55.488 ± 0.616 54.772 ± 1.034 48.768 ± 0.135 48.779 ± 0.561

LE Wm−2 74.553 ± 2.171 74.248 ± 3.479 60.127 ± 0.351 62.461 ± 2.135

H Wm−2 58.754 ± 1.910 58.809 ± 2.777 51.385 ± 0.499 53.421 ± 1.677

G Wm−2 19.780 ± 0.972 19.97 ± 1.282 12.989 ± 0.145 12.826 ± 0.225

< 0.05 were obtained for the first and second calibration period, respectively.

Concerning the RMSE values obtained for the respective validation periods, no

significant differences were found (p-values > 0.05 were obtained for the first and

second validation period, respectively). It should also be noted that the standard

deviations are of the same relative order of magnitude for all observed variables.

This can be attributed to the standardization of these variables (Table 11.3). These

standard deviations are an indication of the variability and uncertainty in the

output variables. Table 11.3 shows that the standard deviations are rather small for

both calibration methods. They are, however, larger for PSO than for MWARPE.
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Table 11.4: Mean values of the observed and simulated data (obtained after application of the hydrologic model with the hydrologic parameter
values resulting in the best RMSE values on the validation data, corresponding to the first calibration period) for the different energy balance
terms and soil moisture layers, the intercept, slope and r2 of the linear fit for these output variables and the RMSE and Nash-Sutcliffe model
efficiency coefficient for each output variable.

mean mean Intercept Slope r2 RMSE Nash-Sutcliffe model

observed data simulated data efficiency coefficient

θ1 (MWARPE) 0.120 0.111 -0.002 0.944 0.927 0.026 0.798

θ1 (PSO) 0.120 0.107 -0.005 0.936 0.906 0.030 0.716

θ2 (MWARPE) 0.131 0.121 0.000 0.922 0.970 0.020 0.859

θ2 (PSO) 0.131 0.117 -0.004 0.922 0.959 0.024 0.789

θ3 (MWARPE) 0.125 0.128 0.009 0.956 0.965 0.017 0.888

θ3 (PSO) 0.125 0.126 0.005 0.964 0.972 0.014 0.916

θ4 (MWARPE) 0.119 0.142 0.031 0.933 0.894 0.039 0.539

θ4 (PSO) 0.119 0.141 0.027 0.955 0.917 0.036 0.611

G (MWARPE) 2.326 6.574 4.618 0.841 0.472 16.235 0.033

G (PSO) 2.326 6.604 4.648 0.841 0.472 16.238 0.033

H (MWARPE) 20.201 10.884 -1.174 0.597 0.597 52.503 0.524

H (PSO) 20.201 9.130 -3.005 0.601 0.586 53.842 0.499

LE (MWARPE) 27.486 37.841 16.052 0.793 0.766 65.099 0.736

LE (PSO) 27.486 39.030 17.032 0.800 0.752 67.613 0.715

Rn (MWARPE) 50.013 55.269 7.413 0.957 0.929 52.303 0.918

Rn (PSO) 50.013 54.731 6.883 0.957 0.930 52.040 0.919

1
4
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Figure 11.3 presents the scatterplots of the observed versus the simulated data

for the different energy balance terms and soil moisture layers, obtained after

application of the hydrologic model with the hydrologic parameter values resulting

in the best RMSE values on the validation data, corresponding to the first calibration

period. Table 11.4 presents the mean observed and simulated value for the different

energy balance terms and soil moisture layers, the intercept, slope and r2 of

the linear fit for these output variables and the RMSE and Nash-Sutcliffe model

efficiency coefficient for each output variable. The Nash-Sutcliffe model efficiency

coefficient Ei is calculated as follows

Ej = 1−
∑mj
i=1(yj,i − ŷj,i)2∑mj
i=1(yj,i − yj)2

(11.14)

with mj the number of data points of variable j, yj ∈ Rmj the observed data

of variable j, ŷj ∈ Rmj the simulated data of variable j and yj the mean of the

observed data of variable j. This coefficient is used to determine the predictive

power of a hydrologic model. This coefficient lies in the interval [−∞, 1]. The

closer this coefficient is to 1, the more accurate the model predictions are, when

the coefficient is equal to 0 the model predictions are as accurate as using the mean

to model the observed data. As stated above, the model performance is similar

to the performance of more complicated models that have been applied on the

data set [105]. Since for both calibration algorithms the statistics are similar, the

decision was made to focus on the RMSE for the comparison of both methods.

Figure 11.3 shows that the difference between the simulated and observed data

obtained for both calibration methods is similar for the energy balance terms as

well as for the soil moisture layers. The distribution of the total energy balance

(Rn) is very well modelled, however, the distribution of the different components

in this energy balance is less well recovered by the simulations. For the energy

balance term H and the soil moisture layers θ1 and θ2 there is an underestimation

and for the energy balance terms G and LE and the soil moisture layers θ3 and θ4

a small overestimation can be noticed. The simulated data of the energy balance

term Rn and the soil moisture layer at a depth of 9 cm (θ2) are now discussed in

more detail.

Figures 11.4 and 11.5 show parts of the observed and simulated data for the energy

balance term Rn and the soil moisture layer at a depth of 9 cm, respectively,

after application of the hydrologic model with the hydrologic parameters values

resulting in the best RMSE values on the validation data, corresponding to the first

calibration period. The results of the other energy balance terms and soil moisture

layers are similar and are not presented. Similar results were obtained when the

second period was used as calibration, therefore these results are not shown either.

Concerning the results for the energy balance term Rn (Figure 11.4), differences

between the results from both methods are completely negligible in comparison to

the deviations between the simulated and observed data. The deviations between
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Figure 11.3: Scatterplot of the observed and simulated data of the energy balance
terms and the soil moisture layers. The simulated data are obtained after application of
the hydrologic model with the hydrologic parameter values resulting in the best RMSE
values on the validation data, corresponding to the first calibration period. The solid lines
represent the linear fit of the data obtained with MWARPE, the dashed lines represent
the linear fit of the data obtained with PSO and the solid-dashed lines represent the
perfect fit.
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Figure 11.4: Time series of the energy balance term Rn for a part of the first calibration
period (4 AM April 20 - 4 PM April 27, for the energy balance terms no data were available
before this period) (top panel) and a part of the corresponding validation period (8 PM
June 15 - 12 PM June 22) (bottom panel), this for the simulation data corresponding to
the lowest RMSE values on the validation data.

the simulated and observed data are rather small, and the order of magnitude

remains constant over time. These conclusions are valid for both the calibration

period and validation period and lead to the conclusion that the hydrologic model

offers a very good description of the energy balance term Rn, both on a qualitative

as a quantitative level.

Contrarily, concerning the soil moisture data (Figure 11.5), a clear difference

between the model results based on the hydrologic model parameters obtained

with MWARPE and PSO is noticed. The order of magnitude of this difference is

larger for the validation period as compared to the calibration period. The results

obtained with MWARPE are closer to the observed data, as is reflected in the

separate and total RMSE values (Tables 11.3). Both methods yield hydrologic

parameters that result in a similar behaviour of the hydrologic model with respect

to θ2. However it should be stated that the model only succeeds in mimicking the

global behaviour of the measured values. A noticeable discrepancy is the fact that

the simulated data are much smoother than the observed data and do not show

hourly fluctuations. This can either be due to the use of only one soil moisture

observation per day for calibration, or a deficiency in the hydrologic model if it

does not allow for rapid oscillations in the soil moisture content due to for example
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Figure 11.5: Time series of the soil moisture layer values at a depth of 9 cm for a part
of the first calibration period (4 AM April 20 - 4 PM April 27) (top panel) and a part of
the corresponding validation period (8 PM June 15 - 12 PM June 22) (bottom panel), this
for the simulation data corresponding to the lowest RMSE values on the validation data.
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the use of uniform model parameters for the entire soil profile, the assumption of

the absence of roots in the soil profile, and uncertainty in the constitutive equations

relating the pressure head to the hydraulic conductivity and the soil moisture

content. The same conclusions are valid for the soil moisture data at the other

layers (data not shown).

Figure 11.6 presents the boxplots of the different hydrologic parameters obtained

with both methods for the first (top panel) and second (bottom panel) calibration

period. These boxplots reflect the uncertainty in and the variability of the hydrologic

parameters. A boxplot is a representation of five numbers: the minimum value, the

first quartile, the median or second quartile, the third quartile and the maximum

value. The crosses that lie outside the box are considered as outliers, and do not

contribute to the minimum and maximum value. It is possible that the five values

of the boxplot are indistinguishable on the figure, and that only a single line and the

outliners are visible (for example for parameter Ks in Figure 11.6 (bottom panel)).

Concerning the first calibration period, a large difference between both methods for

the values for ψc, κ, C, rc and fv is noticed. The boxplots of the other hydrologic

parameters overlap to a large extent (Figure 11.6 (top panel)). Concerning the

second calibration period, little or no overlap is noticed for the parameters λ,

ψc, Ks, α, κ, C and fh (Figure 11.6 (top panel)). The parameter fd differs only

slightly in both cases, although this can be a consequence of the large spread for this

variable. The fact that in most cases the resulting RMSE values of both methods do

not differ strongly (as reflected by the standard deviations in Table 11.3), although

the corresponding parameter estimates show little overlap, indicates that the model

can result in similar output values for different combinations of input parameters.

This problem is referred to as equifinality [110].

Important to notice is that the range of both the estimated parameters and the

resulting RMSE values is, on average, larger for PSO, without this resulting in a

reduced average model performance. It can be argued that a calibration algorithm

that leads to several possible parameter configurations, all resulting in similar model

performance, can be considered to be more informative than an algorithm that

tends to converge to rather the same parameter configuration. This is supported

by the fact that in some cases PSO outperforms MWARPE with respect to the

validation data.

For the first (second) calibration period the number of model evaluations for

MWARPE is 4572 (5334) and for PSO 1140 (1260). This means that MWARPE

needs ca. 4 times as many model evaluations as PSO does. Figure 11.7 represents

the behaviour of the RMSE of the energy balance component Rn, obtained with

MWARPE, in function of the number of iterations. This figure shows that after 4

iterations the RMSE for Rn is rather stable. For the other energy balance terms

and soil moisture layers similar results were obtained. The distinction of different

numbers of model evaluations will be eliminated in the next section by restricting
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Figure 11.6: Boxplot of the hydrologic model parameters obtained with MWARPE (1)
and with PSO (2) for the first calibration period (top panel) and for the second calibration
period (bottom panel).
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Figure 11.7: Evolution of the RMSE for the energy balance term Rn obtained with
MWARPE.

the number of model evaluations for both methods.

Restricted number of model evaluations

The number of model evaluations was restricted according to the following scheme.

The median of the number of model evaluations of the 20 repetitions for the PSO

method was 1140 and 1260 for the first and second calibration period, respectively.

MWARPE needs 12 model runs, per iteration step, to calculate the Jacobian, more

precisely 1 undisturbed run and 11 disturbed runs for the different hydrologic

model parameters. As the purpose is to restrict the number of model evaluations as

close as possible to these medians, and every starting point of MWARPE needs 12

model evaluations for every iteration step, the total number of model evaluations

has to be a multiple of 360 (= 12 · 30). The number of model evaluations was hence

rounded to the nearest multiple of 360 to both medians, which is 1080. From this

number, a maximum of 3 iterations for MWARPE, and 36 iterations for PSO can

be concluded.

Table 11.5 lists the mean RMSE values obtained after application of the hydrologic

model with the hydrologic parameters acquired by both methods. The standard

deviations of these mean RMSE values are also presented. The variability on

the output variables is higher with PSO used as calibration method than with

MWARPE used as calibration method. This table shows that the mean RMSE

values for the parameters obtained with MWARPE for the first calibration period

are lower compared to the mean RMSE values for the parameters obtained with

PSO. This has been confirmed by the Wilcoxon rank sum test (p-value < 0.05).
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Table 11.5: Mean RMSE values and their standard deviations obtained for the two
calibration and the corresponding validation periods for MWARPE and PSO applied
on the reduced data set with a restricted number of model evaluations. The calibration
RMSE values are calculated using the reduced data set, while for the validation RMSE
values the hourly data set is used.

First calibration period Second calibration period

Variable Units MWARPE PSO MWARPE PSO

Overall - 3.400 ± 0.022 3.471 ± 0.089 4.545 ± 0.074 4.625 ± 0.168

θ1 - 0.022 ± 0.002 0.025 ± 0.004 0.027 ± 0.003 0.030 ± 0.003

θ2 - 0.019 ± 0.001 0.021 ± 0.003 0.023 ± 0.003 0.025 ± 0.002

θ3 - 0.019 ± 0.001 0.019 ± 0.002 0.013 ± 0.001 0.013 ± 0.004

θ4 - 0.024 ± 0.002 0.022 ± 0.003 0.035 ± 0.003 0.036 ± 0.003

Rn Wm−2 44.559 ± 0.724 45.147 ± 1.019 42.611 ± 2.721 39.604 ± 1.930

LE Wm−2 63.823 ± 1.392 65.038 ± 1.546 63.482 ± 1.090 64.140 ± 1.490

H Wm−2 52.814 ± 0.680 52.511 ± 0.993 55.097 ± 2.253 54.016 ± 0.706

G Wm−2 9.950 ± 0.348 10.181 ± 0.954 9.257 ± 0.484 8.931 ± 0.319

Second validation period First validation period

Variable Units MWARPE PSO MWARPE PSO

Overall - 6.603 ± 0.286 6.910 ± 0.294 4.983 ± 0.441 5.090 ± 1.157

θ1 - 0.030 ± 0.004 0.032 ± 0.005 0.032 ± 0.004 0.035 ± 0.014

θ2 - 0.021 ± 0.003 0.025 ± 0.007 0.034 ± 0.007 0.036 ± 0.015

θ3 - 0.015 ± 0.002 0.015 ± 0.004 0.032 ± 0.007 0.033 ± 0.015

θ4 - 0.053 ± 0.004 0.051 ± 0.006 0.035 ± 0.006 0.036 ± 0.016

Rn Wm−2 54.931 ± 1.397 55.045 ± 1.853 48.758 ± 0.377 48.797 ± 0.232

LE Wm−2 74.77 ± 4.212 70.381 ± 3.886 61.063 ± 1.090 61.224 ± 1.077

H Wm−2 59.908 ± 4.935 59.836 ± 3.197 51.382 ± 0.979 52.287 ± 0.728

G Wm−2 20.195 ± 2.366 23.741 ± 2.556 13.017 ± 0.451 12.931 ± 0.142

Concerning the RMSE values obtained on the validation data, the same conclusions

can be drawn (p-value < 0.05). Concerning the second period and corresponding

validation period, no significant differences were observed (p-value > 0.05 for

calibration and p-value > 0.05 for validation).

Next, the influence of limiting the number of model evaluations can also be tested

for significance. It is to be expected that the RMSE values should be lower when

the number of model evaluations is not restricted. This is true for almost all cases.

Test results confirmed this expectation for PSO for the first calibration period and

corresponding second validation period (p-values < 0.05) and for MWARPE for

both calibration periods (p-values < 0.05 for the first and second period). However,

in the case of MWARPE for the second validation period (Tables 11.3 and 11.5), a

lower RMSE value has been obtained for the restricted number of model evaluations

(p-value < 0.05), in contrast to the fact that the calibration RMSE is significantly

higher (p-value < 0.05). It is an overall observation that MWARPE performs well

in reducing the RMSE of the calibration data, but that the corresponding effect on

the validation RMSE is negligible (in comparison with PSO).

For the energy balance term Rn, the simulated data obtained with both calibration

methods are very similar and approximate the observed data of Rn. This is the case

for both calibration and validation periods (see first paragraph of Section 11.4.1).

Similar results were found between the simulation results for the other energy
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Figure 11.8: Boxplot of the hydrologic model parameters obtained with MWARPE (1)
and with PSO (2) with a restricted number of model evaluations for the first calibration
period (top panel) and for the second calibration period (bottom panel).

balance terms, therefore these results were not shown.

The simulated data of the soil moisture layer at a depth of 9 cm, obtained with

the MWARPE method, are once again better than when the PSO method is

used as calibration method. All remarks of the previous section (where the

number of evaluations was not restricted), still apply (see first paragraph of

Section 11.4.1).

Figure 11.8 presents the boxplots of the hydrologic parameters obtained with both

methods for the first (top panel) and second (bottom panel) calibration period.

For the first calibration period, the parameters Ks, f , α, rc, fd, fh and fv have a

strong overlap. For the second calibration period, little or no difference is noticed

for the parameters f , κ, rc, fd, fh and fv. An obvious consequence of restricting

the number of model evaluations is that the spread on the parameter estimates

has grown for MWARPE, and is now of the same order as the spread of the PSO

estimates.
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11.4.2. Model parameter estimation using the hourly data set

As already mentioned, PSO is not restricted to the use of the reduced data set.

In this section a comparison of PSO on the reduced and hourly data set and the

application of MWARPE on the reduced data set is made. This comparison is

made by the use of the Kruskall-Wallis test [109]. This test indicates whether

significant differences are present between PSO on the reduced data set, PSO on

the hourly data set and MWARPE on the reduced data set. In order to determine

which results are significantly different, a Bonferroni correction has to be applied.

The Bonferroni correction states that, if n different hypotheses are to be tested

with a collective significance level α, the individual hypotheses are to be compared

pairwise with a significance level of α/n. As the above-described applications differ

in the use of calibration data, only RMSE values obtained on the validation data

sets will be compared. In this section, the results of the energy balance term Rn

and the soil moisture layer at a depth of 9 cm are presented in the graphs. The

results of the other energy balance terms and soil moisture data were similar and

are not presented.

Unrestricted number of model evaluations

Table 11.6 shows the mean validation RMSE values for the different calibration

methods. Although MWARPE results in lower mean RMSE values for the first

validation period, no significant differences were found. For the second validation

period, the lowest mean validation RMSE value is obtained for the application

of PSO on the hourly data set. However, only a significant difference was found

between this application and the application of MWARPE (p-value < 0.05).

In Figures 11.9 and 11.10 the simulated data obtained with both methods are

plotted against the observed data for the energy balance term Rn and for the

soil moisture at a depth of 9 cm, respectively. Figure 11.9 illustrates that the the

difference between the methods is almost negligible. This is true for the calibration

period as well as for the validation period.

Concerning the soil moisture data θ2, the difference between the results obtained

with PSO using the hourly data set and the results obtained with PSO using the

reduced data set is very small (Figure 11.10). In this case MWARPE outperforms

PSO for the validation period, as can be seen in Table 11.6 as well. The simulated

data obtained using PSO with the hourly data set are also much smoother than

the observed data and do not show hourly fluctuations either. Since in this

case all hourly observations are used, the mismatch between the observed and

simulated soil moisture values must be attributed to the hydrologic model (see

Section 11.4.1).

Figure 11.11 presents the estimated values of the hydrologic parameters obtained
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Figure 11.9: Time series of the energy balance term Rn for a part of the first calibration
period (4 AM April 20 - 4 PM April 27, for the energy balance terms no data were
available before this period) (top panel) and a part of the corresponding validation period
(8 PM June 15 - 12 PM June 22) (bottom panel) obtained with PSO applied on the hourly
data set and the reduced data set and MWARPE applied on the reduced data set, this
for the simulation data corresponding to the lowest RMSE values on the validation data.
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Figure 11.10: Time series of the soil moisture layer values at a depth of 9 cm for a
part of the first calibration period (4 AM April 20 - 4 PM April 27) (top panel) and a
part of the corresponding validation period (8 PM June 15 - 12 PM June 22) (bottom
panel) obtained with PSO applied on the hourly data set and the reduced data set and
MWARPE applied on the reduced data set, this for the simulation data corresponding to
the lowest RMSE values on the validation data.
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Figure 11.11: Boxplot of the hydrologic model parameters obtained with MWARPE
(1) applied on the reduced data set, with PSO applied on the reduced data set (2) and
with PSO applied on the hourly data set (3) for the first calibration period (top panel)
and for the second calibration period (bottom panel).

with both methods for the first (top panel) and second (bottom panel) calibration

period. For both calibration periods, similar conclusions can be drawn. The

estimated parameters of the two applications of PSO show a stronger overlap with

each other than with the estimates of MWARPE. Furthermore, the spread of the

parameters obtained with PSO applied on the hourly data set is larger than that

of the parameters resulting from its application on the reduced data set. Again

we can conclude that the model can result in rather the same output for strongly

different combinations of input parameters.
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yTable 11.6: Mean RMSE values and their standard deviations obtained for the two validation periods for MWARPE applied on the reduced

data set, PSO applied on the reduced data set and PSO applied on the hourly data set. These validation RMSE values are calculated using the
hourly data set.

Variable Units MWARPE applied on PSO applied on PSO applied on MWARPE applied on PSO applied on PSO applied on

the reduced data set the reduced data set the hourly data set the reduced data set the reduced data set the hourly data set

Overall - 4.750 ± 0.130 5.014 ± 1.467 5.423 ± 1.991 6.637 ± 0.124 6.605 ± 0.120 6.461 ± 0.419

θ1 - 0.030 ± 0.001 0.033 ± 0.014 0.036 ± 0.020 0.031 ± 0.002 0.033 ± 0.005 0.036 ± 0.004

θ2 - 0.032 ± 0.002 0.034 ± 0.016 0.038 ± 0.022 0.021 ± 0.001 0.026 ± 0.006 0.030 ± 0.006

θ3 - 0.029 ± 0.002 0.032 ± 0.019 0.037 ± 0.025 0.016 ± 0.001 0.014 ± 0.003 0.013 ± 0.002

θ4 - 0.032 ± 0.002 0.036 ± 0.025 0.042 ± 0.032 0.054 ± 0.003 0.049 ± 0.005 0.049 ± 0.004

Rn Wm−2 48.768 ± 0.135 48.779 ± 0.561 50.289 ± 2.947 55.488 ± 0.616 54.772 ± 1.034 55.542 ± 3.691

LE Wm−2 60.127 ± 0.351 62.461 ± 2.135 62.499 ± 3.401 74.553 ± 2.171 74.248 ± 3.479 72.807 ± 6.263

H Wm−2 51.385 ± 0.499 53.421 ± 1.677 51.763 ± 1.209 58.754 ± 1.910 58.809 ± 2.777 62.505 ± 10.959

G Wm−2 12.989 ± 0.145 12.826 ± 0.225 13.805 ± 0.260 19.780 ± 0.972 19.970 ± 1.282 15.393 ± 1.638

1
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Restricted number of model evaluations

As was determined in Section 11.4.1, a maximum number of 1080 model evaluations

is set. Table 11.7 presents the RMSE values obtained by application of the

hydrologic model, with the hydrologic parameters acquired by the two applications

of PSO and one application of MWARPE on the validation data set.

For the first validation period, no significant differences in RMSE values were found.

For the second validation period, RMSE values obtained with PSO applied on

the hourly data set are significantly lower than those obtained with PSO applied

on the reduced data set and those obtained with MWARPE (p-values < 0.05,

respectively).

For the results of Rn, similar conclusions can be drawn as in Section 11.4.2. For the

calibration period, the simulated soil moisture data θ2 (Figure 11.12) are during

time steps 480-550 on average closer to the observed data with PSO applied on

the hourly data set. However, during time steps 550-620 the situation is reversed.

The different applications of the simulated data show the same evolution and only

differ by a constant shift. For the validation period, the results obtained with PSO

applied on the hourly data set are closer to the observed data for the full range of

the time series shown in the graph.

The results concerning the estimates of the hydrologic parameters obtained with

both methods are similar to those of Section 11.4.2. Therefore, these are not

presented.
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Figure 11.12: Time series of the energy balance term Rn for a part of the first calibration
period (4 AM April 20 - 4 PM April 27, for the energy balance terms no data were available
before this period) (top panel) and a part of the corresponding validation period (8 PM
June 15 - 12 PM June 22) (bottom panel) obtained with PSO applied on the hourly
data set and the reduced data set and MWARPE applied on the reduced data set with a
restricted number of model evaluations, this for the simulation data corresponding to the
lowest RMSE values on the validation data.

164



§1
1
.4
.
R
esu

lts
an

d
d
iscu

ssio
n

Table 11.7: Mean RMSE values and their standard deviations obtained for the two validation periods for MWARPE applied on the reduced
data set, PSO applied on the reduced data set and PSO applied on the hourly data set, all applied with a restricted number of model
evaluations. These validation RMSE values are calculated using the hourly data set.

First validation period Second validation period

Variable Units MWARPE applied on PSO applied on PSO applied on MWARPE applied on PSO applied on PSO applied on

the reduced data set the reduced data set the hourly data set the reduced data set the reduced data set the hourly data set

Overall - 4.983 ± 0.441 5.090 ± 1.157 5.448 ± 1.752 6.603 ± 0.286 6.910 ± 0.294 6.400 ± 0.221

θ1 - 0.032 ± 0.004 0.035 ± 0.014 0.037 ± 0.018 0.030 ± 0.004 0.032 ± 0.005 0.031 ± 0.004

θ2 - 0.034 ± 0.007 0.036 ± 0.015 0.039 ± 0.021 0.021 ± 0.003 0.025 ± 0.007 0.024 ± 0.006

θ3 - 0.032 ± 0.007 0.033 ± 0.015 0.037 ± 0.022 0.015 ± 0.002 0.015 ± 0.004 0.014 ± 0.003

θ4 - 0.035 ± 0.006 0.036 ± 0.016 0.041 ± 0.026 0.053 ± 0.004 0.051 ± 0.006 0.050 ± 0.006

Rn Wm−2 48.758 ± 0.377 48.797 ± 0.232 50.687 ± 4.482 54.931 ± 1.397 55.045 ± 1.853 55.942 ± 1.774

LE Wm−2 61.063 ± 1.090 61.224 ± 1.077 63.239 ± 4.354 74.770 ± 4.212 70.381 ± 3.886 70.309 ± 3.476

H Wm−2 51.382 ± 0.979 52.287 ± 0.728 52.155 ± 1.101 59.908 ± 4.935 59.836 ± 3.197 63.190 ± 6.259

G Wm−2 13.017 ± 0.451 12.931 ± 0.142 13.797 ± 0.254 20.195 ± 2.366 23.741 ± 2.556 17.166 ± 1.745
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Conclusion

In this part of this dissertation, two calibration methods, MWARPE and PSO,

are compared for the parameter estimation of a simple hydrologic water and

energy balance model. These algorithms are thoroughly discussed in Chapter 10.

MWARPE does not depend on the definition of an objective function and does not

require an additional parameter identification task. However, MWARPE relies on

the inversion of possibly large matrices, which has two unfavourable consequences.

Firstly, as this operation is time consuming, MWARPE is the slower of the two

candidates. Secondly, completing this operation in acceptable time and with an

acceptable amount of resources requires the use of a reduced data set, i.e. not all

the available data can be used for training the model. On the other hand, PSO has

the advantage that it is easy to understand and implement. However, PSO requires

the determination of an optimal value for the different parameters involved in the

algorithm, which can be a time-consuming task. Furthermore, PSO depends on the

definition of an objective function. Particularly, if multiple objectives are involved,

no unique or ideal way exists to define the overall objective function.

In Chapter 11, these algorithms are applied on a case study, namely the calibration

of a relatively simple process-based water and energy balance model. This case

study tested both methods in three cases. In the first case the two methods were

applied on a reduced hydrologic data set. In the second case the number of model

evaluations was restricted for both methods. In the third case, the added value of

taking into account all hourly observations for PSO is investigated.

In most cases, the mean calibration RMSE value is significantly lower when

MWARPE is used instead of PSO. However, this significant difference does, in

most cases, not transfer to the RMSE values on the corresponding validation data

sets. From this, it can be concluded that both methods are equally capable of

calibrating the hydrologic model, but that in some cases the use of MWARPE

may lead to an overfit. This is illustrated by a slightly poorer performance on

validation data, using hydrologic parameters that result in a very good model fit on

the calibration data. For the second case, it was found that the effect of restricting

the number of model evaluations was negligible. As for the third case, lower RMSE

values were obtained when PSO was applied on the hourly data set and compared

to the results obtained by both methods applied on the reduced data set. However,

this difference is not always significant and is rather small.
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Overall, it can be concluded that, for this hydrologic case study, both calibration

methods yield more or less similar results with a more practical applicability for

PSO. Therefore, one might prefer to use PSO for parameter estimation. However,

one should furthermore bear in mind that the parameters inherent to PSO need to

be re-estimated on different case studies.

It can also be stated that the simple hydrologic model used in this study leads to a

similar performance as more complicated land surface models [105]. If an efficient

parameter estimation algorithm needs to be chosen for land surface models, one

could argue that this search could be performed using simplified versions, in order

to reduce computing time.
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Uncertainty propagation
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13

Introduction

In 1992, Zimmerman defined uncertainty as ‘the lack of necessary information to

quantitatively and qualitatively . . . describe, prescribe or predict deterministically

and numerically a system, its behaviour or other characteristics’ [111]. Introducing

uncertainty into mathematical models is a subject of great interest to many

engineering applications (see among others [112, 113, 114, 115, 116]). In engineering

modelling, uncertainty can be divided into two groups, namely aleatoric and

epistemic uncertainties [117, 118, 119]. Aleatoric or stochastic uncertainty is the

natural randomness in a process; it is the inherent variability of some phenomena

and cannot be reduced by enhancing the available knowledge. This kind of

uncertainty can be described by probability theory. Epistemic or systematic

uncertainty stems from incomplete knowledge. This type of uncertainty is related

to the state of knowledge and can be reduced by improving knowledge about the

system. In this dissertation we will restrict ourselves to epistemic uncertainty. Fuzzy

set theory is developed to incorporate epistemic uncertainty into mathematical

models. Even the most complex model of a real system necessarily involves a

series of assumptions and approximations, which are required to compensate

for our incomplete understanding of the real world. These assumptions and

approximations should be handled as uncertain variables and this uncertainty

should be propagated through the model. This can be done by representing the

assumptions and approximations of the uncertain variables by fuzzy quantities.

Uncertainty can be introduced in the simulation process of systems by Zadeh’s

extension principle [120] that extends functions of real numbers to functions with

fuzzy quantities as arguments.

However, the application of the extension principle to compute with fuzzy quantities

is a complex matter. Luckily, a more practical approach operating directly on α-cuts

was established by Nguyen [121] and is applicable to continuous functions and upper

semi-continuous fuzzy quantities with compact support describing non-interactive

variables as inputs. It effectively turns computing with fuzzy intervals into interval

analysis [122] on α-cuts. Fullér and Keresztfalvi (1991) [123] generalized Nguyen’s

theorem for interactive variables, described by triangular norms, as input. In

general, however, the result is approximative merely, since only a finite number of

α-cuts can be considered. For the common arithmetic operations, such as addition

and multiplication, this approach leads to a kind of layered interval arithmetic.
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In rare cases, exact formula can be established avoiding to resort to α-cuts (see

e.g. [124, 125]).

Several practical implementations of the extension principle based on α-cuts are

available for (locally) monotone continuous functions of non-interactive variables

described by fuzzy intervals. The vertex method was developed for computing

with monotone continuous functions of non-interactive variables described by

fuzzy intervals, and can be extended for non-monotone continuous functions by

performing an extreme value analysis [126, 127, 128]. However, this is often not

possible, for instance when dealing with more complex functions. As an alternative

to the vertex method, the transformation method was also developed for computing

with monotone functions [129]. Yet another approach for (locally) monotone

continuous functions is to make use of gradual numbers [130, 131]. Essential to all

these approaches is the fact that a monotone function defined on a hyperrectangle

reaches its extremal values in some of the vertices of that hyperrectangle, requiring

the evaluation of a finite number of points only. However, this is not necessarily the

case for non-monotone functions and an optimization algorithm is hence needed to

search for these extremal values [132, 133].

Alternative methods that do not rely on a decomposition into α-cuts are available

in literature. In these approaches, the fuzzy input intervals are decomposed into

smaller fuzzy intervals, based on a partitioning of the universe on which these fuzzy

input intervals are defined. Next, within each partition, the function is replaced

by an approximation, for example a monotone function, such that its extension to

fuzzy intervals can easily be evaluated. While this approach has been successfully

applied for univariate functions [134, 135], its major drawback is that the number

of partitions or samples rises exponentially with the number of dimensions. Even

with advanced approximation techniques [136, 137], this approach quickly becomes

unfeasible when the number of dimensions grows or when the function has strong

local features or shows an oscillatory behavior.

The objective of this part of the dissertation is to develop a computationally efficient

Fuzzy Calculator based on Nguyen’s approach. Four optimization algorithms are

compared to determine the minimum and maximum of the function for different

α-cuts: (1) Gradient Descent based on Sequential Quadratic Programming (GD)

[138, 13], which is a local optimization algorithm, (2) the Simplex-Simulated

Annealing approach (SIMPSA) [34], a global heuristic optimization algorithm,

(3) Particle Swarm Optimization (PSO) [28], a global heuristic population-based

optimization algorithm and (4) a combination of Particle Swarm Optimization and

Gradient Descent based on Sequential Programming (PSO GD). These optimization

algorithms were discussed in detail in Chapter 3. In particular, the capability

of PSO to solve a complex optimization problem was already tested in Part III.

Furthermore, two approaches are considered to determine the number of α-cuts on

which these algorithms need to be applied. In the first approach, a fixed number of
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α-cuts is used, while in the second one, three α-cuts are chosen initially, and this

number is extended by determining the required numbers of α-cuts self-consistently

based on a linearity criterion. In addition, the Fuzzy Calculator can be applied

in a non-parallel or a parallel fashion. The latter is only important when PSO

is employed, in which case several swarms simultaneously search for the optima

of different α-cuts and moreover communicate with each other in order to locate

these optima more accurately and/or more rapidly.

Chapter 14 discusses the methodology used to develop the different Fuzzy Cal-

culators. In Chapter 15, in order to evaluate and compare the different Fuzzy

Calculators, they are applied to a number of test functions. The Fuzzy Calcula-

tor leading to the best results in Chapter 15, is then applied to a case study in

Chapter 16. This case study deals with the propagation of uncertainty through

a physically-based surface scattering model. Finally, Chapter 17 summarizes our

conclusions.
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Methodology

This chapter recapitulates the background of fuzzy calculus and goes on to describe

the construction of our Fuzzy Calculator. Section 14.1 introduces the concept of

fuzzy sets and provides some definitions for fuzzy quantities, which are used in

further sections. Section 14.2 briefly describes the definition and properties of tri-

angular norms, which are used to model interaction between variables. Section 14.3

recalls Zadeh’s extension principle used to define the output of a continuous function

of variables described by fuzzy intervals. In Sections 14.4 and 14.5 the functioning

of the Fuzzy Calculator is outlined in full detail. Section 14.6 describes the different

optimization algorithms used by the Fuzzy Calculator.

14.1. Fuzzy set theory

Fuzzy set theory is introduced to deal with incomplete or imprecise information.

This theory was developed by Lotfi A. Zadeh [139] in 1965 as an extension of

classical set theory. In contrast to classical set theory, in fuzzy set theory elements

can partially belong to the set. This partial membership can be described by a

membership degree defined by a membership function in the real unit interval

[0, 1] [140]. In this section, some definitions are introduced that are used in further

sections.

A membership function represents the membership degree A(x) of elements x in

some universe U to a fuzzy set A. We identify the fuzzy set A with its membership

function A : U 7→ [0, 1] : x 7→ A(x). If an element is not included in the set A, then

the membership degree A(x) of that element is 0. An element is fully included in

the set A if the membership degree A(x) of that element is 1. Crisp or classical

sets are obtained when all elements x ∈ U have either A(x) = 0 or A(x) = 1. For

fuzzy sets, general membership degrees 0 < A(x) < 1 are also possible. We will

mainly be interested in fuzzy sets defined for elements x on the real line, with thus

U = R. In this case, a fuzzy set A is more specifically called a fuzzy quantity A.

The support of a fuzzy quantity A is the crisp set of all elements x ∈ R that have

a nonzero membership degree:

supp(A) = {x ∈ R | A(x) > 0} . (14.1)
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The core of a fuzzy quantity A is the crisp set of all elements x ∈ R that have a

membership degree equal to one:

core(A) = {x ∈ R | A(x) = 1} . (14.2)

A fuzzy quantity A is called normal if there exists an x ∈ R such that A(x) = 1.

The α-cut Aα of a fuzzy quantity A is the crisp set of elements x ∈ R that belong

to A at least the degree α ∈ ]0, 1]

(A)α = {x ∈ R | A(x) ≥ α} . (14.3)

A fuzzy quantity A for which all α-cuts are closed and that has a compact support,

i.e. supp(A) = {x ∈ R | A(x) > 0} is bounded, is called an upper semi-continuous

fuzzy quantity A. Fuzzy quantities A are called convex if the α-cuts of A are

connected, i.e. do not consist of several disconnected closed intervals:

(∀(x1, x2) ∈ R2)(∀η ∈ ]0, 1])(A(ηx1 + (1− η)x2) ≥ min(A(x1), A(x2))) . (14.4)

A fuzzy number is a fuzzy quantity that is upper semi-continuous, convex and

normal and has the membership degree A(x) = 1 at precisely one element. When

this last condition is not fulfilled, the fuzzy quantity is commonly called a fuzzy

interval.

At last, a distinction is made between non-interactive and interactive fuzzy quan-

tities Ai. In a non-fuzzy setting where the quantities Ai represent intervals,

non-interactivity means that none of the combinations (x1, . . . , xn) ∈ A1×· · ·×An
is deemed impossible. The joint membership function of the n fuzzy quantities can

then be represented by min(A1(x1), . . . , An(xn)). Of course, this is not always the

case, e.g. when some Ai and Aj are related to the same physical observable. One way

to model interactivity is to replace the minimum operator in the joint membership

function by another operator T that transforms the individual membership degrees

A1(x1) to An(xn) into a valid joint membership degree T (A1(x1), . . . , An(xn)).

Such operators T are called triangular norms and have to satisfy a number of

properties. Triangular norms are formally introduced in the next section. Note that

there are other possibilities for constructing the joint membership function, e.g. by

applying a possibilistic clustering algorithm to a joint measurement of the relevant

variables, based on physical or artificially generated data [141]. In this chapter and

in Chapter 15, we restrict ourselves to a construction based on triangular norms.

In Chapter 16, the Fuzzy Calculator is applied to propagate uncertainty through a

physically-based surface scattering model, for which the interactivity between the

fuzzy input intervals can be described by a possibilistic clustering algorithm.
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14.2. Triangular norms

The main idea of triangular norms or t-norms is to generalize the intersection of

classical sets to fuzzy sets or the Boolean conjunction of classical logic to fuzzy

logic. Using this prescription, a t-norm T allows to define the joint membership

degree of fuzzy quantity A1 taking the value x1 and fuzzy quantity A2 taking

the value x2 as T (A1(x1), A2(x2)). Hence, t-norms can be used to describe the

interactivity between variables, by replacing the minimum-operator encountered in

the previous section with a more general t-norm T . We now summarize the main

properties that have to be satisfied by t-norms.

A t-norm is a binary operation T on the unit interval [0, 1], i.e. a function T :

[0, 1]2 → [0, 1] with the following properties for all α, β, ξ ∈ [0, 1] [142, 143]:

(T1) T (α, β) = T (β, α) (commutativity)

(T2) T (α, T (β, ξ)) = T (T (α, β), ξ) (associativity)

(T3) T (α, β) ≤ T (α, ξ) whenever β ≤ ξ (monotonicity)

(T4) T (α, 1) = α (boundary condition)

(14.5)

The combination of conditions (T3) and (T4) with the restriction T (α, β) ∈ [0, 1]

allows to further conclude that for all α, β ∈ [0, 1]:

T (α, β) ≤ min(α, β), (14.6)

T (α, 0) = 0. (14.7)

Since T is a binary operation that maps two elements from the set [0, 1] to an

output in [0, 1] and T is associative, the structure ([0, 1], T ) is a semigroup. More

strongly, it is a commutative semigroup with neutral element 1 and zero element 0.

In addition, the monotonicity of T allows to conclude that ([0, 1], T,≤) is a fully

ordered semigroup with respect to the standard ordering relation ≤ on the set [0, 1].

These properties uniquely define a t-norm: any binary operation T on [0, 1] such

that ([0, 1], T,≤) is a fully ordered commutative semigroup with neutral element 1

and zero element 0 is a t-norm.

Furthermore, the associativity allows us to extend each t-norm T to an n-ary

operation. For each n-tuple (α1, . . . , αn) ∈ [0, 1]n, the value T (α1, . . . , αn) is

defined iteratively through

T (α1, . . . , αn) = Tni=1αi = T (Tn−1
i=1 αi, αn) (14.8)

with the case n = 2 given by the definition of T (α1, α2). For any α ∈ [0, 1], we also
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define

α
(0)
T = 1, α

(1)
T = α, α

(n)
T = T (α, . . . , α︸ ︷︷ ︸

n times

). (14.9)

There exist four basic t-norms TM, TP, TL and TD that are given by

TM(α, β) = min(β, α), (minimum) (14.10)

TP(α, β) = α · β, (product) (14.11)

TL(α, β) = max(α+ β − 1, 0), ( Lukasiewicz t-norm) (14.12)

TD(α, β) =

{
0 if (α, β) ∈ [0, 1[2,

min(α, β) otherwise
(drastic product) (14.13)

If two t-norms TA and TB satisfy TA(α, β) ≤ TB(α, β), for all (α, β) ∈]0, 1[2, then

TA is called weaker than TB and TB is stronger than TA, which is denoted as

TA ≤ TB. Note that not every pair of t-norms can be ordered. It is, however,

possible to define the absolute weakest and the absolute strongest t-norms. In

particular, the minimum t-norm TM is the largest or strongest t-norm. It is the

only t-norm that satisfies T (α, α) = α, for all α ∈ [0, 1]. The drastic product TD is

the smallest or weakest t-norm; it is the only t-norm that has T (α, α) = 0, for all

α ∈ [0, 1[. Thus, any t-norm T satisfies TD ≤ T ≤ TM. The four basic t-norms can

be ordered as

TD < TL < TP < TM. (14.14)

Condition (T3) imposes monotonicity but does not require the t-norm to be strictly

monotone. A t-norm T is said to be strictly monotone if T (x, y) < T (x, z) whenever

x > 0 and y < z. Equivalently, this t-norm satisfies the cancellation law :

T (α, β) = T (α, ξ) ⇒ α = 0 ∨ β = ξ (14.15)

A t-norm can be continuous (e.g. TM and TP) but is not required to be so (e.g.

TD) . Because of (T1) and (T3), a t-norm T will be continuous if and only if

it is continuous in its first component. A t-norm that is continuous and strictly

monotone is called a strict t-norm (e.g. TP).

One further defines for a t-norm T :

• an idempotent element α ∈ [0, 1] if T (α, α) = α. Every t-norm has the trivial

idempotent elements α = 0 and α = 1.

• a nilpotent element α ∈ ]0, 1[ if there exists some n ∈ N0 such that α
(n)
T = 0.

• a zero divisor α ∈ ]0, 1[ if there exists some β ∈ ]0, 1[ such that T (α, β) = 0.

If α is an idempotent element, α
(n)
T = α and α can never be a nilpotent element.
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Every nilpotent element is a zero divisor, but not conversely. TM is the only t-norm

for which every α ∈ [0, 1] is an idempotent element; it has no zero divisors or

nilpotent elements. TL and TD have the complete set ]0, 1[ as nilpotent elements.

TP has neither nilpotent elements nor non-trivial idempotent elements. For a

general t-norm T , the set of nilpotent elements is always of the form ]0, γ[ or

]0, γ]. If T is continuous and has ]0, 1[ as its set of nilpotent elements, it is called a

nilpotent t-norm (e.g. TL). Finally, one can introduce the concept of Archimedean

t-norms. A t-norm T is Archimedean if for any (α, β) ∈ ]0, 1[2, there exists some

n ∈ N0 such that α
(n)
T < β. A t-norm is Archimedean if and only if it satisfies the

limit property :

∀α ∈ ]0, 1[: lim
n→∞

α
(n)
T = 0. (14.16)

For continuous Archimedean t-norms, yet another equivalent definition can be

given. A continuous t-norm is Archimedean if and only if for any α ∈ ]0, 1[, the

t-norm satisfies T (α, α) < α. An Archimedean t-norm that is left-continuous is

automatically continuous. Continuous Archimedean t-norms are either strict or

nilpotent.

All relations between the different properties of t-norms are summarized in Fig-

ure 14.1.

Figure 14.1: Implications between the algebraic properties of t-norms.
The dotted arrow indicates that the corresponding implication holds for
continuous t-norms [143].

Given the four basic t-norms, one can construct other t-norms. This requires

the introduction of the concept of a pseudo-inverse. For a monotone function f :

[a, b]→ [c, d], where [a, b] and [c, d] are two closed subintervals of the extended real

line [−∞,∞], the pseudoinverse f (−1) : [c, d]→ [a, b] is defined as [142, 143]

f (−1)(y) = sup{x ∈ [a, b]|(f(x)− y)(f(b)− f(a)) < 0} (14.17)

If f is a bijection from [a, b] to [c, d], then the definition of the pseudoinverse f (−1)

corresponds to the inverse function f−1. The definition of the pseudoinverse f (−1)

is more general and can also be applied to functions f that are not injective. If
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f is strictly increasing (f(a) < f(b)), for all y ∈ [c, d], we get f (−1)(y) = sup{x ∈
[a, b]|f(x) < y}. On the other hand, if f is strictly decreasing (f(a) > f(b)), then

for all y ∈ [c, d], we obtain f (−1)(y) = sup{x ∈ [a, b]|f(x) > y}. Finally, if f is a

constant function (f(a) = f(b)), then for all y ∈ [c, d] we have f (−1)(y) = a.

If the function f(α) = α
(n)
T for a given t-norm T , then the pseudoinverse function

f (−1) can be formally denoted as f (−1)(α) = α
(1/n)
T , which thus provides a definition

for fractional powers of α with respect to T . In particular, if T is a continuous

Archimedean t-norm we obtain

lim
n→∞

α
(1/n)
T =

{
0, α = 0

1, α ∈ ]0, 1]
(14.18)

For every t-norm T , we can now define a whole family of related t-norms. When

we have an increasing function f : [0, 1]→ [0, 1] and a t-norm T such that

• for all α, β ∈ [0, 1[ we have

T (f(α), f(β)) ∈ Ran(f) ∪ [0, f(0+)]

with Ran(f) = f([a, b]) = {f(x),∀x ∈ [a, b]} and f(0+) = lim
x
>→0
f(x)

• for all (α, β) ∈ [0, 1]2 for which T (f(α), f(β)) ∈ Ran(f) we have

f(f (−1)(T (f(α), f(β)))) = T (f(α), f(β))

then we can define a new t-norm T[f ] : [0, 1]2 → [0, 1] as

T[f ](α, β) =

{
f (−1)(T (f(α), f(β))) if (α, β) ∈ [0, 1[2

min(α, β) otherwise
(14.19)

In particular, if f is a bijection (such that f (−1) = f−1), then it establishes an iso-

morphism between the semigroups ([0, 1], T ) and ([0, 1], T[f ]) since T (f(α), f(β)) =

f(T[f ](α, β)) for any α, β ∈ [0, 1] by construction. For example, any nilpotent

triangular norm T is isomorphic to TL, since there exists a bijection f such that

T[f ] is an isomorphism of TL.

We can also define new t-norms without any reference to a given t-norm, but rather

by combining functions in one real variable with the elementary binary operations

of addition and multiplication of real numbers. In the case of addition of real

numbers, these functions are called additive generators, in the case of multiplication

of real numbers we talk about multiplicative generators.

An additive generator t : [0, 1] → [0,+∞] of a t-norm T is a strictly decreasing

function which is also right-continuous in 0 and satisfies t(1) = 0, such that for all
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(α, β) ∈ [0, 1]2 we have

t(α) + t(β) ∈ Ran(t) ∪ [t(0),+∞] , (14.20)

T (α, β) = t(−1)(t(α) + t(β)) . (14.21)

If a t-norm T has an additive generator t : [0, 1]→ [0,+∞], then T is necessarily

Archimedean. In addition, T is strictly monotone if and only if t(0) = +∞. If

t(0) < +∞, then each α ∈ [0, 1[ is a nilpotent element of T . The first condition

on t strongly restricts possible choices of generators. In particular, t is continuous

if and only if t is left-continuous in 1. A continuous generator t will produce a

continuous Archimedean t-norm T .

A multiplicative generator of a t-norm T is a strictly increasing function θ : [0, 1]→
[0, 1] which is right-continuous in 0 and satisfies θ(1) = 1, such that for all (α, β) ∈
[0, 1]2 we have

θ(α) · θ(β) ∈ Ran(θ) ∪ [0, θ(0)] , (14.22)

T (α, β) = θ(−1)(θ(α) · θ(β)) . (14.23)

Clearly, an additive generator can be mapped to a multiplicative generator by

setting θ(α) = exp(−t(α)), and similar properties hold. Since the product is a

standard triangular norm TP, we can also interpret T as the triangular norm

obtained through the construction in Eq. (14.19) applied to the triangular norm

TP, i.e. T = TP,[θ]. When θ is a bijection, which requires that θ is continuous

and θ(0) = 0, the resulting t-norm T is thus isomorphic to TP. It can be shown

that all t-norms T resulting from a bijection θ are strict continuous Archimedean

t-norms.

14.3. Zadeh’s extension principle: from theory to prac-

tice

Zadeh’s extension principle [120] allows to extend any function f from a universe

X to a universe Y , to a function from F(X) to F(Y ) (where F(U) stands for the

class of all fuzzy sets in a given universe U). More specifically, given a fuzzy set A

in X, f(A) is the fuzzy set in Y defined by

f(A)(y) = sup
f(x)=y

A(x) (14.24)

(when no such x exists, the right-hand side evaluates to 0). Apart from its broad

theoretical importance, the extension principle mainly finds application in the

context of functions from Rn to R. For a function f from Rn to R and n fuzzy
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inputs A1, . . . , An, the fuzzy output B = f(A1, . . . , An) is usually defined by

B(y) = sup
f(x1,...,xn)=y

T (A1(x1), . . . , An(xn)) . (14.25)

with T a t-norm that describes the interactivity between the n fuzzy inputs

A1, . . . , An. T (A1(x1), . . . , An(xn)) thus represents the joint membership function

of the n fuzzy inputs.

The supremum in Eq. (14.25) is taken over all (x1, . . . , xn) satisfying f(x1, . . . , xn) =

y. In general, the latter equation describes an (n− 1)-dimensional manifold. For

most functions, it is impossible to determine this manifold, let alone the supremum

that the given function takes on it. Hence, there is a need for a more practical

approach. Nguyen [121] offered a partial way out for a continuous function f and

non-interactive upper semi-continuous fuzzy quantities Ai. Instead of determining

B(y) for each y separately, it is possible to determine the α-cuts of B, α ∈ ]0, 1],

directly as:

Bα := f(A1, . . . , An)α = f((A1)α, . . . , (An)α) (14.26)

where

f((A1)α, . . . , (An)α) = {f(x1, . . . , xn) | (x1, . . . , xn) ∈ (A1)α × . . .× (An)α} .

The support of B can be obtained in the same way from the supports of the

fuzzy inputs Ai. Inverting the decomposition theorem for fuzzy sets, one can then

reconstruct the fuzzy set B from its α-cuts Bα through

B(y) = sup
α∈ ]0,1]

α ·Bα(y) , (14.27)

where the α-cuts Bα are identified with their characteristic mapping. In this way,

by determining a finite number of α-cuts Bα, and by restricting the supremum in

Eq. (14.27) to the corresponding values of α, one can obtain an approximation of

B (Figure 14.2):

B(y) = max
α∈{α1,...,αk}

α ·Bα(y) . (14.28)

However, in order to determine the α-cuts in a feasible way, one additional restriction

needs to be imposed: the fuzzy inputs A1, . . . , An should be convex so that they

represent fuzzy intervals. If all fuzzy inputs Ai are fuzzy intervals, then the fuzzy

output B is a fuzzy interval as well. Hence, its α-cuts are closed intervals, i.e.

Bα = [y
α
, yα] , (14.29)

where y
α

and yα are the minimal and maximal values of the function f on the

hyperrectangle

Aα := [x1,α, x1,α]× · · · × [xn,α, xn,α] , (14.30)
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Figure 14.2: Approximation of B with a finite number of α-cuts.

where (Ai)α = [xi,α, xi,α]. The problem is thus reduced to finding y
α

and yα for

a number of values of α. If the function f is monotone (increasing or decreasing

in each variable) then only the vertices of the above hyperrectangle need to be

scanned [144]. Moreover, if the function is increasing, then y
α

= f(x1,α, . . . , xn,α)

and yα = f(x1,α, . . . , xn,α). The latter applies to the addition of fuzzy intervals,

for instance.

For a general (non-monotone) continuous function f , the optima y
α

and yα can

either be on the boundary or the interior of the corresponding search space, and

optimization algorithms are needed to locate these optima efficiently [132, 133].

Moreover, the corresponding optimization problems are not independent, since

Bα2
⊆ Bα1

if α1 < α2. The input values xα = (x1,α, . . . , xn,α) that result in the

optima y
α

and yα, are denoted as xy
α

and xyα . In particular, we refer to xy
α

as the minimizer of the α-cut and to xyα as the maximizer of the α-cut. For

each α-cut, depending on the function f , one or more local optima can be present

in the search space. If we want to construct a general approach to solve these

optimization problems, we cannot rely on an algorithm that tries to find a single

nearby solution of the KKT conditions (Chapter 2, Section 2.2) such as SQP

(Chapter 3, Section 3.1). A better strategy is to use an algorithm inspired by

metaheuristics (Chapter 2, Section 2.4), such as PSO (Chapter 3, Section 3.2) or

SIMPSA (Chapter 3, Section 3.3). In order to demonstrate this, results obtained

with implementations of the Fuzzy Calculator based on these different optimization

algorithms will be compared in Chapter 15.

In case of interactive fuzzy intervals Ai where the interactivity can be described

by a t-norm, Fullér and Keresztfalvi (1991) [123] generalized Nguyen’s theorem as

follows

Bα := f(A1, . . . , An)α = ∪
T (ξ1,...,ξn)≥α

f((A1)ξ1 , . . . , (An)ξn) (14.31)

where we have to take a union over all combinations (ξ1, . . . , ξn) ∈ ]0, 1]n that pro-

duce T (ξ1, . . . , ξn) ≥ α. But since T (ξ1, . . . , ξn) ≤ TM(ξ1, . . . , ξn) = min(ξ1, . . . , ξn),

we can restrict the search for possible combinations of (ξ1, . . . , ξn) that produce

183



Chapter 14. Methodology

T (ξ1, . . . , ξn) ≥ α to [α, 1]n. If we define the set Aα as

Aα = ∪
T (ξ1,...,ξn)≥α

(A1)ξ1 × · · · × (An)ξn (14.32)

then we will have

Aα ⊂ (A1)α × · · · × (An)α (14.33)

where (Ai)α = [xi,α, xi,α] is a closed interval. Aα will be a closed, simply connected

set, i.e. a set for which any closed curve within the set can be continuously contracted

to a point without leaving the set. Therefore, as in the case of non-interactive

variables Ai, for a continuous function f , the α-cuts of the fuzzy output B are closed

intervals. The fuzzy output B can thus be determined by determining y
α

and yα
for a number of α-cuts as presented in Eqs. (14.29) and (14.30), with the additional

constraint T (A1(x1), . . . , An(xn)) ≥ α. In this way, the identification of the fuzzy

output of a continuous function of interactive variables described by fuzzy intervals

can, just as in the case with non-interactive variables, be transformed to a number

of (constrained) optimization problems, which now have one nonlinear constraint.

Because of this constraint, the area where the function f has to be optimized, is

no longer hyperrectangular. The search spaces for the optimization problems in

two dimensions belonging to different α-cuts are presented in Figure 14.3 for the

basic t-norms.

We conclude this section by noting that solving the constrained optimization

problem is the most general strategy for dealing with interactivity described by

t-norms. Next to this general approach, we could try to devise a specialised

algorithm for one particular t-norm T . For any other t-norm T ′, we could then

try to construct an isomorphism f such that T ′[f ] = T . However, this is not always

possible since different triangular norms can have different properties that are

not changed by the isomorphism. For example, nilpotent t-norms will always be

mapped to nilpotent t-norms. In particular, it will not be possible to map (in a

reversible way) any t-norm T to the minimum norm TM, for which the optimization

problem becomes most simple due to the hyperrectangular search spaces. These

hyperrectangular search spaces can be easily handled by the optimization algorithm

as boundary constraints. For discontinuous t-norms such as TD, the search space is

not generally convex, which means that it is not possible to connect any two points

in the search space with a line segment that is completely located in this search

space. In this type of search spaces, standard optimization algorithms might run

into problems. For the particular case of TD, the search space for any α-cut can

however be divided into two (overlapping) hyperrectangles and the optimization

problem can be solved in both hyperrectangles separately.
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(a) (b)

(c) (d)

Figure 14.3: Search spaces for the optimization problems of a number of α-cuts for the
basic t-norms in 2 dimensions: a) minimum t-norm, b) product t-norm, c)  Lukasiewicz
t-norm and d) drastic t-norm
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14.4. Subdivision in α-cuts

As stated in the introduction, the objective of this part is to develop a Fuzzy

Calculator to determine the membership function of the output of a continuous

function of variables described by fuzzy intervals. Section 14.3 outlines how this

problem can be handled through the application of the extension principle and

a subdivision in α-cuts. Two sources of errors are connected with this approach.

Firstly, for a finite number of α-cuts, only an approximation of the true membership

function B is obtained. Increasing the number of α-cuts improves the approximation.

Secondly, for each α-cut, the error on the determination of y
α

and yα depends

on the optimization algorithm used. It is impossible to assess this error, unless

the minimum and maximum of f for each α-cut can be exactly determined, e.g.

through analytical techniques.

To determine the number of α-cuts, two approaches are followed. In the first

approach, the number of α-cuts is set to a fixed number m + 1, determined

at the beginning of the algorithm. As the interval at α = 0 is not closed, we

choose the first α-cut at a small value α0 = δ > 0, so that we can identify

limδ→0 α0 with supp(A). The remaining α-cuts are equidistantly distributed at

values αj = j/m for j = 1, 2, . . . ,m. In the second approach, we start with

m+1 = 3 and gradually increase this number according to a criterion based on linear

interpolation. More specifically, we compare α with a value α̃ that is calculated by

linear interpolation. In other words, for a given couple (αj , yαj ), with yαj either y
αj

or yαj , an approximation α̃j is calculated by linear interpolation through the points

(αj−1, yαj−1
) and (αj+1, yαj+1

). If |αj− α̃j | > ε, with ε a predefined tolerance value,

yα-values are searched at the new levels α = (αj +αj−1)/2 and α = (αj +αj+1)/2.

This strategy is carried out for the left side (minima y
α

) as well as for the right

side (maxima yα) independently. As a consequence, a higher density of points will

be obtained where the membership function B is more complicated. Therefore,

the number of optimizations needed to determine the left (# optimizationsleft) or

right (# optimizationsright) side of the membership function B respectively can

be different. In this approach, by selecting a tolerance value ε with respect to the

difference in α-values instead of the difference in yα-values, an absolute tolerance

value can be assured that is independent of the problem at hand. Figure 14.4

illustrates the linear interpolation for the left side of the membership function of

the output variable of a function f .

The error made in determining y
α

or yα, although unknown for a general function

f , can be used to assess the different optimization algorithms. As better opti-

mization algorithms result in lower y
α

- and higher yα-values, they will yield a

wider membership function B. We can then use the area S under the membership

function as a global quality measure. Using the approximation of B in Eq. (14.28),

this area can be computed as follows:
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0

Figure 14.4: Linear interpolation of α2 through α1 and α3

SB = α0(yα0
− y

α0
) +

m∑
i=1

(αi − αi−1)(yαi − yαi) . (14.34)

In the limit α0 = δ → 0, the first term does not contribute, since (yα0
− y

α0
) is

expected to remain finite in order to have a compact support. As mentioned above,

in the second α-cut approach it is possible that a part of one side of the membership

function B is more complicated than the corresponding part of the other side of

that membership function. In order to calculate SB , the optima y
α

and yα of the

α-cuts are used. When for a certain α-cut, there is only an optimum on one side

of the membership function B and no corresponding optimum on the other side of

the membership function, we work with the corresponding optimum of the nearest

α′-cut with α′ > α; this is presented by the red lines in Figure 14.5.

Figure 14.5: Rectangles used in order to calculate SB . The
red lines represent the case where for the α3- and α5-cut only an
optimum on one side of the membership function B is present
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Errors made by the optimization algorithms can result in inconsistencies. Given

the definition of a membership function, it is impossible that y
αj−1

> y
αj

or that

yαj−1
< yαj . Therefore the different α-cuts cannot be determined independently

and we have to correct the optima of the α-cuts when this situation occurs. There

are two ways to correct for these inconsistencies. If an inconsistency is discovered,

e.g. because yαj−1
< yαj , yαj−1

can be reset to yαj . Hence, we refer to this

approach as the first correction approach. Another possibility is to discard the

old result and recalculate yαj−1
. If the optimization algorithm accepts a starting

point, then providing the maximizer xyαj will ensure that the inconsistency is

solved. In case of an increasing number of α-cuts it is not necessary to recalculate

the inconsistent α-cuts, since the linear interpolation automatically increases the

number of α-cuts if necessary. Therefore, in case of an increasing number of α-cuts,

we choose to remove the inconsistent α-cuts without recalculation of these α-cuts.

Further on, we refer to this last approach as the second correction approach, which

consists of recalculating the inconsistent optima in case of a fixed number α-cuts

and of removing the inconsistent optima in case of an increasing number of α-cuts

.

14.5. Non-Parallel versus Parallel methodology

The Fuzzy Calculator is implemented in the programming environment Octave

[138] and accepts a general n-ary function f . Both a non-parallel and a parallel

version were designed. As in Part II, for the parallelization of the Fuzzy Calculator,

the Message Passing Interface (MPI) of Octave was used. Here too, we have

chosen for a master-slave setup (Chapter 6, Section 6.2.5). In the next chapter, the

non-parallel and parallel implementations will be compared at the level of accuracy,

i.e. area under the membership function (see Eq. (14.34)) of the output of the

function, and the number of function evaluations.

Non-parallel This version of the algorithm uses only the first α-cut approach.

In this approach the number of α-cuts is fixed to m + 1 with levels α0 = δ and

αj = j/m for j = 1, 2, . . . ,m. The non-parallel version of the algorithm first starts

with searching the optima (the minimum and maximum) of the function f at

level αm = 1. As the 1-cut is the smallest interval, chances are higher to find the

correct minimum y
αm

and maximum yαm . The algorithm then continues with the

determination of the optima of the other α-cuts, for decreasing values of α. When

allowed by the optimization algorithm, the minimizer xy
αj+1

and the maximizer

xyαj+1
of the preceding αj+1-cut can be provided as starting point. In this way, the

inconsistency mentioned in the last paragraph of Section 14.4 cannot occur.
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Parallel This version of the algorithm uses both approaches for the determination

of the number of α-cuts. The parallel version of the implementation is based on

a master-slave configuration. For the first α-cut approach, i.e. a fixed number of

m+1 α-cuts is employed, we used 2m+3 processes: one master and 2(m+1) slaves

for the determination of the left and right optima y
αj

and yαj , for j = 0, 1, 2, . . . ,m.

The master sends the hyperrectangles corresponding to the m+ 1 α-cuts to the

slaves that optimize the function on these hyperrectangles and return these optima

to the master. When the master receives the optima of all α-cuts, these values are

compared to correct for inconsistencies. In this part, the first correction approach

is applied. This parallel implementation is described in Algorithm 10. Clearly, by

restricting the number of α-cuts to a fixed value, no attempt is made to accurately

represent the fuzzy output. Rather, by comparing the parallel with the non-parallel

implementation in terms of number of function evaluations, the advantage of

having different optimization problems running together versus the advantage of

having the previous optimizer can be evaluated. We choose 2m + 1 processes

in order to maximize the advantage of having all optimization problems running

simultaneously.

Algorithm 10: Parallel Fuzzy Calculator with a fixed number of α-cuts

Data: fuzzy intervals A1, . . . , An, m+ 1 α-levels, function f
Result: membership function B of the output
Initialize MPI;
if master process then

while α-levels to be processed & slaves processing do
Send Aα to empty slave processes;
Receive optima y

α
and yα;

Update process status;

Correct for inconsistencies if necessary;
Send quitmessage;

else
Timetoquit=false;
while timetoquit is false do

Receive messages from master;
if message is Aα then

Search for optima y
α

and yα of the α-cut;

Return result;

else if message=quitmessage then
Timetoquit=true;

In the second α-cut approach, we start from 3 α-cuts and increase this number

through linear interpolation if necessary. This algorithm starts with searching for

the optima of the α-cuts at levels 1, 0.5 and δ. The obtained values are compared
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and corrected if inconsistencies occur. Next, a linear interpolation is applied to

examine whether the optima y
α

or yα of the intermediate α-cuts at the levels

α = (αj + αj+1)/2 and α = (αj + αj−1)/2 need to be calculated. When the

optimization algorithm accepts more than one starting point, the optimization

algorithm is fed with the optimizers xyαj and xyαj+1
respectively, if these optimizers

are situated in the current search space. However, when the optimization algorithm

only accepts a single starting point, the optimizer xyαj+1
is provided. After the

optima of the new α-cuts have been obtained, the loop is repeated. The results are

checked for possible inconsistencies and corrected. In this part, both the first and

the second correction approach is applied. Linear interpolation is again used to

examine whether additional α-cuts are required. The algorithm stops when the

convergence criterion of the linear interpolation is fulfilled for all α-cuts.

When the parallel Fuzzy Calculator is employed with the second α-cut approach,

an arbitrary (fixed in advance) number of slave processes can be used. The master

process will remember which slaves are processing, and will queue all new requests

for the calculation of the optima of new α-cuts. When free slaves are available, they

will be requested to search for the minimum or maximum for the next hyperrectangle

Aα corresponding to the α-cut in the queue. The pseudo-code for the parallel

implementation starting with 3 α-cuts can be found in Algorithm 11.
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Algorithm 11: Parallel Fuzzy Calculator starting with 3 α-cuts

Data: fuzzy intervals A1, . . . , An, tolerance ε for linear interpolation, 3
α-levels, function f

Result: membership function B of the output
Initialize MPI;
if master process then

while α-levels to be processed & slaves processing do
Send Aα to empty slave processes;
Receive minima y

α
and yα;

Update process status;
while candidate minima y

αj
for linear interpolation do

Correct for inconsistencies if necessary;
if |αj − α̃j | > ε then

Send A(αj+αj−1)/2 with xy
αj−1

and/or xy
αj

;

Send A(αj+αj+1)/2 with xy
αj

and/or xy
αj+1

;

Receive minima y
(αj+αj−1)/2

and y
(αj+αj+1)/2

;

Update process status;
Update array of candidate minima for linear interpolation;

while candidate maxima yαj for linear interpolation do

Correct for inconsistencies if necessary;
if |αj − α̃j | > ε then

Send A(αj+αj−1)/2 with xyαj−1
and/or xyαj ;

Send A(αj+αj+1)/2 with xyαj and/or xyαj+1
;

Receive maxima y(αj+αj−1)/2 and y(αj+αj+1)/2;

Update process status;
Update array of candidate maxima for linear interpolation;

Send quitmessage;

else
Timetoquit is false;
while timetoquit is false do

Receive messages from master;
if message is Aα then

Search for optima y
α

or yα of the α-cut;

Return result;

else if message=quitmessage then
Timetoquit=true;
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14.6. Delineation of the optimization algorithms

As outlined in Section 14.3, the identification of the fuzzy output of a continuous

function of non-interactive variables described by fuzzy intervals can be converted

into a number of optimization problems, namely determining the minima and

maxima of the different α-cuts of the membership function of the output. Several

optimization algorithms are employed and compared, namely a local optimization al-

gorithm, Gradient Descent based on Sequential Quadratic Programming (GD), and

two global optimization algorithms, the Simplex-Simulated Annealing (SIMPSA)

algorithm and the Particle Swarm Optimization (PSO) algorithm. We now discuss

the specifics of these methods for the problem at hand, in particular with respect

to the possible advantage that can be obtained by having different dependent

optimization processes running simultaneously in a parallel implementation.

14.6.1. Gradient Descent based on Sequential Quadratic Pro-
gramming

Gradient Descent based on Sequential Quadratic Programming (GD), a local

optimization algorithm, is described in Chapter 3, Section 3.1. This algorithm

is a standard function of Octave, namely sqp [138]. This function has no extra

parameters that have to be set and can thus be applied directly to the optimization

problem at hand. This algorithm cannot be modified in order to benefit from

information of other sqp problems running simultaneously.

14.6.2. Simplex-Simulated Annealing

The Simplex-Simulated Annealing (SIMPSA) algorithm [34] is an optimization

algorithm based on a combination of the nonlinear Simplex algorithm [35] and

the Simulated Annealing algorithm [36]. This algorithm is described in full detail

in Chapter 3, Section 3.3. The implementation of SIMPSA was taken from [23]

and [24, 25] with the author’s permission. As mentioned in Chapter 3, Section 3.3,

the maximal number of iterations, the cooling ratio, the freezing temperature and

the tolerance of the convergence criterion have to be determined. After some test

simulations we decided to set the maximal number of iterations for each simulated

annealing step to 2500, the cooling ratio to 0.7 and the freezing temperature to 1.

The tolerance level for convergence is set to 10−6. Since this is also an optimization

algorithm that is not population based, there is no obvious strategy to let it benefit

from information about other SIMPSA processes.
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14.6.3. Particle Swarm Optimization

Particle Swarm Optimization (PSO) [28], a population-based global optimization

algorithm, is described in Chapter 3 (Section 3.2). The implementation of PSO

was taken from Part III and has been appropriately modified. This algorithm

requires the determination of a population size N , a cognitive parameter c1, a

social parameter c2, an inertia weight w and a convergence criterion. As we want to

evaluate the performance of PSO without exhaustive search for the ideal parameters,

we just performed some test simulations, and we have decided to work with fixed

parameter values c1 = 1, c2 = 1.5 and w = 0.7, while different population sizes of

N = 10, N = 15 and N = 20 are used. The convergence criterion used requires that

half of the population has the same position (with tolerance level 10−6). Explicitly,

the algorithm ends if the mean Euclidean distance between the particles of the

best half of the population is smaller than 10−6.

As mentioned in Chapter 3 (Section 3.2), each particle is attracted to its personal

best position as well as to the global best position of the total population. The

parallel Fuzzy Calculator can thus be interpreted as several swarms that search

for different α-cuts at the same time. As the search space for α > α′ is part

of the search space for α′, any two swarms have part of the search space in

common. Therefore, it would be beneficial if these swarms could communicate

about candidate solutions. We adapted the PSO algorithm such that each swarm

broadcasts its current global best position to the other running PSO processes.

When a swarm receives a global best position that is located in its search space

and that is better than its own global best position, the swarm changes its global

best position. It is important to note that, whenever a new global best position

is obtained through communication, the remaining particles are reinitialized at

random because the current swarm might already be close to converging to a local

optimum (far) away from the newly obtained optimum. It would hence last very

long before all particles shift their position and converge, especially if the new

optimum is close in value to the previous one. To account for this communication,

a new parameter is introduced, namely the frequency of communication. We have

varied this parameter by running instances in which the swarms communicate at

every 2, 5 or 10 iterations of the PSO algorithm.

14.6.4. Combination of Particle Swarm Optimization and Gradi-
ent Descent

As it is not certain that PSO will converge to a local/global optimum [3], it may

be recommended to combine PSO with a local optimization algorithm such as

Gradient Descent (PSO GD). Many ways exist to incorporate Gradient Descent

in the PSO algorithm. In order to have a final best solution that is assured to

be a local optimum, we first performed Gradient Descent on each of the initial
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particles. All the particles will then be positioned in a local optimum, from which

we only retain the particle with the best position in the population. The other

particles are repositioned at their original position received during the initialization

of PSO. Next, each time the swarm changes its global best position through

communication, GD is performed on the particle with the new global best position.

After convergence of the swarm, we perform GD one last time on the global best

position of the swarm.
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15

Experimental results

This chapter discusses the results obtained with different versions of the Fuzzy

Calculator developed in Chapter 14. The goal of this chapter is to select the

best configuration of the Fuzzy Calculator by studying the effect of varying the

optimization algorithm and parameters thereof, the strategy for choosing the

number of α-cuts and the correction approach. The different configurations are

applied to a number of abstract test functions through which we would like to

propagate fuzzy input variables as accurately as possible. The best configuration of

the Fuzzy Calculator is then selected by performing a statistical analysis over these

different functions, that are defined in different dimensions and have a different

number of local minima and maxima. This configuration will then be applied to

a practical case study in the next chapter. Section 15.1 describes the different

test functions used to evaluate the Fuzzy Calculator. Section 15.2 presents and

compares the results obtained with the Fuzzy Calculator using the optimization

algorithms described in Chapter 14 (Section 14.6) for the different test functions

of non-interactive variables described by fuzzy intervals. In Section 15.3, the

application of the Fuzzy Calculator to test functions of interactive variables is

discussed. In this chapter, we restrict ourselves to interactivity described by

t-norms.

15.1. Test functions

In order to compare the performance of the different optimization algorithms

in the Fuzzy Calculator, we have used some continuous functions restricted to

certain domains. We use the one-dimensional cosine function on the interval

[0, 4π] as a first test function (test function 1) (Figure 15.1(a)) and a second

two-dimensional test function with multiple minima and maxima on [0, 4]2 (test

function 2) (Figure 15.1(b)). Besides these simple functions we have also applied

our algorithms to the alpine function in 2 dimensions on [1, 5]2 (test function 3),

[−5, 0]2 (test function 4), [−5, 0]× [10, 15] (test function 5) and [−5, 5]× [25, 30]

(test function 6) (Figure 15.1(c), (d), (e), (f)), to the alpine function in 3 dimensions

on [−5, 0]3 (test function 7), to the alpine function in 4 dimensions on [−5, 0]4 (test

function 8) and to the alpine function in 5 dimensions on [−5, 0]5 (test function
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9). The alpine function, which is often used as benchmark function for continuous

optimization algorithms [3], is given by

f(x1, ..., xD) =

D∑
i=1

|xi sin(xi) + 0.1xi| (15.1)

The fuzzy intervals describing non-interactive input variables are chosen to have

a trapezoidal shape. The interval [xj,δ, xj,δ] at α = δ corresponds to the interval

to which the test functions are restricted. At α = 1, this interval is reduced to

[xj,1, xj,1] with

xj,1 =
xj,δ + xj,δ

2
− 1

10

(
xj,δ − xj,δ

)
, xj,1 =

xj,δ + xj,δ

2
+

1

10

(
xj,δ − xj,δ

)
.

In general, our implementation can deal with any fuzzy interval, not necessarily of

a trapezoidal shape. We only require an explicit method to construct xi,α and xi,α
for any α.

15.2. Non-interactive input variables

The membership functions of the outputs are constructed with the Fuzzy Calculator

using the aforementioned optimization algorithms. In a first approach, these

membership functions are constructed for a fixed number of α-cuts. In a second

approach, we start with 3 α-cuts and increase this number using a criterion based on

linear interpolation. The non-parallel and parallel Fuzzy Calculator are compared

on the level of accuracy and the number of function evaluations. To allow for a

statistical comparison between the Fuzzy Calculators using different optimization

algorithms or between the non-parallel and parallel implementation, each algorithm

is repeated 50 times. As we are interested in knowing which of the optimization

algorithms is most suited to construct the membership function of the output of

an arbitrary continuous function of non-interactive variables described by fuzzy

intervals, the choice of test functions should be considered as a random factor.

Since we have 50 repetitions per function for each algorithm, i.e. a total of 450

observations per algorithm, we can rely on the central limit theorem for normality.

Therefore, a mixed ANOVA model (ANalysis Of VAriance model) with random

effects and a Satterthwaite correction for unequal variances with a confidence

level of 95 % can be used to compare the algorithms [78]. A comparison is made

between the area under the membership function and between the number of

function evaluations needed to construct the membership function. In addition,

the computational efficiency is also taken into account.
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Figure 15.1: First test function on [0, 4π] (test function 1)(a), second test function
on [0, 4]2 (test function 2)(b), the Alpine test function in 2 dimensions on [1, 5]2 (test
function 3)(c), [−5, 0]2 (test function 4) (d), [−5, 0] × [10, 15] (test function 5) (e) and
[−5, 5]× [25, 30] (test function 6) (f)
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15.2.1. Fixed number of α-cuts

In this section, m + 1 = 11 α-cuts are used. Firstly, the performance of the

different optimization algorithms is compared for the non-parallel Fuzzy Calculator.

Secondly, the parallel Fuzzy Calculator is used, and the differences in the results

with respect to the non-parallel Fuzzy Calculator are examined.

Non-parallel Fuzzy Calculator

The capability to construct the membership functions of the outputs for the 9

test functions is examined for the optimization algorithms GD, SIMPSA, PSO

with a population of 10, 15 or 20 particles, and PSO GD with a population

of 10, 15 or 20 particles. In order to test the performance of the optimization

algorithms, a mixed ANOVA model with the different test functions as random

effect is applied to the data of the areas under the membership functions composed

by the Fuzzy Calculator using these optimization algorithms. Using this test, we

can see whether significant differences in performance between the optimization

algorithms are present without taking into account each test function separately.

As GD is not a stochastic algorithm and always leads to the same result for a

fixed initial position, it is not possible to put the results of this algorithm in the

mixed ANOVA model. Therefore, we will only compare the mean areas under the

membership functions constructed by the Fuzzy Calculator using GD with that

of the membership functions composed by the Fuzzy Calculator using the other

algorithms.

Table 15.1 contains the mean areas under the membership functions for the outputs

of the different test functions composed by the Fuzzy Calculator using the different

optimization algorithms. This table illustrates that the application of GD results in

a mean area that is much lower than the mean areas under the membership functions

constructed by the Fuzzy Calculator using the other optimization algorithms. This

was expected as GD is a local optimization algorithm and can only find local

optima. Therefore, this algorithm is henceforth no longer used.

Table 15.2 presents the significance of the differences between the mean areas of

the membership functions composed by the Fuzzy Calculator using the different

optimization algorithms. When the p-value is smaller than 0.05 the difference

is significant, which implies that the algorithm with the higher mean area is

significantly better than the algorithm resulting in the smaller mean area. In

Table 15.2, this is indicated by the symbols <, > and ≈, whereby > (<) denotes a

significantly higher (lower) mean area for the left algorithm with respect to the

algorithm above and ≈ is used in the absence of significant differences. Table 15.1

shows that the application of the method PSO GD with a population size of 20

particles leads to the highest mean area. Table 15.2 illustrates that this result is

significantly better than the results obtained with PSO. This result is, however, not
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Table 15.1: Mean areas under the membership functions over the different test functions
obtained with the Fuzzy Calculator using the different optimization algorithms.

Algorithm Pop size Mean area

GD 8.593

SIMPSA 11.323

PSO 10 10.886

15 11.035

20 11.152

PSO GD 10 11.289

15 11.323

20 11.334

Table 15.2: Significance of the differences between the mean areas under the membership
functions composed by the Fuzzy Calculator using the different optimization algorithms.

Method PSO PSO GD SIMPSA

Pop size 10 15 20 10 15 20

PSO 10 < < < < < <

PSO 15 > < < < < <

PSO 20 > > < < < <

PSO GD 10 > > > ≈ ≈ ≈
PSO GD 15 > > > ≈ ≈ ≈
PSO GD 20 > > > ≈ ≈ ≈
SIMPSA > > > ≈ ≈ ≈

significantly different from the results obtained with the Fuzzy Calculator using

PSO GD with a population size of 10 and 15 particles and SIMPSA.

The number of function evaluations needed to construct the membership functions

of the outputs is a measure for the computational cost. The number of function

evaluations of the Fuzzy Calculator using PSO GD with a population size of 10,

15 and 20 particles and SIMPSA are compared.

Table 15.3 presents the mean numbers of function evaluations and the mean CPU

times in unit of seconds for these three algorithms. The mean numbers of function

evaluations is significantly different (p-value < 0.05). As the Fuzzy Calculator

using SIMPSA has a very high mean number of function evaluations and needs

much more time to construct the membership functions of the outputs, we can

conclude that this algorithm is computationally inefficient. Therefore, the SIMPSA

algorithm is not used in the parallel Fuzzy Calculator.

Parallel Fuzzy Calculator

Section 3.2 (Chapter 14) described how the parallel Fuzzy Calculator, using PSO

and PSO GD as optimization algorithm, can be interpreted as several swarms
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Table 15.3: Mean numbers of function evaluations and CPU times (s) over the different
test functions for the Fuzzy Calculator using PSO GD with a population size of 10, 15
and 20 particles and SIMPSA.

Algorithm Pop size Mean number of Mean CPU time (s)

function evaluations

PSO GD 10 19359 16.532

PSO GD 15 29108 25.041

PSO GD 20 38347 32.869

SIMPSA 71791 50.150

searching for the optima of different α-cuts at the same time. Furthermore,

communication between the different swarms about candidate solutions is enabled.

Except for the use of multiple processor units, this form of communication is

the most important difference between the non-parallel and the parallel Fuzzy

Calculator. In combination with the results of the non-parallel Fuzzy Calculator,

this remark justifies the restriction of the parallel Fuzzy Calculator to the swarm-

based optimization algorithms PSO and PSO GD.

As we are interested in the difference between these two optimization algorithms for

all test functions, a mixed ANOVA model with the test functions as random effect

is performed. Since the factors population and communication are available in

our two optimization algorithms, we can use them as nested factors in this model,

which leads to a more correct estimate of the p-values.

Table 15.4 presents the mean areas under the membership functions obtained with

the Fuzzy Calculator using PSO and PSO GD, for different populations sizes and

communication strategies. As described in Section 15.2.1, the population size varies

between 10, 15 and 20 particles. We use 4 different communication strategies,

namely communication at every 2, 5 or 10 iterations, or no communication at all. In

all possible combinations of population size and communication strategy, PSO GD

is significantly better than PSO, when averaged over the different population

sizes and communication strategies. Tables 15.5 and 15.6 show the significance

of the differences between the mean area obtained with the Fuzzy Calculator

using PSO and PSO GD, between the different population sizes and the different

communication strategies. As in Table 15.2, these differences are indicated by the

symbols <, > or ≈. Table 15.5 illustrates that PSO GD with a population size of 20

particles is significantly better than PSO and PSO GD with the other population

sizes, when averaged over the different communication strategies. Table 15.6 shows

that PSO GD using communication at every 5 iterations is significantly better than

PSO and PSO GD using the other communication strategies, when averaged over

the different population sizes. Important to note is that the interaction between

the nested factors population and communication is significant. This means it

is not possible to state that a population of 20 particles is significantly better
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Table 15.4: Mean areas under the membership functions over the different test functions
obtained with the parallel Fuzzy Calculator using PSO and PSO GD, for a population
size of 10, 15 or 20 particles, with communication between the swarms at the different
α-cuts at every 2, 5 or 10 iterations or without communication.

Algorithm Pop size Communication Mean area

PSO 10, 15, 20 at every 2 it, 5 it, 10 it, no 11.060

PSO GD 10, 15, 20 at every 2 it, 5 it, 10 it, no 11.278

PSO 10 at every 2 it, 5 it, 10 it, no 10.96

PSO 15 at every 2 it, 5 it, 10 it, no 11.074

PSO 20 at every 2 it, 5 it, 10 it, no 11.150

PSO GD 10 at every 2 it, 5 it, 10 it, no 11.206

PSO GD 15 at every 2 it, 5 it, 10 it, no 11.289

PSO GD 20 at every 2 it, 5 it, 10 it, no 11.325

PSO 10, 15, 20 at every 2 it 11.048

PSO 10, 15, 20 at every 5 it 11.139

PSO 10, 15, 20 at every 10 it 11.075

PSO 10, 15, 20 no 10.984

PSO GD 10, 15, 20 at every 2 it 11.261

PSO GD 10, 15, 20 at every 5 it 11.299

PSO GD 10, 15, 20 at every 10 it 11.271

PSO GD 10, 15, 20 no 11.255

for all communication strategies and that communication at every 5 iterations is

significantly better for all population sizes. We nevertheless assume that PSO GD

with a population size of 20 particles and communication at every 5 iterations is

the best algorithm to construct the membership functions of the outputs and will

restrict to this configuration in the remainder of this chapter. This assumption is

supported by the observation that the mean area under the membership function

for this configuration is larger than for all other possible configurations of the

communication strategy and the population size. It is clear why a communication

frequency that is too low is unfavourable, but an understanding of the unfavourable

effect of too frequent communication is less straightforward. A possible explanation

is that whenever a swarm discovers a newly interesting region (either through

communication or by own means), there should be enough time for a thorough

exploitation of this region. If the communication frequency is too high, the swarm

will constantly be drawn away from his own discoveries in the possibly interesting

region.

The mixed ANOVA model, with the test functions as random factor and the

population size and communication strategies as nested factors, is also performed

to distinguish between the optimization algorithms with respect to the number of

function evaluations. Table 15.7 contains the mean numbers of function evaluations
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Table 15.5: Significance of the differences between the mean areas under the membership
functions composed by the parallel Fuzzy Calculator using PSO and PSO GD, for a
population size of 10, 15 or 20 particles, over all communication strategies.

Algorithm PSO PSO GD

Population size 10 15 20 10 15 20

PSO 10 < < < < <

PSO 15 > < < < <

PSO 20 > > < < <

PSO GD 10 > > > < <

PSO GD 15 > > > > <

PSO GD 20 > > > > >

Table 15.6: Significance of the differences between the mean areas under the membership
functions composed by the parallel Fuzzy Calculator using PSO and PSO GD, with
communication between the swarms at the different α-cuts at every 2, 5 or 10 iterations
or without communication, over all population sizes.

Algorithm PSO PSO GD

Communication 2 it 5 it 10 it no 2 it 5 it 10 it no

PSO 2 it < < > < < < <

PSO 5 it > > > < < < <

PSO 10 it > < > < < < <

PSO no < < < < < < <

PSO GD 2 it > > > > < ≈ ≈
PSO GD 5 it > > > > > > >

PSO GD 10 it > > > > ≈ < ≈
PSO GD no > > > > ≈ < ≈

for the Fuzzy Calculator using the different optimization algorithms, population

sizes and communication strategies. As the CPU time needed to construct the

membership functions of the outputs is roughly proportional to the number of

function evaluations and is dependent on the number of processors used, time is

no longer a criterion in the decision on which Fuzzy Calculator performs best. The

difference in the number of function evaluations between the Fuzzy Calculator

using PSO and PSO GD is on average not significant (p-value > 0.05). However,

the effect of the population size and the communication strategy on the number

of function evaluations is on average significant (p-value < 0.05). As Table 15.7

reveals, a larger population size needs significantly more function evaluations, when

averaged over the different communication strategies. Important to note is, when

averaged over the different population sizes, that in case of no communication, the

number of function evaluations when using PSO GD is, although not significantly,

higher than the number of function evaluations when using PSO. Contrastingly, in

case of communication the number of function evaluations when using PSO GD

is smaller than when using PSO. When communication is present, the different

swarms communicate their global best position and replace this position when a

better one is found. After this communication, the other particles of the swarm are

reinitialized. If one swarm has discovered a new minimum, it will take a number of

iterations before it has precisely located the exact position of this minimum. During
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Table 15.7: Mean numbers of function evaluations over the different test functions
obtained with the parallel Fuzzy Calculator using PSO and PSO GD, for a population
size of 10, 15 or 20 particles, with communication between the different swarms at every
2, 5 or 10 iterations or without communication.

Method Pop size Communication Mean number of

function evaluations

PSO 10, 15, 20 at every 2 it, 5 it, 10 it, no 30286

PSO GD 10, 15, 20 at every 2 it, 5 it, 10 it, no 30860

PSO 10 at every 2 it, 5 it, 10 it, no 20638

PSO 15 at every 2 it, 5 it, 10 it, no 29879

PSO 20 at every 2 it, 5 it, 10 it, no 40342

PSO GD 10 at every 2 it, 5 it, 10 it, no 21930

PSO GD 15 at every 2 it, 5 it, 10 it, no 27757

PSO GD 20 at every 2 it, 5 it, 10 it, no 42892

PSO 10, 15, 20 at every 2 it 34339

PSO 10, 15, 20 at every 5 it 32886

PSO 10, 15, 20 at every 10 it 33363

PSO 10, 15, 20 no 20557

PSO GD 10, 15, 20 at every 2 it 30938

PSO GD 10, 15, 20 at every 5 it 32318

PSO GD 10, 15, 20 at every 10 it 31646

PSO GD 10, 15, 20 no 28537

these iterations, a slowly decreasing objective function value is communicated to the

other swarms at every 2, 5 or 10 iterations causing them to constantly reinitialize. In

constrast, if a single gradient descent is applied to immediately determine the precise

location of the minimum, only a single communication step is required.

In a last step, results obtained with the non-parallel and the parallel Fuzzy Cal-

culator are compared. Using the mixed ANOVA model with the test functions

as random effect, we compared the results of the non-parallel Fuzzy Calculator

using PSO GD with a population size of 10, 15 or 20 particles and the results of

the parallel Fuzzy Calculator using PSO GD with a population size of 20 particles

with communication at every 5 iterations. The difference between the mean areas

under the membership functions obtained with the different Fuzzy Calculators

is significantly different (p-value < 0.05). Table 15.8 illustrates that the parallel

Fuzzy Calculator using PSO GD with a population of 20 particles and with com-

munication at every 5 iterations leads to a significantly more accurate membership

function of the output.

However, the number of function evaluations of the parallel Fuzzy Calculator using

PSO GD with a population size of 20 particles and with communication at every

5 iterations is significantly higher than the non-parallel Fuzzy Calculator using
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Table 15.8: Mean areas under the membership functions and mean numbers of function
evaluations over the different test functions obtained with the non-parallel Fuzzy Calculator
using PSO GD, for a population size of 10, 15 or 20 particles and the parallel Fuzzy
Calculator using PSO GD for a population size of 20 particles with communication
between the different swarms at every 5 iterations.

Algorithm Pop size Mean area Mean number

of function evaluations

Non-parallel PSO GD 10 11.289 19359

Non-parallel PSO GD 15 11.324 29108

Non-parallel PSO GD 20 11.334 38347

Parallel PSO GD 20 11.357 45127

comm every 5 it

PSO GD with a population size of 10, 15 or 20 particles (Table 15.8).

15.2.2. Increasing number of α-cuts

A disadvantage of working with a fixed number of α-cuts is that this number needs

to be determined in advance. Consequently, it is possible that too many α-cuts are

used to determine the membership function of the output for a simple function,

whereas too few α-cuts are used for more complex functions. On that account,

a solution can be to start with 3 α-cuts and increase this number according to

a linearity criterion. To this end, as explained in Section 14.5 (Chapter 14), we

decided to set a tolerance of 0.01 between α and an approximation α̃ obtained by

linear interpolation. In order to compare the influence of the two α-cut approaches,

the parallel Fuzzy Calculator using PSO GD, with a population size of 20 particles,

with communication at every 5 iterations is applied, with the fixed as well as the

increasing number of α-cuts, to construct the membership functions of the outputs

for all test functions.

Using the mixed ANOVA model with as random effect the different test functions,

we compared the Fuzzy Calculator with a fixed number of α-cuts and the Fuzzy

Calculator with an increasing number of α-cuts. Table 15.9 presents the mean areas

under the membership functions and the mean numbers of function evaluations

needed by these Fuzzy Calculators. The differences between the mean areas and

the mean numbers of function evaluations are significant (p-value < 0.05), which

leads to the conclusion that the Fuzzy Calculator with the increasing number

of α-cuts gives a more accurate membership function than the Fuzzy Calculator

with the fixed number of α-cuts. However, significantly more function evaluations

are needed when the number of α-cuts is not fixed (Table 15.9). The probable

explanation is that for most test functions, the number of optimized α-cuts is a lot

higher than 11 when starting with 3 α-cuts and increasing this number according
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Table 15.9: Mean areas under the membership functions and mean numbers of function
evaluations over the different test functions obtained with the parallel Fuzzy Calculator
using PSO GD for a population size of 20 particles with communication between the
different swarms at every 5 iterations, for a fixed number of α-cuts and increasing number
of α-cuts.

Algorithm Mean area Mean number of

function evaluations

Fixed number of 11 α-cuts 11.357 45127

Increasing number of α-cuts 11.664 85534

Table 15.10: Mean numbers of optimizations needed to construct the left (#
optimizationleft) and right (# optimizationright) membership function of the output
over the different test functions with the Fuzzy Calculator starting with 3-α-cuts.

Test function # optimizationsleft # optimizationsright

1 18.0 3.0

2 3.4 33.9

3 19.8 34.6

4 14.7 18.0

5 9.5 35.6

6 21.3 35.2

7 25.0 48.8

8 26.0 45.1

9 25.9 58.0

to a linearity criterion. This indicates that 11 α-cuts are not enough to accurately

represent the output of the test functions. This premise is confirmed by the results

in Table 15.10.

As mentioned in Section 14.5 (Chapter 14), there are two approaches to correct

for inconsistencies between the optima of the α-cuts. In the previous results, the

optima of all α-cuts were compared and replaced if necessary. Another approach

is to recalculate the optima of the inconsistent α-cuts, with as starting point the

optimizer xyα′ of the nearest α′-cut with α′ > α. However, in the case of an

increasing number of α-cuts, we can just remove the inconsistent α-cuts and create

new α-cuts making use of the linearity criterion. Therefore, we used the latter

approach in combination with the Fuzzy Calculator with an increasing number

of α-cuts. We then compared these results, through the mixed ANOVA model,

with those of the Fuzzy Calculator with an increasing number of α-cuts, with the

first approach to correct for inconsistencies between the optima of the α-cuts. The

difference between the mean areas under the membership functions is very small

and not significant (p-value > 0.05) (Table 15.11).
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Table 15.11: Mean areas under the membership functions and mean numbers of function
evaluations over the different test functions obtained with the parallel Fuzzy Calculator
with an increasing number of α-cuts using PSO GD for a population size of 20 particles
with communication between the different swarms at every 5 iterations, for the first and
second correction approach for inconsistencies (see Section 14.4 of Chapter 14).

Algorithm Mean area Mean number of

function evaluations

First correction approach 11.664 85534

Second correction approach 11.653 63357

Table 15.12: Mean numbers of optimizations needed to construct the left (#
optimizationsleft) and right (# optimizationsright) membership function of the output
over the different test functions with the Fuzzy Calculator starting with an increasing
number of α-cuts with removing incorrectly found optima.

Test function # optimizationsleft # optimizationsright

1 18.0 3.0

2 3.0 32.3

3 16.4 33.1

4 11.8 18.0

5 7.0 34.1

6 21.3 34.8

7 15.2 39.5

8 14.0 38.0

9 13.4 45.2

The difference between the mean numbers of function evaluations, however, is

significant (p-value < 0.05). The second approach for dealing with inconsistent

optima of α-cuts needs significantly less function evaluations. This is confirmed

by comparing Table 15.10 and Table 15.12, which show that in general less α-cuts

are needed when the second approach for dealing with inconsistencies between the

optima of the α-cuts is employed.

15.2.3. Illustrative example of the Fuzzy Calculator

In order to elucidate the functioning of the Fuzzy Calculator, we illustrate in this

section the results of the application of the Fuzzy Calculator with an increasing

number of α-cuts, with removing incorrectly found optima (second correction

approach) and using PSO GD with a population size of 20 particles as optimization

algorithm and with communication at every 5 iterations, to one of the test functions,

namely the two-dimensional alpine function in the domain [−5, 0]2 (Figure 15.1

(d), Section 15.1).
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(a)

(b)

Figure 15.2: (a) Contour plot of the two-dimensional alpine function in the domain
[−5, 0]2, with the optimized α-cuts needed to construct the left membership function of
the fuzzy output, (b) membership function of the fuzzy output of the the two-dimensional
alpine function in the domain [−5, 0]2, the left membership function corresponds to the
blue part of this figure
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Figure 15.2 (a) represents the contour plot of this test function, with indication of

the optimized α-cuts that were generated for the construction of the left side of the

membership function for the fuzzy output of this test function. Due to its special

structure, the alpine function has different local minima that all have the same

value f = 0 and are thus global minima. They are indicated with black solid circles.

The optimum selected by the different α-cuts are indicated with red asterisks. For

the α-cut at α = 0, the global minimum at the point (0, 0) (red asterisk number

1) is selected. This point is no longer in the feasible space for the next α-cut, but

a different equivalent minimum around the point (−3,−3) (red asterisk number

2) is selected instead. This minimum remains available in the feasible space all

the way up to α ≈ 0.88. These results are in accordance with the left side of the

membership function of the output of this test function in Figure 15.2 (b), as

indicated by the vertical jump at function output value z = 0. As the value of α is

now further increased above α ≈ 0.88, all global minima have disappeared from

the feasible search space and the best optimum is located at the boundary of the

search space along the upward slope of the objective function. This corresponds to

the steady increase in the left side of the membership function in Figure 15.2 (b).

The asterisks in Figure 15.2 (b) correspond to the optimized α-cuts.
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(a)

(b)

Figure 15.3: (a) Contour plot of the two-dimensional alpine function in the domain
[−5, 0]2, with the optimized α-cuts needed to construct the right membership function of
the fuzzy output, (b) membership function of the fuzzy output of the two-dimensional
alpine function in the domain [−5, 0]2, the right membership function corresponds to the
green part of this figure.
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Figure 15.3 (a) represents the contour plot of the two-dimensional alpine test

function in the domain [−5, 0]2, with indication of the α-cuts that were generated

for the construction of the right side of the membership function for the fuzzy

output of this test function. There is now one global optimum at (−4.93,−4.93)

as indicated by the black solid square, and several local optima indicated by black

open squares. Optima selected for the construction of the membership function are

again indicated by red asterisks. For the α-cut at value α = 0, the global optimum

is in the search space and can be selected (red asterisk number 1). There is a small

vertical jump in the corresponding right side of the membership function displayed

in Figure 15.3 (b), up to the value α = 0.023 where the global optimum is at the

boundary of the search space. As α is further increased, the global optimum is no

longer accessible and the optimum for the different α-cuts is located at the boundary

of the search space along the downward slope of the objective function. The contour

plot illustrates that the output of the function is continuously decreasing up to

the point (−3.6,−3.6) (red asterisk number 2), corresponding to α ≈ 0.66. At

this point, the value of the function at this downward slope becomes smaller than

the local maximum present at the point (−2,−2). In fact, an intermediate α-cut

is created which makes a side jump to a different optimum at (−3.5,−2.0) (red

asterisk number 3), before the next α-cut selects the local maximum at (−2,−2)

(red asterisk number 4). This local maximum now remains available as α is further

increased, up to the value α ≈ 0.89, corresponding to another vertical jump in

the right side of the membership function in Figure 15.3 (b). As α is further

increased, this local maximum also becomes inaccessible and new optima at the

boundary of the search space along the downward slope of the objective function

are created. As in Figure 15.2 (b), the asterisks in Figure 15.3 (b) indicate the

optimized α-cuts.

15.3. Interactive input variables

In this section, we apply the Fuzzy Calculator, with an increasing number of

α-cuts, with removing incorrectly found optima (second correction approach), using

PSO GD with a population size of 20 particles and with communication at every 5

iterations as optimization algorithm, to the test functions (described in Section 15.1)

for interactive input variables described by fuzzy intervals. We restrict ourselves to

interactivity described by t-norms. Section 15.3.1 presents the modifications of the

Fuzzy Calculator in order to deal with interactive input variables. Section 15.3.2

illustrates the results obtained with the Fuzzy Calculator in case of interactive

input variables.
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15.3.1. Modifications to the Fuzzy Calculator

As mentioned in Section 14.3, when the input variables Ai are interactive and

this interactivity can be described by a t-norm, we can still practically imple-

ment the extension principle through the adapted α-cut approach of Nguyen.

The α-cuts of the fuzzy output can then be determined by optimizing yα and

y
α

for the corresponding α-cut, which is modelled through the additional con-

straint T (A1(x), . . . , An(x)) ≥ α. Therefore, the Fuzzy Calculator as described in

Chapter 14 (Section 14.5) can be directly applied to the case of interactive input

variables. However, the optimization algorithm PSO GD used to find the optima

y
α

and yα of the α-cuts in Algorithm 11 (Chapter 14, Section 14.5) requires some

modifications in order to deal with the additional constraint. The search spaces for

the optimization algorithm corresponding to the different t-norms are presented for

a number of α-cuts in Figure 14.3 (Chapter 14, Section 14.3). All feasible solutions

for PSO GD are thus located within these spaces, depending on the α-cut.

The basic PSO algorithm (Chapter 3, Algorithm 1) is modified in the following

manner. Firstly, an initial population of particles is randomly chosen in the

hyperrectangular search space (the search space in case of non-interactive variables).

For each of these particles i it is checked whether T (A1(xi,1), . . . , An(xi,n)) ≥ α; if

this is not the case then the particle is reinitialized. As explained in Section 14.5

(Chapter 14), during the optimization of the α-cut at the level α = (αj + αj+1)/2,

PSO is fed with the optimizers xyαj and xyαj+1
, if these are located in the search

space of the α-cut at level α, i.e. if the t-norm at these optimizers is greater than

or equal to α. Secondly, the GD part of the PSO GD algorithm is performed.

The sqp function of Octave is able to deal with nonlinear constraints, thus the

constraint T (A1(xi,1), . . . , An(xi,n)) ≥ α can be added as an argument to this

function. Thirdly, the velocities and positions of the particles are updated. If after

the position update the particle is located outside the search space of the current

α-cut the position update is canceled. In order to move this particle all the way to

the boundary where the t-norm becomes smaller than the α-value of the current

α-cut, we have implemented a simple search region method. This method calculates

how far the particle can move in the direction of velocity v without violating the

constraint and positions the particle at the boundary. Fourthly, the personal

best position of each particle and global best position of the total population is

updated. At every 5 iterations, communication takes place with the other swarms

that search for different α-cuts at the same time. Again, the global best position is

only changed if a better position located in the current search space is discovered.

On the particle with the new global position, GD is performed. These steps are

repeated until convergence takes place. After convergence, GD, taking into account

the nonlinear constraint, is performed on the global best position of the swarm. It

is important to note that in case of discontinuous t-norms, e.g. the drastic t-norm,

GD can no longer be used. In that case, only PSO is applied.
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As mentioned in Section 14.3 (Chapter 14), in case of the drastic t-norm, the

search space for any α-cut can be divided into a number of (depending on the

dimensionality of the problem) (overlapping) hyperrectangles and the optimization

problem can be solved in these hyperrectangles separately. The results of the

optima of the different hyperrectangles are then compared and the minimum and

maximum values are selected as the optima of the current α-cut. In the next

section, in case of interactivity described by the drastic t-norm, we compare this

approach to calculate the output of the test functions (drastic2) with the approach

of adding the additional constraint TD(A1(x), . . . , An(x)) >= α (drastic1).

15.3.2. Results

For the results, we restricted ourselves to the four basic t-norms, namely the

minimum t-norm, the product t-norm, the  Lukasiewicz t-norm and the drastic

t-norm. The results presented in the tables below are obtained by repeating the

Fuzzy Calculator 50 times and taking the mean.

Table 15.13 illustrates the mean areas under the membership functions of the

different test functions in case of interactive input variables described by the four

basic t-norms. Drastic1 indicates the results obtained with the adapted α-cut

approach of Nguyen, drastic2 on the other hand indicates the results obtained

through dividing the search space into a number of (overlapping) hyperrectan-

gles. As illustrated in Figure 14.3 (Chapter 14, Section 14.3), the search space

corresponding to interactivity described by the drastic t-norm is smaller than and

contained in the search space corresponding to the other t-norms for the same value

of α. Interactivity described by the minimum t-norm results in the largest search

space. The search space when interactivity is described by the  Lukasiewicz t-norm

is smaller than the search space when interactivity is described by the product and

the minimum t-norm:

Aα,drastic ⊂ Aα, Lukasiewicz ⊂ Aα,product ⊂ Aα,minimum . (15.2)

These differences in search space indicate the following order for the areas S under

the membership functions of the outputs of the different test functions

Sdrastic ≤ S Lukasiewicz ≤ Sproduct ≤ Sminimum , (15.3)

with Sdrastic the area under the membership function in case of interactivity

described by the drastic t-norm, S Lukasiewicz the area under the membership function

in case of interactivity described by the  Lukasiewicz t-norm, and so on.

Table 15.13 shows that the relation in Eq. (15.3) is satisfied for all test functions,

with the exception of test function 5. For this test function 5, the area under
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Table 15.13: Mean areas under the membership functions for the different test functions
in case of interactive input variables described by fuzzy intervals obtained with the parallel
Fuzzy Calculator with an increasing number of α-cuts using PSO GD for a population
size of 20 particles with communication between the different swarms at every 5 iterations.
The interactivity of the input variables is described by t-norms. Drastic1 indicates that
the interactivity of the input variables is described by the drastic t-norm and this is
implemented through the adapted α-cut approach. Drastic2 on the other hand refers to
the application of the drastic t-norm but in this case the search space for every α-cut is
divided into a number of (overlapping) hyperrectangles and the optimization problem is
solved for each of these hyperrectangles separately.

t-norm

Test function drastic1 drastic2  Lukasiewicz product minimum

1 1.6124 1.6124 1.6124 1.6124 1.6124

2 4.3573 4.3660 4.4142 4.7022 5.8843

3 3.4556 3.7514 4.3289 4.6340 5.9987

4 17.5392 17.5116 17.4962 17.8353 18.0874

5 31.4611 31.4693 31.4665 31.4720 31.4753

6 3.4758 3.4640 4.1564 4.9749 6.2153

7 4.5163 4.5025 5.5576 6.0207 9.0193

8 5.1520 5.2536 6.5128 6.9785 11.4731

9 6.0030 6.0047 7.5587 8.4237 14.8793

the membership function obtained with the drastic t-norm is larger than the area

obtained with the  Lukasiewicz t-norm. This implies that in case of interactivity

described by the  Lukasiewicz t-norm, the Fuzzy Calculator was not able to localize

the global optima for certain α-cuts. For test function 1, the area under the

membership function is the same for interactivity described by the different t-

norms. This illustrates that the optima of this test function for the different α-cuts

are located within the search space resulting from interactivity described by the

drastic t-norm. The results obtained with the different implementations of the

drastic t-norm indicate that, in general, drastic2 results in slightly larger areas

under the membership functions. However, this difference is negligible.

Table 15.14 shows the mean numbers of function evaluations to construct the

membership functions of the different test functions in case of interactive input

variables described by the four basic t-norms. The number of function evaluations

is, for most test functions, of the same order of magnitude for the different t-norms.

Nevertheless, the difference in implementation of the interactivity described by the

drastic t-norm (drastic1 versus drastic2) has an influence on the number of function

evaluations for all test functions. For test functions 3, 5 and 6, less function evalu-

ations are needed and for the other test function a lot more evaluations are needed

in the case of the drastic1 implementation. In case of the implementation drastic2,

more runs of the optimization algorithm are needed since every optimization is
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carried out over multiple search spaces. Therefore we would expect a higher number

of function evaluations, in accordance with our observations for functions 3, 5 and 6.

However, when using implementation drastic1, it is possible that the discontinuous

constraint, leading to a strongly non-convex search space, can lead to difficulties

with converging and finding the correct optimum, resulting in a larger number of

iterations and thus of function evaluations. Figure 15.4 illustrates the possible

difficulties associated with a non-convex search space. The particle x is located in

one ‘arm’ of the search space, while the personal best position is located in the

middle of the search space and the global best position is located in another arm

of the search space. This results in a movement of the particle as indicated by

the black arrow with open arrow point. The particle tries to move outside the

search space, which is not possible and will therefore be positioned on the boundary.

When the global and personal best position are not replaced, the particle will

remain on this boundary of the search space. If this takes place for a number of

particles, the particles will take a long time to converge. This could explain the

higher number of function evaluations for test functions 1, 2, 4, 7, 8 and 9.

214



§15.3. Interactive input variables

Figure 15.4: Application of PSO in the search space of the drastic t-norm
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Table 15.14: Mean numbers of function evaluations for the different test functions in
case of interactive input variables described by fuzzy intervals obtained with the parallel
Fuzzy Calculator with an increasing number of α-cuts using PSO GD for a population
size of 20 particles with communication between the different swarms at every 5 iterations.
The interactivity of the input variables is described by t-norms. Drastic1 indicates that
the interactivity of the input variables is described by the drastic t-norm and this is
implemented through the adapted α-cut approach. Drastic2 on the other hand refers to
the application of the drastic t-norm but in this case the search space for every α-cut is
divided into a number of (overlapping) hyperrectangles and the optimization problem is
solved for each of these hyperrectangles separately.

t-norm

Test function drastic1 drastic2  Lukasiewicz product minimum

1 23520 12236 12728 12474 9801

2 61180 23472 36872 23802 31177

3 52260 58516 74705 61877 71759

4 91580 53392 72520 69979 62407

5 70800 89744 89913 87215 91505

6 49240 59974 77830 87034 87866

7 181920 59331 109047 108491 86387

8 186220 54528 120191 101658 91385

9 361920 57375 123744 168333 111692

Tables 15.15 and 15.16 present the mean number of optimizations needed to con-

struct the left and right part of the membership functions of the outputs for the

different test functions when interactivity of the input variables is described by the

4 basic t-norms. More or less the same number of optimizations is necessary to con-

struct the membership functions when interactivity is described by the  Lukasiewicz,

product and minimum t-norms. For interactivity described by the drastic t-norm,

for some test functions the results deviate, especially for implementation drastic1.

This is of course also related to the non-convex search space. If the global optimum

is not correctly determined, many additional α-cuts are required to satisfy the

linearity criterion. This also contributed to the strongly increased number of

function evaluations for the drastic1 implementation applied to e.g. functions 7, 8

or 9.
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Table 15.15: Mean numbers of optimizations needed to construct the left membership
function of in case of interactive input variables described by fuzzy intervals obtained
with the parallel Fuzzy Calculator with an increasing number of α-cuts using PSO GD
for a population size of 20 particles with communication between the different swarms
at every 5 iterations. The interactivity of the input variables is described by t-norms.
Drastic1 indicates that the interactivity of the input variables is described by the drastic
t-norm and this is implemented through the adapted α-cut approach. Drastic2 on the
other hand refers to the application of the drastic t-norm but in this case the search
space for every α-cut is divided into a number of (overlapping) hyperrectangles and the
optimization problem is solved for each of these hyperrectangles separately.

t-norm

Test function drastic1 drastic2  Lukasiewicz product minimum

1 22.4 18.0 18.0 18.0 18.0

2 7.0 3.0 3.0 3.0 3.0

3 3.0 23.2 13.2 11.8 16.6

4 9.9 13.0 12.6 11.2 10.9

5 7.2 7.0 6.2 7.0 7.0

6 31.3 21.0 23.8 26.5 21.8

7 34.4 24.2 14.5 15.5 15.9

8 36.0 21.6 13.4 10.8 15.5

9 41.0 23.0 13.6 17.4 15.6

Table 15.16: Mean numbers of optimizations needed to construct the right membership
function for the different test functions in case of interactive input variables described by
fuzzy intervals obtained with the parallel Fuzzy Calculator with an increasing number of
α-cuts using PSO GD for a population size of 20 particles with communication between
the different swarms at every 5 iterations. The interactivity of the input variables is
described by t-norms. Drastic1 indicates that the interactivity of the input variables
is described by the drastic t-norm and this is implemented through the adapted α-cut
approach. Drastic2 on the other hand refers to the application of the drastic t-norm but
in this case the search space for every α-cut is divided into a number of (overlapping)
hyperrectangles and the optimization problem is solved for each of these hyperrectangles
separately.

t-norm

Test function drastic1 drastic2  Lukasiewicz product minimum

1 12.6 3.0 3.0 3.0 3.0

2 36.3 33.0 27.0 15.0 32.3

3 39.7 33.0 34.9 28.4 33.6

4 40.6 29.5 31.5 32.1 18.0

5 47.9 35.4 34.1 35.0 35.2

6 36.6 19.1 26.9 30.7 37.2

7 44.4 33.0 34.0 33.7 37.8

8 51.5 33.1 30.0 30.5 34.2

9 52.0 33.0 25.5 32.8 42.7
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Case study

The surface soil moisture content is an important property in the understanding

and modelling of meteorology, hydrology and agriculture [145, 146]. Soil moisture

is responsible for the partitioning of precipitation in surface runoff and infiltration,

as well as the partitioning of the incoming radiation in latent and sensible heat

fluxes [147, 148]. Therefore, monitoring soil moisture is of high importance. As

field measurements of soil moisture are not feasible for large areas, there is a

need for other methods to retrieve information about the moisture content of the

soil’s surface. A solution to this problem is provided by the relation that exists

between the backscatter coefficients of microwaves, obtained in radar images, and

the surface soil moisture. Furthermore, microwave remote sensing is preferred for

soil moisture retrieval as it is insensitive to clouds. However, in order to be useful

for hydrological applications, the backscattering coefficient needs to be converted

to the corresponding soil moisture content. Therefore, several types of models exist,

ranging from purely empirical relationships to physically-based surface scattering

models.

In this chapter, the Fuzzy Calculator, developed and thoroughly tested in Chap-

ters 14 and 15, is applied in order to compute the fuzzy output of a physically-based

surface scattering model that allows for predicting the backscatter of an incident

microwave pulse on a rough natural surface. The model in this case study is the

Integral Equation Model [149, 150], which was delivered to us by professor N. Ver-

hoest of the Department of Forest and Water Management of Ghent University.

This model is developed to describe the relation between the backscatter coefficient,

the dielectric constant and the roughness parameters of a dielectric surface. The

dielectric constant of a soil is related to its soil moisture content. This implies

that when the backscatter coefficient and the roughness parameters, namely the

root mean square height and the correlation length, are available, the surface soil

moisture can be calculated by inverting the model. While backscatter coefficients

can be obtained from radar images, the determination of surface roughness is

more complex. The measuring of surface roughness is rather difficult and strongly

depends on the profile length [141, 151, 152, 153, 154, 155] or the type of measuring

device used [141, 151]. To incorporate this uncertainty in surface roughness, the

use of possibility distributions to present the possible values of the roughness

parameters was introduced by Verhoest et al. [116] and improved by Vernieuwe et
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al. [141]. In [141], it is assumed that the Integral Equation Model is a locally

monotone function of the rms height and the correlation length, indicating that

the minimum and maximum values of the soil moisture result from roughness

parameters located on the boundary of the joint possibility distribution. In this

case study, we no longer follow this assumption and also take into account the

interior of the joint possibility distribution in order to construct the possibility

distribution of the soil moisture. We will restrict ourselves to a certain roughness

type resulting from a ‘rotary tillage’. We use the membership functions for the

roughness parameters, which act as the fuzzy inputs to the inverse IEM, as they

were obtained by Vernieuwe et al. [141]. We follow the same approach as in [141]

and also make a distinction between assuming non-interactive roughness parame-

ters and working with a joint possibility distribution describing the interactivity

between the roughness parameters. While Vernieuwe et al. [141] only concentrated

on the boundaries of the search space constructed by the membership functions of

the roughness parameters, in our Fuzzy Calculator the total search space is taken

into account in order to construct the membership function of the output of the

inverse Integral Equation Model. Further on, we refer to the method applied in

[141] as the algorithm of Vernieuwe et al.

16.1. Integral Equation Model

As mentioned in the introduction, the IEM describes the relation between the

backscatter coefficient, the dielectric constant and the roughness parameters of

a dielectric surface. This model is based on the important observation that the

dielectric constant (ε) of the soil varies considerably as the soil moisture content

changes. Several models exist that describe the relation between the dielectric

constant and the soil moisture content. This dielectric constant, a measure of the

polarizability of a material under applied electric fields, can be obtained from radar

images. Radar is an active system that emits microwave pulses. For the application

of the IEM, we are interested in measuring the reflected or backscattered waves

of radar pulses that were emitted by a satellite. The backscattering intensity is a

function of the dielectric constant of the scattering medium, which is mainly the

earth’s surface. The backscattering intensity is of course a complicated quantity

that also depends on the roughness of the scattering medium and the incidence

angle. Since the incidence angle is typically known and the dielectric constant can

be calculated using soil moisture observations [156], the only additional variables

that are required to compute the backscatter coefficient (σ0), are related to the

roughness of the surface.

The surface roughness can be modelled by two statistical roughness parameters,

namely the root mean square (rms) height s and the correlation length `. s is the

standard deviation of the surface height and ` is defined as the minimal horizontal
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distance between two points for which those points can be considered statistically

independent of one another. When the surface is described by a function z(x, y)

that measures the height above an xy reference plane at point (x, y), the mean

height of the surface can be calculated as

z =
1

LxLy

∫ +Lx/2

−Lx/2

∫ +Ly/2

−Ly/2
z(x, y) dxdy , (16.1)

with Lx and Ly the dimensions of a statistically representative segment of the soil

surface centered at the origin. The variance of the height is then given by

∆z2 =
1

LxLy

∫ +Lx/2

−Lx/2

∫ +Ly/2

−Ly/2

[
z(x, y)− z

]2
dxdy , (16.2)

and defines the rms height s as

s =
√

∆z2. (16.3)

The correlation between two points as a function of their separation distance x can

be obtained as

ρ(x) =

∫ +Lx/2

−Lx/2
[
z(x′)− z

][
z(x′ + x)− z

]
dx′∫ +Lx/2

−Lx/2
[
z(x′)− z

]2
dx′

. (16.4)

In this definition of the autocorrelation function ρ(x), a cut along a line parallel to

the x-axis has been used. In principle, this cut can be taken along any direction.

The mean value z can itself be spatially dependent when the terrain is not flat.

However, z then varies over a much slower scale than z itself. By approximating

the autocorrelation function ρ(x) by a theoretical model, such as an exponential

or Gaussian function, a definition of the correlation length ` can be obtained.

Typically, the surface correlation length ` is defined as the displacement x such

that ρ(x = `) = 1/e. Finally, we can also define a surface slope as m = s/` for an

exponentially autocorrelated surface and m =
√

2s/` for a Gaussian autocorrelated

function.

Having obtained accurate estimates of the surface roughness parameters, a model

can be constructed that determines the relation between the dielectric constant of

the surface, its roughness parameters and the resulting backscattering coefficient.

Different models exist for different ranges of the parameters, i.e. linear regression,

the model of Oh et al., the model of Dubois et al. and the Integral Equation

Model [149, 150, 157, 158]. The Integral Equation Model is the most generally

applicable but also most complicated model. However, in the domain ks < 3

and m < 0.4, with k = 2π/λ the wavenumber of the microwaves used by the

radar and λ the corresponding wavelength, the Integral Equation Model can be

approximated by the single scattering term. Put differently, in this regime it is safe
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to ignore multi-scattering terms that describe microwaves that scatter multiple times

with the surface before being reflected back to the radar sensor. Nevertheless, the

relationship between the dielectric constant and the backscattering coefficient is still

quite technical, and we refer to [159] for more details about this approach.

16.2. Site and data description

When backscatter coefficients and information of the roughness of a medium are

available, the dielectric constant of this medium can thus be calculated using the

inverse IEM, and can then be related to the soil moisture content, which is the

quantity of interest. On March 19th, April 23th and May 28th of 2003, the second

European Remote Sensing Satellite (ERS-2) collected C-band (frequency 5.4 Ghz)

radar imagery with a 30 m resolution for the Zwalm catchment (south of Ghent,

Belgium) and for the loamy region (southeast of Brussels, Belgium) with a local

incidence angle between 20◦ and 24◦. Backscatter coefficients were obtained from

the Precision Resolution Images (PRI) where both the incident and the scattered

wave were vertically polarized (VV). These images were georeferenced using a

first-order affine transformation with an overall accuracy of less than 50 m. In

addition to the backscatter data, average soil moisture values were also available

and were used in [141] to check whether the membership functions that were derived

for the roughness parameters produce a membership function for soil moisture

that is compatible with the observations. As for the Zwalm catchment average soil

moisture values are available for fields of 4 to 5 ha, average backscatter coefficients

were calculated for these fields. For the loamy regions, average soil moisture values

are available for fields of 10 ha and therefore average backscatter coefficients were

calculated for fields of 10 ha. In total, we have 16 backscatter coefficients and

corresponding soil moisture values. The soil texture of these fields was loamy and

the soil roughness resulted from a rotary tillage. This data was delivered to us

by professor N. Verhoest of the Department of Forest and Water Management of

Ghent University.

While no roughness measurements are available for these fields, [141] had at their

disposal roughness measurements from other fields. These were used by Vernieuwe et

al. to generate four different synthetic data sets for the roughness class rotary

tillage, namely three data sets of 1000 (s,`)-couples corresponding to a profile

length of 25, 4 and 1 m, based on roughness measurements from a bare loamy

sand field in the center of Eastern Flanders, Belgium, and one data set of 1000

(s,`)-couples for a profile length of 1 m, based on roughness measurements from six

different field campaigns at five European test sites [160]. In case no interaction

is taken into account between the rms height and the correlation length, [141]

generated possibility distributions for the rms height and the correlation length

for these different data sets, by applying a probability-possibility transformation
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[161, 162] and the method of Ban, which makes a trapezoidal approximation of a

fuzzy number while preserving the expected interval of the fuzzy number [163]. As

illustrated in Figure 16.1 there is a clear interaction between the rms height and

the correlation length. Because of the elliptical shape of the (s,`)-couples in the

four data sets (see Figure 16.1 for the data set of the (s,`)-couples generated with

a profile length 4 m), the possibilistic Gustafson-Kessel fuzzy clustering algorithm

is used in [141] to determine the joint possibility distribution for the rms height

and the correlation length. Henceforth, we concentrate on this particular data

set.

Figure 16.1: Plot of the 1000 (s,`)-couples generated with a profile length 4 m

16.3. Possibilistic Gustafson-Kessel algorithm

The possibilistic Gustafson-Kessel clustering algorithm differs from the probabilistic

Gustafson-Kessel clustering algorithm in the way that the probabilistic constraint,

which forces the membership degrees of a data point across the different classes to

sum up to one, is no longer present [164]. In this way, the membership degrees can

be interpreted as degrees of compatibility. In the probabilistic Gustafson-Kessel

algorithm the following objective function needs to be minimized

C∑
i=1

N∑
j=1

ui(xj)
md(xj , ci)

2 , (16.5)

with d(xj , ci) the distance of data point xj to the cluster center ci of cluster Ci, N
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the total number of data points, C the number of clusters, ui(xj) the membership

degree of the data point xj in cluster Ci and m ∈]1,∞[ a weighing exponent

called the fuzzifier. The membership degrees ui(xj) have to satisfy following

conditions

ui(xj) ∈ [0, 1] , for all i = 1, . . . , C, j = 1, . . . , N (16.6)

and
C∑
i=1

ui(xj) = 1 for all j . (16.7)

The probabilistic constraint
∑C
i=1 ui(xj) = 1 for all j was added to the fuzzy

clustering algorithm in order to prevent the trivial solution, namely a membership

degree of zero for all feature points. Nevertheless, through the following adaptation

of the objective function Eq. (16.5) it is possible to prevent this trivial solution

without adding the probabilistic constraint [164]

C∑
i=1

N∑
j=1

ui(xj)
md(xj , ci)

2 +

C∑
i=1

ηi

N∑
j=1

(1− ui(xj))m , (16.8)

where ηi is a parameter that determines the distance at which the membership

value of a point in a cluster becomes 0.5

ηi = K

∑N
k=1 ui(xk)md(xk, ci)

2∑N
k=1 ui(xk)m

, (16.9)

with ui(xk) the membership degrees determined by an initial probabilistic fuzzy

clustering algorithm and K typically chosen to be one. Since the aim here is to

construct a joint possibility distribution, a single cluster needs to be determined

for a given roughness class, which makes it impossible to determine the initial

membership degrees ui(xk) with a probabilistic fuzzy clustering algorithm, since

the latter would always create at least 2 clusters [141, 164]. Therefore, η1 is initially

determined as follows

η1 = K

∑N
j=1 d(xj , c1)2

N
. (16.10)

Then, the possibilistic clustering algorithm is applied with this value and the value

of η1 is recalculated by Eq. (16.9) using the membership degrees to the possibilistic

cluster, which are calculated as follows

u1(xj) =
1

1 + (
d(xj ,c1)2

η1
)

1
m−1

. (16.11)

With this new value of η1 the possibilistic clustering algorithm is again applied.
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These steps are repeated until the value of η1 converges.

The distance measure used in the Gustafson Kessel algorithm is

d(xj , ci)
2 = (xj − ci)TAi(xj − ci) , (16.12)

with ci the center of cluster Ci, which can be updated as follows

ci =

∑N
j=1 ui(xj)

mxj∑N
j=1 ui(xj)

m
, (16.13)

and Ai a positive definite matrix associated with each cluster Ci, which implies that

data points with equal distances to the cluster centers are positioned on ellipsoids.

Ai can be calculated as follows

Ai = |Fi|1/r(Fi)−1 , (16.14)

with r the dimension of the data and Fi the fuzzy covariance matrix

Fi =

∑N
j=1 ui(xj)

m(xj − ci)(xj − ci)T∑N
j=1 ui(xj)

m
. (16.15)

16.4. Results

In this section, the results obtained with the Fuzzy Calculator are discussed.

While in Section 16.4.1 it is assumed that no interactivity is present between the

correlation length ` and the rms height s, Section 16.4.2 presents the results when

the interactivity between ` and s is taken into account.

16.4.1. Non-interactive roughness parameters

As the algorithm of Vernieuwe et al. [141] works with a fixed number of α-cuts

(m = 11), we apply the Fuzzy Calculator with the same fixed number of α-cuts

as well as the Fuzzy Calculator starting with an increasing number of α-cuts.

Both Fuzzy Calculators, using PSO GD with a population size of 20 particles

as optimization algorithm (as described in Chapter 14), can directly be applied

to the case of non-interactive roughness parameters with membership functions

calculated by the method of Ban [163]. The roughness parameters ` and s are

described by the membership functions presented in Figure 16.2(a) and (b) [141].

The search area resulting from non-interactive roughness parameters is presented

in Figure 16.2(c).
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(a)

(b)

(c)

Figure 16.2: (a) Membership function of the correlation length ` calculated with the
method of Ban [141], (b) membership function of the rms height s calculated with the
method of Ban [141] and (c) search area in case of non-interactive ` and s.
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Table 16.1 shows the areas under the membership functions of the soil moisture,

calculated with the IEM for 16 different backscatter coefficients, as constructed

with the Fuzzy Calculator with a fixed number of α-cuts using the first correction

approach to deal with inconsistencies (Fuzzy Calculator1), with the Fuzzy Cal-

culator starting with 3 α-cuts using the second correction approach to deal with

inconsistencies (Fuzzy Calculator2), and using PSO GD with a population size of 20

particles as optimization algorithm and the algorithm of Vernieuwe et al. This table

illustrates that only a small difference is present between the different algorithms.

Although the difference is negligible, the Fuzzy Calculator starting with 3 α-cuts

leads to slightly higher mean areas under the membership function. Since the

membership functions of the roughness parameters are triangular, i.e. they start in

a single point at α = 1, it is possible to construct a correct membership function for

the output variable by only looking at the boundary of the search spaces, provided

that one starts at α = 1 and finds the optima for successively lower α-cuts for

different α values which are sufficiently densely spaced. When for a certain α-cut

the exact optimum is not situated at the boundary but in the interior, the boundary

search will of course result in an incorrect value. But this better optimum should

already have been found for a higher value α′ for which it was lying at the boundary

of the corresponding search space. Hence, this higher value α′ > α would have a

lower minimum or a higher maximum, which is of course impossible and requires

to conclude that this better value is also to be used at level α. Since we started

with a search space that is a single point at α = 1, all optima in the interior of

an α-cut α will be lying at the boundary of a certain α-cut α′ > α. Of course,

this is not a feasible approach in general, since we can never know whether the

α-cuts are sufficiently densely spaced, and since it is in general much more complex

to search exactly at the boundary of a region than in the interior. Therefore, we

can conclude that for non-monotone functions our Fuzzy Calculator will be less

complicated and more generally applicable than the algorithm of Vernieuwe et

al. Figure 16.3 presents the membership function of the soil moisture obtained

with the algorithm of Vernieuwe et al., with Fuzzy Calculator1 and with Fuzzy

Calculator2 for σ0 = −7, 1148. This figure also illustrates the negligible difference

between the different algorithms.

16.4.2. Interactive roughness parameters

In this section, we take the interactivity between s and ` into account. As shown

in Figure 16.1 the shape of the (s, `) data can be approximated by elliptic clusters

and therefore the possibilistic Gustafson-Kessel clustering algorithm is used in

order to describe the interactivity between s and `. In case of this interactivity,

the Fuzzy Calculator developed for interactivity described by t-norms (Chapter 15,

Section 15.3.1) can be directly applied. The only difference is that here the search

spaces are the ellipsoids generated by the possibilistic Gustafson-Kessel clustering
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Table 16.1: Area under the membership functions of the soil moisture calculated with
the IEM for 16 different backscatter coefficients σ0 in the case of non-interactive roughness
parameters, as constructed with the Fuzzy Calculator with a fixed number of α-cuts using
the first correction approach to deal with inconsistencies (Fuzzy Calculator1), with the
Fuzzy Calculator starting with 3 α-cuts using the second correction approach to deal with
inconsistencies (Fuzzy Calculator2), using PSO GD with a population size of 20 particles
as optimization algorithm and with the algorithm of Vernieuwe et al.

σ0 Vernieuwe et al. [141] Fuzzy Calculator1 Fuzzy calculator2

-7.1765 0.2622 0.2622 0.2623

-6.7528 0.2347 0.2333 0.2350

-9.1138 0.2871 0.2865 0.2876

-6.8223 0.2729 0.2719 0.2734

-6.7210 0.2530 0.2520 0.2532

-5.4604 0.1606 0.1562 0.1552

-7.2405 0.2881 0.2883 0.2882

-7.1442 0.2877 0.2880 0.2878

-6.3311 0.2760 0.2757 0.2764

-6.2298 0.2713 0.2697 0.2712

-5.6377 0.2548 0.2551 0.2556

-5.3827 0.2377 0.2354 0.2371

-7.5065 0.2884 0.2876 0.2888

-6.1353 0.2732 0.2727 0.2736

-6.9085 0.2854 0.2845 0.2859

-7.1148 0.2866 0.2861 0.2872
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§16.4. Results

Figure 16.3: Membership function of the soil moisture constructed with the algorithm of
Vernieuwe et al. (green), with the Fuzzy Calculator1 (blue) and with the Fuzzy Calculator2
(black) for σ0 = −7, 1148.

algorithm. This leads to the search space presented in Figure 16.4. The color bar

in Figure 16.4 differentiates between the different α-cuts

Table 16.2 presents the areas under the membership functions of the soil moisture

calculated with the IEM for 16 different backscatter coefficients σ0, in case of

interactive roughness parameters where the interactivity is described by the clus-

ters generated possibilistic Gustafson-Kessel clustering algorithm, as constructed

with the Fuzzy Calculator with a fixed number of α-cuts using the first correction

approach to deal with inconsistencies (Fuzzy Calculator1), with the Fuzzy Cal-

culator starting with 3 α-cuts using the second correction approach to deal with

inconsistencies (Fuzzy Calculator2), using PSO GD with a population size of 20

particles as optimization algorithm and with the algorithm of Vernieuwe et al. As

in Section 16.4.1, we can conclude that the difference in area under the membership

function between the different algorithms is negligible.

Figure 16.5 illustrates the search space in case of non-interactive roughness param-

eters described by the method of Ban [163], the search space in case of interactive

roughness parameters where the interactivity is described by the clusters generated

with the possibilistic Gustafson-Kessel algorithm and the synthetically generated

(s, `) data. This figure shows that the search space in case of non-interactive

roughness parameters only contains a part of the search space in case of interactive

roughness parameters. Therefore it is not possible to draw some conclusions about

the difference in area under the membership function of the soil moisture resulting

from these different search spaces. Important to note is that the search space

resulting from non-interactive roughness parameters only contains a part of the
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Table 16.2: Area under the membership functions of the soil moisture calculated with the
IEM for 16 different backscatter coefficients σ0 in case of interactive roughness parameters
described by the clusters generated with the possibilistic Gustafson-Kessel clustering
algorithm, as constructed with the Fuzzy Calculator with a fixed number of α-cuts using
the first correction approach to deal with inconsistencies (Fuzzy Calculator1), with the
Fuzzy Calculator starting with 3 α-cuts using the second correction approach to deal with
inconsistencies (Fuzzy Calculator2), using PSO GD with a population size of 20 particles
as optimization algorithm and with the algorithm of Vernieuwe et al..

σ0 Vernieuwe et al. [141] Fuzzy Calculator1 Fuzzy calculator2

-7.1765 0.1390 0.1389 0.1392

-6.7528 0.0822 0.0809 0.0809

-9.1138 0.1080 0.1074 0.1082

-6.8223 0.1544 0.1539 0.1543

-6.7210 0.1215 0.1215 0.1220

-5.4604 0.0293 0.0281 0.0280

-7.2405 0.1322 0.1331 0.1333

-7.1442 0.1322 0.1332 0.1333

-6.3311 0.1518 0.1525 0.1528

-6.2298 0.1524 0.1530 0.1533

-5.6377 0.1355 0.1359 0.1363

-5.3827 0.0980 0.0971 0.0971

-7.5065 0.1259 0.1249 0.1254

-6.1353 0.1523 0.1529 0.1531

-6.9085 0.1421 0.1416 0.1420

-7.1148 0.1389 0.1397 0.1372
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Figure 16.4: Search area for the different α-cuts. The color bar differentiates between
the different α-cuts.

synthetically generated data [141]. Consequently, not all information is present in

the membership function of the roughness parameters generated by the method

of Ban. When we want to work with non-interactive roughness parameters that

include almost all information of the synthetically generated data, a possible solu-

tion is to work in the rectangles that enclose the ellipsoids and are parallel to the

s- and `-axis. This search space is presented in Figure 16.6.

Table 16.3 presents the areas under the membership functions of the soil moisture

calculated with the IEM for 16 different backscatter coefficients σ0, in case of

non-interactive roughness parameters described by the rectangles that enclose the

ellipsoids corresponding to the different α-cuts and parallel to the s- and `-axis,

as constructed with the Fuzzy Calculator with a fixed number of α-cuts using the

first correction approach to deal with inconsistencies (Fuzzy Calculator1), with the

Fuzzy Calculator starting with 3 α-cuts using the second correction approach to

deal with inconsistencies (Fuzzy Calculator2), using PSO GD with a population size

of 20 particles as optimization algorithm and with the algorithm of Vernieuwe et al.

When we compare the different algorithms to construct the membership function

of the soil moisture, we can again conclude that the Fuzzy Calculator2 leads

to the higher area under the membership function but that the differences are

negligible. As this search space completely includes the search space in case of

interactive roughness parameters, we expect that the membership functions in case

of this non-interactivity also include the membership functions in case of interactive

roughness parameters. In Figure 16.7, the membership function for σ0 = −7, 1148

is illustrated and confirms this expectation.
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Table 16.3: Area under the membership functions of the soil moisture calculated
with the IEM for 16 different backscatter coefficients σ0, in case of non-interactive
roughness parameters described by the rectangles that enclose the clusters generated
by the possibilistic Gustafson-Kessel clustering algorithm and are parallel to the s- and
`-axis, as constructed with the Fuzzy Calculator with a fixed number of α-cuts using
the first correction approach to deal with inconsistencies (Fuzzy Calculator1), with the
Fuzzy Calculator starting with 3 α-cuts using the second correction approach to deal with
inconsistencies (Fuzzy Calculator2), using PSO GD with a population size of 20 particles
as optimization algorithm and with the algorithm of Vernieuwe et al..

σ0 Vernieuwe et al. [141] Fuzzy Calculator1 Fuzzy calculator2

-7.1765 0.2314 0.2310 0.2348

-6.7528 0.1953 0.1950 0.1955

-9.1138 0.2490 0.2488 0.2507

-6.8223 0.2507 0.2512 0.2539

-6.7210 0.2185 0.2189 0.2215

-5.4604 0.1145 0.1094 0.1132

-7.2405 0.2665 0.2662 0.2681

-7.1442 0.2657 0.2658 0.2678

-6.3311 0.2566 0.2568 0.2599

-6.2298 0.2502 0.2497 0.2523

-5.6377 0.2247 0.2250 0.2285

-5.3827 0.2005 0.2006 0.2020

-7.5065 0.2623 0.2629 0.2642

-6.1353 0.2534 0.2534 0.2565

-6.9085 0.2662 0.2665 0.2689

-7.1148 0.2670 0.2671 0.2694
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Figure 16.5: Search area for the different α-cuts in case of non-interactive roughness
parameters described by the method of Ban (rectangles) and in case of interactivity
described by the possibilistic Gustafson-Kessel algorithm (ellipsoids). The color bar
differentiates between the different α-cuts.
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Figure 16.6: Search area for the different α-cuts in case of interactivity described by
the clusters generated with the possibilistic Gustafson-Kessel algorithm (ellipsoids) and
in case of non-interactivity with a rectangular search space enclosing the ellipsoids and
parallel to the s- and `-axis. The color bar differentiates between the different α-cuts.
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Figure 16.7: Membership function of the soil moisture constructed with the Fuzzy
Calculator2, in case of interactive roughness parameters where the interactivity is described
by the clusters generated with the possibilistic Gustafson Kessel algorithm (blue line) and
in case of non-interactivity with a rectangular search space enclosing the ellipsoids and
parallel to the s- and `-axis (black line).
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Conclusion

In this part of this disseration, a Fuzzy Calculator was designed to efficiently

compose the membership function of the output of a continuous function of non-

interactive as well as interactive input variables described by fuzzy intervals. The

solution to this problem is given by Zadeh’s extension principle. However, a

direct implementation of this principle is computationally infeasible for practical

applications. Therefore, based on the α-cut approach, we transformed this problem

into a number of optimization problems (Chapter 14).

In Chapter 15, different optimization algorithms were compared for the case of

non-interactive input variables described by fuzzy intervals: Gradient Descent

based on Sequential Quadratic Programming (GD), Simplex-Simulated Annealing

(SIMPSA), Particle Swarm Optimization (PSO) and Particle Swarm Optimization

in combination with Gradient Descent (PSO GD). In addition two approaches were

followed to determine the number of α-cuts. Both a non-parallel and a parallel

implementation of the Fuzzy Calculator were designed.

In a first test configuration, the number of α-cuts was fixed to 11. As accuracy

measure, we used the area under the membership function of the fuzzy output

interval. Both for the non-parallel as well as for the parallel Fuzzy Calculator,

the employment of PSO GD with a population size of 20 particles resulted in a

significantly more accurate membership function than the Fuzzy Calculator with

any of the other optimization algorithms or parameter settings. In addition, in

the parallel version, it was shown that it is beneficial to use communication. In

particular communication at every 5 iterations leads to a significantly more accurate

membership function than the other communication strategies. The corresponding

number of function evaluations, however, is significantly higher for the parallel

Fuzzy Calculator.

In a second test configuration, we started with 3 α-cuts and added additional

α-cuts according to a linearity criterion. We continued on our previous results by

restricting the Fuzzy Calculator to PSO GD, with a population size of 20 particles

and communication at every 5 iterations. The membership function composed by

the Fuzzy Calculator with an increasing number of α-cuts is significantly more

accurate than the membership function composed by the Fuzzy Calculator with

a fixed number of 11 α-cuts. The number of function evaluations is, however,
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significantly higher for the Fuzzy Calculator with the increasing number of α-

cuts.

Two different approaches were described to correct for inconsistencies between

obtained optima for subsequent α-cuts. The first approach replaces the optima

of the inconsistent α-cuts by the optima of the nearest α′-cut with α′ > α. The

second approach recalculates the optima of the inconsistent α-cuts starting from the

optimizers of the nearest α′-cut with α′ > α. In the case of an increasing number of

α-cuts, it is not necessary to recalculate the optima of the inconsistent α-cuts and

it is thus sufficient to just remove these α-cuts. The first and second approach were

compared for the Fuzzy Calculator starting with 3 α-cuts. No significant differences

are detected between the accuracy of the membership functions composed by

the Fuzzy Calculators using these different approaches. The number of function

evaluations, however, is significantly lower for the Fuzzy Calculator using the

second approach, which is a pleasing result.

We thus conclude that the best approach to construct the membership function

of the output is to use the Fuzzy Calculator with an increasing number of α-

cuts, with PSO GD as optimization algorithm, using a population size of 20

particles and communication at every 5 iterations, using the second correction

approach if inconsistencies between subsequent α-cuts occur. The number of

function evaluations, however, can be quite high, depending on the number of

α-cuts that will be constructed. This can be regulated by the tolerance level in

the criterion for determining whether additional α-cuts are required. In addition,

as the implementation is parallel and several processors can be used, an elevated

number of function evaluations will not pose a major problem for most applications

if a high performance facility is available.

We then applied this Fuzzy Calculator to the case of interactive input variables

described by fuzzy intervals (Section 15.3, Chapter 15). In this chapter, we

restricted ourselves to interactivity described by the four basic triangular norms.

We modeled this interactivity by transforming the optimization problem into a

constrained optimization problem. This is accomplished by adding the nonlinear

constraint T (A1(xi,1), . . . , An(xi,n)) ≥ 0 to the optimization algorithm PSO GD.

For the drastic t-norm, the search region can also be divided into a number of

overlapping hyperrectangles and the optimization problem can be solved in these

hyperrectangles separately. This implementation (drastic2) was compared with the

implementation that deals with the interactivity by adding the nonlinear constraint

to PSO (drastic1). As implied theoretically, the area under the membership function

is largest for the minimum t-norm (non-interactivity), followed by the product

t-norm, followed by the  Lukasiewicz t-norm and finally the drastic t-norm. The

numbers of function evaluations are, except for drastic1, approximately the same

as in case of non-interactive input variables (i.e. minimum t-norm. For some

test functions, drastic1 requires a lot more function evaluations, which can be
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attributed to the non-convex search region of this t-norm that leads to convergence

difficulties for the PSO algorithm. This is also confirmed by the required number of

optimizations to construct the left and right side of the membership function.

To conclude, in Chapter 16, the Fuzzy Calculator was applied to a case study. The

objective of this case study was to investigate the practical applicability of the

Fuzzy Calculator described and thoroughly tested in Chapters 14 and 15. This

case study consisted of the application of the inverse IEM model that is able to

calculate the soil moisture content of a medium when information is available about

the backscatter coefficient σ0 and the roughness parameters s and L. Backscatter

coefficients can be obtained from radar images, but the determination of surface

roughness is more complex leading to uncertainty in surface roughness. In order

to propagate this uncertainty in surface roughness through the IEM model with

as a result a membership function for the soil moisture, we applied the Fuzzy

Calculator with a fixed number of α-cuts as well as the Fuzzy Calculator with an

increasing number of α-cuts. Both Fuzzy Calculators, using the second correction

approach if inconsistencies between subsequent α-cuts occur, using PSO GD with

a population size of 20 particles are used as optimization algorithm. We made use

of the same data as in Vernieuwe et al. [141] and compared our results with the

results presented in this work. The major difference with our algorithm is that in

Vernieuwe et al. only the boundary of the search region is taken into account in

order to construct the membership function of the soil moisture. Our approach

takes into account the complete search region and is therefore more generally

applicable. The difference in area under the membership function, constructed by

the different algorithms, is negligible for the model under study, but because of the

more general applicability of our Fuzzy Calculator we can conclude that the Fuzzy

Calculator might be better suited than the algorithm of Vernieuwe et al. for other

applications.
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We now summarize the main conclusions that can be drawn from the work in

this dissertation, and highlight some aspects that might be interesting for further

research. As suggested by the title of this dissertation, the overall objective

was to examine the capability of general metaheuristic optimization strategies

versus those of problem-specific strategies. In particular, we have focussed on

this research question in the context of the biosciences and with the emphasis on

applicability.

In Part II, we solved a special type of subset selection problem, more specifically

the selection of a subset from a multi-experiment data set. Several problem-specific

techniques were already developed for the problem of subset selection. We compared

these techniques with more general strategies based on Genetic Algorithms (GA) or

Ant Colony optimization (ACO). Of course, slight modifications of these heuristic

algorithms to the specific problem were in order. But this does not eradicate

the general heuristics lying at the heart of the optimization algorithms that were

used to solve this specific problem. We can conclude that, for this subset selection

problem, both GA and ACO lead to better results than the conventional techniques,

since these were not constructed to take the multi-experiment aspect into account

and cannot easily be generalized as such. The best results were obtained with GA,

which thus outperformed ACO. We had to modify the ACO algorithm in order to

eliminate a negative bias that was present in the original formulation. We have

also introduced slight modifications to the GA algorithm, in order to impose a

fixed number of selected samples.

Part III focused on the calibration of a water and energy balance hydrologic

model. The aim of the calibration process is to determine the best set of model

parameters, such that the hydrologic model is able to predict a faithful value for

the output variables for given input data. This best set of parameters is chosen

by comparing the model output to measured data for the output variables. The

method Multistart Weight-Adaptive Recursive Parameter Estimation (MWARPE)

was developed for the specific problem of finding the set of parameter values for

which the model transforms given input data to output data that best resemble

the measured output corresponding to that input. In this algorithm, all output

variables are explicitly taken into account. As this method has a number of

disadvantages, we compared this method with a more general approach where we

formulate the calibration process as an optimization problem. We then had to

determine a proper objective function for which the global minimizer corresponds

to the best set of model parameters. For this problem, we chose to work with the

‘Root Mean Square Error’ (RMSE) between the measured output and the model
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prediction. The RMSE should be calculated for each output variable separately.

There are two possible configurations for taking into account the different output

variables. The first configuration starts by rescaling the data of the individual

output variables so that no difference in order of magnitude is present between the

data corresponding to the different output variables. Then, the different RMSE

values of the standardized output variables are merged into a single-objective

function by summation. The second configuration consists of handling the different

objective functions separately in a multiple-objective framework by the construction

of a Pareto front. This approach is more complex, especially when a large number

of output variables are present. As our objective was to compare MWARPE with

a simple and general approach, we restricted ourselves to the first configuration.

The resulting minimization of the overall RMSE was solved with Particle Swarm

Optimization (PSO). From this part of this dissertation, we can conclude that both

approaches yield comparable results. However, given the flexibility and generality

of PSO, as well as the simplicity of its implementation, there are few reasons

to choose for the more complex and restrictive MWARPE approach. Note that

MWARPE was already working at its computational limits in the case study of

part III, and was not able to incorporate all test data due to its high computational

demands.

For the last part of this dissertation (Part IV), the goal was set to develop a Fuzzy

Calculator that propagates uncertainty through complex functions and models. In

case of monotone functions or models, several specific strategies exist to propagate

uncertainty and to determine the membership function of the output. However,

in case of non-monotone functions or models, no general strategy was present to

complete this task. Such a general strategy was here developed by transforming

the uncertainty propagation problem to an optimization problem, making use of

the α-cut approach of Nguyen for non-interactive input variables. For solving this

optimization problem, we used several optimization algorithms: a local optimization

algorithm, namely Gradient Descent based on Sequential Quadratic Programming

(GD) and two global optimization algorithms, namely Simplex-Simulated Annealing

(SIMPSA) and PSO. Two different strategies were used to determine the number

of α-cuts. In the first approach, the number of α-cuts was fixed to a predetermined

number, while in the second approach the number of α-cuts was initially chosen

very small and subsequently increased until a criterion based on linear interpolation

was satisfied. Two approaches were also developed to deal with inconsistencies

between the α-cuts, which are caused by the optimization algorithm not having

found the correct global optimum for one of the α-cuts. In the first approach,

the optima of the inconsistent α-cuts were replaced by the optima of the nearest

α′-cut with α′ > α. In the second approach, the optima of the inconsistent α-cuts

were recalculated starting from the optimizers of the nearest α′-cut with α′ > α.

A parallel as well as a non-parallel implementation was developed. When PSO

was used as optimization algorithm, the parallel implementation was extended to
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support communication between the different swarms about possible candidate

solutions. We compared the different Fuzzy Calculators based on 9 benchmark

functions, for which the area under the membership function was determined. The

best results were obtained with the Fuzzy Calculator with an increasing number

of α-cuts, with PSO GD as optimization algorithm, using a population size of

20 particles and communication at every 5 iterations, and by recalculating the

optima if inconsistencies between subsequent α-cuts occur. Then, based on a

generalisation of Nguyen’s α-cut approach for interactive variables, we applied this

Fuzzy Calculator to the same benchmark functions in case of interactive input

variables. Firstly, we restricted ourselves to interactivity described by the four

basic t-norms and recovered the expected relation between the different areas under

the membership function obtained with our Fuzzy Calculator. Finally, in order

to examine the practical applicability, the Fuzzy Calculator was applied to a case

study. This case study consisted of the application of the inverse Integral Equation

Model (IEM) to calculate the soil moisture content from a rough bare surface

with as input backscatter values and roughness parameters of this surface. The

roughness parameters are the uncertain parameters that have to be propagated

through the model. We compared the results of the Fuzzy Calculator with a specific

approach developed for this problem by Vernieuwe et. al. [141]. Since the difference

in the results was negligible, the aspect of general applicability votes in favour of

our Fuzzy Calculator.

For the optimization problems studied in this dissertation, it seems that we can

conclude that the metaheuristic optimization approaches have defeated the problem-

specific approaches. While the results are not always significantly better, the fact

that the metaheuristic optimization approaches are more general and can often

be very simply implemented, allows to prefer them over the specific algorithms in

practical situations. Therefore, it would be very interesting to examine the added

value of these metaheuristic approaches in several other optimization problems in

different applications. Nevertheless, the quest for better optimization algorithms,

either general or problem specific, should not be terminated, as further improvement

is always possible.

One direction in which the improvement of solutions for certain problems can be

sought is by taking into account the multiple-objective nature of these problems.

In this dissertation, we have only dealt with single-objective optimization problems.

However, in the biosciences, many optimization problems have more than one

objective function. We have already encountered the problem of multiple-objective

functions in the calibration of the hydrologic model (Part III). Other examples

include the multiple objectives of forest management (economic benefits of timber

production, environmental benefits such as carbon sequestration, biodiversity and

water quality, and social benefits such as recreation, public health and community

involvement) [165], multiple-objective planning in agriculture (maximum income

with a minimum of irrigation water, use of fertilizers and number of workers), opti-
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mization of the removal of multiple compounds in water purification installations,

etc. The construction of a single aggregate objective function, as we did for the

calibration of the hydrological model (Part III), is only one possible approach to

deal with multiple-objective optimization problems. For different weight factors in

the aggregate objective function, we obtain different optimizers, which are all lying

within a set of points P that is called the Pareto-optimal set. A point x ∈ P is

Pareto optimal if there are no other points x′ within the set of feasible points such

that fi(x
′) ≤ fi(x) for all i, with at least one inequality being strict and where

fi denote the different objective functions. The image of the Pareto-optimal set

f(P ) is called the Pareto front [166]. The equivalent of finding an optimizer and

corresponding optimum for a single-objective optimization problem is to construct

the Pareto-optimal set and corresponding Pareto front in the case of a multiple-

objective optimization problem. The construction of the Pareto front becomes very

complex when the multiple-objective optimization problem has a large number

of different objectives. Many algorithms exist for constructing the Pareto front,

e.g. the normal-boundary intersection method [167], the normal constraint method

[168], the Successive Pareto Optimization [169], etc. Next to these classical meth-

ods, evolutionary algorithms were also modified in order to solve multi-objective

optimization problems [170], resulting in e.g. multiple-objective Genetic Algorithms

[171, 172], multiple-objective Particle Swarm Optimization [3], multiple-objective

Ant Colony Systems [173], etc.

For future research, it would thus be interesting to perform a similar comparison

between specific methods and metaheuristic (evolutionary) algorithms for the case

of multiple-objective optimization problems. Despite the greater mathematical

complexity, multiple-objective approaches can also result in an improvement over

the results obtained with single-objective methods, such as in the case of the

hydrologic model. Also in the case of the subset selection problem it can be useful

to include a second objective, namely the deviation of the mean, which was in this

dissertation only used as a verification of the resulting subset after the subset had

been constructed from a single-objective optimization problem.
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Dutch summary

— Nederlandstalige samenvatting

Het centrale thema dat doorheen deze doctoraatsthesis terugkeert is het begrip

optimalisatie. Meer specifiek behandelen we in deze thesis de zogenaamde meta-

heuristische optimalisatietechnieken, met speciale aandacht voor de populatiege-

baseerde metaheuristische optimalisatietechnieken. Het doel van dit doctoraat is

om de meerwaarde van deze algemene optimalisatietechnieken ten opzichte van

probleemspecifieke aanpakken te bepalen. Dit werd bestudeerd voor een aantal bi-

ologische toepassingen. Dit doctoraat is opgebouwd uit vier delen. Deel I biedt een

theoretisch overzicht van optimalisatie en vormt dus de noodzakelijke achtergrond

voor het vervolg van de thesis. Deel II bespreekt hoe optimalisatie kan gebruikt

worden om een subset te selecteren uit een multi-experimentele data set. In Deel III

worden optimalisatietechnieken toegepast voor de calibratie van een water- en

energiebalans model. Deel IV introduceert het begrip onzekerheidspropagatie en

toont aan dat ook hierbij optimalisatietechnieken een essentiële rol spelen.

Deel I: Overzicht van optimalisatie

Deel I tracht een beknopte doch op zichzelf berustende inleiding tot het begrip

optimalisatie te geven, met de nodige aandacht voor de methoden die verder

in dit doctoraat toegepast worden. In Hoofdstuk 2 worden de theoretische con-

cepten in verband met continue optimalisatie en discrete optimalisatie uiteengezet.

Verder wordt het begrip “metaheuristiek” gëıntroduceerd en worden verschillende

metaheuristieken besproken. De nadruk ligt in deze thesis op het verschil tussen

metaheuristieken gebaseerd op een populatie van oplossingen versus deze gebaseerd

op een enkelvoudige oplossing. De concrete optimalisatiealgoritmen van beide

categorieën die in deze thesis worden gebruikt, komen in detail aan bod in Hoofd-

stuk 3 voor continue optimalisatieproblemen, en in Hoofdstuk 4 voor discrete

combinatorische optimalisatieproblemen. Voor de continue optimalisatieproblemen

die we in deze thesis behandelen, gebruiken we Gradient Descent gebaseerd op

Sequential Quadratic Programming (GD), Particle Swarm Optimization (PSO) en

Simplex Simulated Annealing (SIMPSA). Zoals de naam aangeeft is Particle Swarm

Optimization een populatiegebaseerde techniek. Voor combinatorische optimal-

isatieproblemen worden eveneens twee populatiegebaseerde technieken beschreven:

Genetische Algoritmen (GA) en Ant Colony Systems (ACO). Elk van deze popu-

latiegebaseerde technieken zijn gëınspireerd op biologische concepten.
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Deel II: Subsetselectie uit multi-experimentele data

Het tweede deel van deze thesis behelst het uitwerken van een concreet combi-

natorisch probleem, meer bepaald het selecteren van een subset uit een multi-

experimentele data set. Zoals besproken in Hoofdstuk 5 heeft subsetselectie nut in

toepassingen waar een grote hoeveelheid data beschikbaar is. Dit is een recente

ontwikkeling die volgt uit de vooruitgang in het verwerven van data alsook uit het

bestaan van betere en eenvoudigere manieren om data te delen. Uiteraard leidt de

aanwezigheid van een grotere hoeveelheid informatie tot een onmiskenbaar voordeel.

Maar dit kan ook nadelen meebrengen: sommige experimentele stappen uit het

dataverwerkingsproces nemen vaak veel tijd in beslag en zijn vaak heel duur. Het

is dan noodzakelijk deze stappen te beperken tot een welgekozen subset van de

volledige dataset. Belangrijk hierbij is dat de subset even informatief is als de totale

dataset, wat inhoudt dat alle variabiliteit van de totale data set ook aanwezig moet

zijn in de subset. In deze thesis bestuderen we eveneens een bijkomend aspect:

we beschouwen een multi-experimentele dataset en verwachten dus dat het aantal

geselecteerde samples van een bepaald experiment in de subset ongeveer evenredig

is met de grootte van dit experiment in de totale set. Het doel is dat de samples

uit de subset uniform verdeeld zijn over dat deel van de parameterruimte waar

samples uit de oorspronkelijke dataset voorkomen, zelfs wanneer de oorspronkelijke

dataset een hogere dichtheid heeft in bepaalde gebieden. De distributie van die

subset zal dus een afgeplatte versie zijn van de distributie van de totale data

set. De meer uniforme distributie van de subset impliceert dat deze een hogere

variantie heeft, wat toelaat om het subsetselectieprobleem te transformeren naar

een optimalisatieprobleem met als objectief het maximaliseren van de variantie van

elke variabele voor de geselecteerde subset

Hoofdstuk 6 bespreekt verschillende methoden die kunnen toegepast worden voor

de selectie van een optimale subset van samples, zoals het Kennard and Stone

algoritme, het Optimizable k-Dissimilarity Selection algoritme en een algoritme

gebaseerd op clustering van data. Dit zijn allen specifieke algoritmes die werden

ontwikkeld om het standaard subsetselectieprobleem op te lossen. Ze streven dus

ook naar het bekomen van een subset met een meer uniforme distributie, maar

zonder dat hiervoor een specifieke grootheid wordt geoptimaliseerd. Door de trans-

formatie naar een optimalisatieprobleem is het mogelijk om ook combinatorische

optimalisatiealgoritmen toe te passen op het subsetselectieprobleem. Genetische

Algoritmen (GA) lijkt hiervoor een ideale kandidaat. Genetische algoritmen werken

met een populatie van chromosonen met een binair karakter dat perfect kan gebruikt

worden om de selectie van samples aan te duiden. Alvorens Genetische Algoritmen

kan toegepast worden op het subsetselectieprobleem, is het nodig om een nieuwe

mutatie- en kruisingoperatie te definiëren, zodat het totaal aantal geselecteerde

samples constant kan worden gehouden. Om Genetische Algoritmen te vergelijken

met een ander biologisch gëınspireerd algoritme, hebben we ervoor gekozen om
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het subsetselectieprobleem ook op te lossen met Ant Colony Systems (ACO). Dit

algoritme werd ontwikkeld voor een beperkte klasse van subsetselectieproblemen,

de zogenaamde knapzakproblemen. Net zoals bij de chromosonen van GA, wordt

ook bij ACO de selectie van samples voorgesteld aan de hand van een reeks bits.

Deze representatie gaat echter gepaard met een bias. Bij de constructie van mo-

gelijke subsets, werd het originele ACO algoritme aangepast om dit probleem op

te lossen. Tevens hebben we gekozen voor een parallelle implementatie van dit

algoritme, aangezien ACO computationeel veeleisend is wanneer het op dit type

subsetselectieproblemen wordt toegepast. Een groot voordeel van de herformulering

van het subsetselectieprobleem als een optimalisatieprobleem is dat aan de hand

van de objectieffunctie het multi-experimentele aspect van de data in rekening

kan gebracht worden. De objectieffunctie kan de selectie van samples zo sturen

dat een aantal samples uit elk experiment aanwezig zijn in de resulterende sub-

set. Zonder het aantal samples van elk experiment expliciet te moeten bepalen,

wordt automatisch bekomen dat het aantal samples van elk experiment in de

subset ongeveer proportioneel is met de grootte van elk experiment in de totale

dataset. Bescheiden afwijkingen zijn mogelijk wanneer bepaalde experimenten

relatief meer samples nodig hebben voor een even informatieve representatie in een

subset dan andere experimenten. Bij de klassieke subsetselectiealgoritmen kan het

multi-experimentele aspect van de data enkel in rekening gebracht worden door het

aantal geselecteerde samples van elk experiment op voorhand vast te leggen. De

meest voor de hand liggende manier om dit te doen, is het onafhankelijk beschouwen

van de verschillende experimenten. Afwijkingen worden dan onmogelijk zodat we

verwachten dat een minder optimale subset bekomen wordt.

De verschillende algoritmen worden toegepast op een gevalstudie waarbij de dataset

bestaat uit de concentratie van 45 vetzuren in 1033 melkstalen. Deze melkstalen

zijn afkomstig uit 6 verschillende experimenten. Het objectief is het selecteren van

een subset van melkstalen op een manier dat deze subset informatief is voor de

totale data set, en waarbij elk van de experimenten voldoende vertegenwoordigd is.

De beste resultaten werden verkregen met Genetisch Algoritmen in combinatie met

onze voorgestelde objectieffunctie. De conventionele technieken produceren minder

goede resultaten. Bovendien blijkt het vooraf vastleggen van het aantal geselecteerde

samples per experiment een groot nadeel. We testten zowel het gebruik van een

gelijk aantal samples voor elk experiment als een aantal samples proportioneel aan

de grootte van het experiment. De resultaten waren in beide gevallen slechter dan

de resultaten van GA en ACO, die zelf dynamisch de optimale waarde voor het

aantal samples per experiment bepalen. Hieruit kunnen we concluderen dat het niet

vanzelfsprekend is om manueel een juist aantal samples per experiment te kiezen.

De resultaten met het aangepaste ACO algoritme waren veel beter dan de resultaten

verkregen met het originele algoritme en met de conventionele technieken, wat erop

duidt dat het verwijderen van de bias het algoritme sterk verbetert. De resultaten

verkregen met GA zijn significant beter dan de resultaten met het ACO algoritme.
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Bovendien blijft het ACO algoritme, ondanks de parallellisatie, computationeel

heel veeleisend.

Deel III: Kalibratie van een water- en energiebalans

model

In het derde deel van dit doctoraat wordt optimalisatie aangewend bij de kalibratie

van een complex wiskundig model. We spitsen ons hierbij toe op hydrologisch

modellen, die vaak werken met een complexe verzameling van ingangsvariabelen en

uitgangsvariabelen bestaande uit meteorologische data gecombineerd met een groot

aantal topografische parameters, landbedekkingsparameters en bodemparameters.

Zoals beschreven wordt in Hoofdstuk 9 hangen dergelijke modellen bovendien af van

een aantal modelparameters die moeten worden geschat aan de hand van gemeten

data, alvorens het model kan worden toegepast om toekomstige data te voorspellen.

Deze schattingen zijn essentieel opdat de geconstrueerde modellen nuttig zouden

kunnen worden toegepast. In het ideale geval zouden deze parameters verkregen

worden door observaties ter plaatse. In de praktijk is dit meestal onmogelijk omwille

van verschillende redenen: een verschil in ruimtelijke schaal tussen de meting van

de modelparameters en de toepassing van het model, de niet-fysische betekenis

van een aantal parameters, een inconsistentie tussen de modelparameters en de ter

plaatse geobserveerde parameters als gevolg van een simplificatie van de realiteit in

het model of door het hoge aantal van model parameters in bijvoorbeeld ruimtelijk

gedistribueerde modellen. Daarom worden de parameters numeriek geschat met

behulp van gemeten data, waarbij getracht wordt de uitgang die het model voorspelt

voor de gemeten ingangsvariabelen zo goed mogelijk in overeenstemming te krijgen

met de gemeten waarden voor de uitgangsvariabelen.

In Hoofdstuk 10 bespreken we de methoden die in deze thesis worden gebruikt voor

de kalibratie van dergelijk hydrologisch model. Opnieuw stellen we ons tot doel

om een probleemspecifieke methode te vergelijken met een algemeen toepasbaar

optimalisatiealgoritme. Een specifieke kalibratiemethode voor de schatting van

parameters in een model is de zogenaamde ‘Multistart Weight-Adaptive Recursive

Parameter Estimation’ (MWARPE) methode. Bij de MWARPE methode worden

alle uitgangsvariabelen expliciet in rekening gebracht tijdens het updaten van

de parameters. Deze methode maakt op iteratieve wijze gebruik van de lineaire

recursieve filtervergelijkingen in een Monte-Carlo structuur. Een voordeel is dat

deze methode automatisch rekening houdt met de typische grootteorde van de

verschillende uitgangsvariabelen en het dus geen probleem vormt indien de verschil-

lende modeluitgangen sterk verschillende grootteordes hebben. Het belangrijkste

nadeel van deze methode is echter de computationele kost. MWARPE vereist de

inversie van matrices met een dimensie gelijk aan het totaal aantal observaties.

Deze factor stelt een grote beperking op de hoeveelheid trainingsdata die in de kali-
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bratie van het model kan worden gebruikt. Om het kalibratieprobleem op te lossen

met een algemeen optimalisatiealgoritme kunnen verschillende objectieffuncties

worden geconstrueerd. Allen komen ze neer op het minimaliseren van het verschil

tussen de modeluitgangen en de geobserveerde waarde voor de uitgangsvariabelen.

Indien zou getracht worden om de gemiddelde kwadratische fout (RMSE, root

mean square error) voor elk van de verschillende uitgangsvariabelen afzonderlijk

te optimaliseren, dient een Pareto-front opgesteld te worden. In dat geval wordt

de verschillende grootteorde van de verschillende uitgangsvariabelen eveneens au-

tomatisch in rekening gebracht. Echter, voor een groot aantal uitgangsvariabelen

leidt dit tot een hoog dimensionaal Pareto-front, wat vanuit praktisch oogpunt

heel complex is. We besloten daarom om de verschillende objectieffuncties samen

te voegen tot één objectieffunctie door hun waarden op te tellen. Hierbij moeten

we wel rekening houden met de mogelijke verschillen in grootteorde tussen de

verschillende uitgangsvariabelen, zodat de verschillende RMSE waarden correct

genormaliseerd worden. Als bijbehorende optimalisatiealgoritme wordt gekozen

voor Particle Swarm Optimization (PSO), dat heel eenvoudig kan worden toegepast

op het gegeven probleem.

In Hoofdstuk 11 worden beide methoden met elkaar vergeleken aan de hand van

een gevalstudie met een eenvoudig hydrologisch model dat 11 modelparameters

bevat. Dit model wordt kort gëıntroduceerd. De uitgang van het model bestaat uit

8 variabelen, namelijk de energiebalanstermen en het vochtgehalte van de bodem

op 4 verschillende dieptes, waarvoor uurlijkse observaties beschikbaar zijn. Voor de

kalibratie van het model hebben we data onderverdeeld in 2 periodes die elk 50 %

van de beschikbare data bevatten. De beschikbare data in deze periodes zullen

afwisselend als trainingsdata en validatiedata gebruikt worden. Omwille van de hoge

dimensionaliteit van de te inverteren matrix in de MWARPE methode is het niet

mogelijk om alle uurlijkse observaties te gebruiken en worden enkel de observaties

om 1 uur en 13 uur gebruikt voor de termen van de energiebalans en observaties

om 12 uur voor het vochtgehalte van de bodem. Ook al heeft PSO niet hetzelfde

nadeel, toch wordt in de eerste plaats ook de gereduceerde dataset gebruikt. Dit

maakt een eerlijke vergelijking mogelijk tussen de optimalisatiecapaciteit van beide

methoden. Nadien wordt de meerwaarde van de volledige dataset bestudeerd met

PSO. De resultaten tonen aan dat in meeste gevallen de gemiddelde RMSE voor

de trainingsperiode significant lager is wanneer MWARPE is gebruikt. Echter, dit

significant verschil verdwijnt in de meeste gevallen wanneer gekeken wordt naar

de RMSE in de corresponderende validatieperiode. Dit leidt tot de conclusie dat

beide methoden even bekwaam zijn voor het kalibreren van het hydrologisch model.

Wanneer PSO de volledige dataset kan gebruiken, worden iets betere, maar niet

significant betere, RMSE waarden bekomen. Beide methoden resulteren dus in

min of meer vergelijkbare resultaten. Als we de zwaardere computationele kost

van MWARPE in rekening brengen, dan kan wel besloten worden dat PSO in de

praktijk te verkiezen valt.
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Deel IV: Onzekerheidspropagatie

In de praktijk faalt de aanname dat alle parameters en variabelen in een model

overeenstemmen met fysische grootheden die in theorie exact kunnen gemeten

worden. Bepaalde parameters brengen steeds een inherente onzekerheid met zich

mee, zodat veel ingenieurstoepassingen baat hebben bij een correcte beschrijving

van onzekerheid en de propagatie ervan doorheen een model. In Hoofdstuk 13

beschrijven we hoe onzekerheid kan opgedeeld worden in twee groepen, met name

aleatorische en epistemische onzekerheid. Waar aleatorische of statistische onzeker-

heid verbonden is met de natuurlijke willekeur gerelateerd aan een bepaald proces

en kan beschreven worden met behulp van probabiliteitstheorie, is epistemische

of systematische onzekerheid gerelateerd aan de beperkte hoeveelheid kennis die

aanwezig is over een bepaald systeem. De aannames en benaderingen die een model

maakt als gevolg van dergelijke incomplete kennis van de realiteit, dienen behandeld

te worden als onzekere of vage variabelen. In plaats van een unieke waarde of een

scherpe verzameling van waarden wordt er aan de variabele een vaagverzameling

van waarden toegekend. De mogelijkheid dat de variabele die bepaalde waarde

aanneemt wordt beschreven door de lidmaatschapsgraad van die waarde tot de

vage verzameling. In dit deel van de thesis richten we ons op de propagatie van

vaagheid doorheen wiskundige modellen.

Het objectief van dit deel van dit doctoraat is het ontwikkelen van een compu-

tationeel efficiënte ‘Fuzzy Calculator’ die in staat is om vage ingangsvariabelen

met gegeven lidmaatschapsfuncties doorheen een willekeurige functie of model

te propageren en de lidmaatschapsfunctie van de vage uitgang te bepalen. De

noodzakelijke methodologie wordt gëıntroduceerd in Hoofdstuk 14. De theoretis-

che grondslagen voor de propagatie van onzekerheid van niet-interactieve vage

ingangsvariabelen zijn vervat in het extensiebeginsel van Zadeh [120]. Een recht-

streekse toepassing van het extensiebeginsel is echter te complex in de meeste

gevallen. Nguyen ontwikkelde daarom een meer praktische aanpak gebaseerd

op α-sneden voor niet-interactieve vage ingangsvariabelen [121]. Een α-snede is

gedefinieerd als de scherpe verzameling van elementen die behoren tot de vage vari-

abele met een minimale lidmaatschapsgraad α. Deze aanpak is enkel mogelijk in het

geval van bovensemicontinue, convexe vaagverzamelingen met een compacte drager.

Variabelen die aan deze eigenschappen voldoen worden vaagintervallen genoemd.

In het geval dat alle ingangsvariabelen van de functie vaagintervallen zijn, dan is de

uitgangsvariabele eveneens een vaaginterval. De α-sneden van de uitgang worden

begrensd door het minimum en maximum van de functie in de hyperrechthoek,

gevormd door de α-sneden van de vaagintervallen voor de ingangsvariabelen. Het

probleem is dus getransformeerd in een optimalisatieprobleem waarbij we het mini-

mum en het maximum van een functie in een bepaald gebied moeten bepalen. Deze

praktische aanpak werd uitgebreid door Fullér en Keresztfalvi [123] voor het geval

van interactieve vaagintervallen. Hierbij wordt aangenomen dat de interactiviteit
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wordt gemodelleerd aan de hand van triangulaire normen (t-normen), een begrip dat

eveneens wordt gëıntroduceerd in Hoofdstuk 14. We definiëren vier basis t-normen,

met name de minimum t-norm, de product t-norm, de  Lukasiewicz t-norm en de

drastic t-norm. De minimum t-norm komt overeen met niet-interactiviteit. Bij

interactieve variabelen komen α-sneden niet langer overeen met een hyperrechthoek

maar met een meer algemeen gebied waarbinnen het minimum en het maximum

van de functie moeten worden bepaald.

In het geval van monotone continue functies van niet-interactieve vage ingangsvari-

abelen bestaan verschillende praktische implementaties van het extensiebeginsel

gebaseerd op α-sneden in de literatuur. Essentieel voor de werking van al deze

methoden is dat in het geval van een monotone functie, gedefinieerd op een hyper-

rechthoek, de extreme waarden van deze functie gelokaliseerd zijn op de hoekpunten

van deze hyperrechthoek. In het geval van niet-monotone functies moeten het mini-

mum en het maximum van de functie, die samen de α-sneden van de uitgangsvariabe-

len bepalen, gezocht worden binnen de hyperrechthoek. Bij interactieve variabelen

wordt het zoekgebied vervormd, wat in rekening kan gebracht worden door niet-

lineaire bindingsvoorwaarden toe te voegen aan het optimalisatieprobleem. In het

meest algemene geval moeten we dus een gebonden optimalisatieprobleem oplossen.

Voor de ontwikkeling van deze ‘Fuzzy Calculator’ werden vier optimalisatiealgorit-

men vergeleken, meer bepaald Gradient Descent gebaseerd op Sequential Quadratic

Programming (GD), Simplex-Simulated Annealing (SIMPSA), Particle Swarm

Optimization (PSO) en Particle Swarm Optimization gecombineerd met Gradient

Descent gebaseerd op Sequential Quadratic Programming (PSO GD). Voor het

aantal α-sneden werden twee methodologieën vooropgesteld: ofwel wordt gewerkt

met een vast aantal sneden, ofwel met een variabel aantal α-sneden. In het laatste

geval wordt gestart met een klein aantal α-sneden en worden nieuwe sneden aange-

maakt zolang niet voldaan is aan een convergentiecriterium op basis van lineaire

interpolatie. We hebben zowel een niet parallelle als een parallelle implementatie

de ‘Fuzzy Calculator’ ontwikkeld. De parallelle implementatie is enkel belangrijk

wanneer PSO gebruikt wordt als optimalisatiealgoritme. Aangezien het zoekgebied

voor de verschillende optimalisatieproblemen corresponderend met de verschillende

α-sneden grotendeels overlappen, kunnen de verschillende PSO zwermen van elkaar

de locatie van mogelijke extrema leren indien ze in staat zijn om met elkaar te

communiceren. Het doel is dus om via communicatie de extrema meer nauwkeurig

en sneller te lokaliseren. Tot slot controleren we ook of er geen inconsistenties op-

treden in de uiteindelijke lidmaatschapsfunctie van de uitgang: gegeven de definitie

van de lidmaatschapsfunctie is het onmogelijk dat het minimum (maximum) van

een hoger gelegen α-snede kleiner (groter) is dan het minimum (maximum) van

een lager gelegen α-snede. We stellen twee mogelijke technieken voor om dergelijke

inconsistenties te corrigeren indien ze zich toch voordoen. Een eerste mogelijkheid

is om het minimum (maximum) van de betreffende α-snede gelijk te stellen aan het

minimum (maximum) van de hoger gelegen α-snede. Een andere oplossing is om
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het oude resultaat weg te gooien en het minimum (maximum) van de betreffende

α-snede opnieuw te berekenen.

Om na te gaan welke configuratie van de ‘Fuzzy Calculator’ het best presteert,

hebben we deze eerst toegepast op 9 continue testfuncties in Hoofdstuk 15. Ini-

tieel hebben we ons hierbij beperkt tot niet-interactieve ingangsvariabelen. Om

de verschillende optimalisatiealgoritmen met elkaar te vergelijken werd in een

eerste testconfiguratie het aantal α-sneden vast gezet op 11. Als nauwkeurighei-

dsmaat werd gekozen voor de oppervlakte onder de lidmaatschapsfunctie van het

vaaginterval voor de uitgangsvariabele. Zowel voor de parallelle als voor de niet

parallelle implementatie resulteert de ‘Fuzzy Calculator’ die gebruik maakt van

PSO GD met een populatiegrootte van 20 partikels als optimalisatiealgoritme tot

significant betere resultaten dan de ‘Fuzzy Calculator’ gebruik makend van de

andere optimalisatiealgoritmen. De resultaten tonen ook aan dat communicatie,

met een communicatiefrequentie om de 5 iteraties, in de parallelle versie van de

‘Fuzzy Calculator’ een significant voordeel oplevert. Het corresponderende aantal

functie-evaluaties is echter significant hoger voor de parallelle ‘Fuzzy Calculator’,

zodat een betere lokalisatie van de extrema wel gepaard gaat met een hoger aantal

iteraties. In een tweede testconfiguratie werd gewerkt met een variabel aantal

α-sneden, startende van 3 α-sneden. De lidmaatschapsfunctie opgebouwd door

de ‘Fuzzy Calculator’ startende met 3 α-sneden is significant nauwkeuriger dan

wanneer het aantal α-sneden gefixeerd is op 11. Uiteraard gaat dit opnieuw gepaard

met een significant hoger aantal α-sneden. Tot slot werden de twee voorstellen voor

de correctie van inconsistenties tussen de α-sneden vergeleken. Er is geen verschil

aanwezig in nauwkeurigheid van de lidmaatschapsfuncties opgebouwd in het geval

van deze twee aanpakken. Het aantal functie-evaluaties is wel significant lager wan-

neer de inconsistente α-sneden opnieuw worden berekend. We kunnen dus besluiten

dat de ‘Fuzzy Calculator’ met een variabel aantal α-sneden, met PSO GD met een

populatiegrootte van 20 en communicatie elke 5 iteraties en met het herberekenen

van inconsistente α-sneden tot de meest nauwkeurige lidmaatschapsfunctie voor

de vage uitgangsvariabele leidt. Deze ‘Fuzzy Calculator’ werd dan ook toegepast

op de 9 testfuncties wanneer interactiviteit tussen de ingangsvariabelen wordt

ingeschakeld. Hierbij hebben we ons beperkt tot interactiviteit beschreven door

de vier basis t-normen. Zoals kon verwacht worden is de oppervlakte onder de

lidmaatschapsfunctie het grootst voor de minimum t-norm, gevolgd door de product

norm, gevolgd door de  Lukasiewicz t-norm and tot slot de drastic t-norm. De

toevoeging van niet-lineaire bindingsvoorwaarden aan het optimalisatieprobleem

heeft geen invloed op het aantal functie-evaluaties.

Om de praktische toepasbaarheid van de ‘Fuzzy Calculator’ na te gaan hebben

we deze ook toegepast op een meer complex en praktisch model in Hoofdstuk 16.

Hiervoor hebben we gekozen voor het ‘Integral Equation Model’ (IEM), dat aan de

hand van informatie over de achterwaartse verstrooiingscoëfficiënt en de ruwhei-

dsparameters van een medium in staat is om het vochtgehalte van dit medium te
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berekenen. Terwijl de achterwaartse verstrooiingscoëfficiënt kan bekomen worden

uit RADAR beelden, is het bepalen van de ruwheidsparameters van het medium

veel complexer, wat resulteert in onzekerheid omtrent de precieze waarde. Deze

onzekerheid kunnen we doorheen het IEM propageren aan de hand van de ‘Fuzzy

Calculator’. Onze resultaten werden vergeleken met een vroegere studie van de

onzekerheidspropagatie doorheen dit model door Vernieuwe et. al. [141]. In tegen-

stelling tot ons algoritme, zoekt het algoritme dat gebruikt werd in Vernieuwe et.

al. enkel op de rand van de zoekruimte. Voor een niet monotoon model verwachten

we dus grote verschillen en een betere prestatie voor onze ‘Fuzzy Calculator’.

Aangezien het verschil in oppervlakte onder de lidmaatschapsfuncties tussen deze

twee methoden heel klein is, hebben we waarschijnlijk te maken met een model met

geringe niet-monotoniteit. We kunnen dus wel besluiten dat onze ‘Fuzzy Calculator’

eveneens goed presteert wanneer de optima zich op de rand bevinden, en wegens

zijn algemeenheid dus heel ruim inzetbaar is.

Besluiten en vooruitzichten

De verschillende delen van dit doctoraat laten toe te besluiten dat de heuristische

optimalisatietechnieken de competitie aankunnen met probleemspecifieke algorit-

men. De heuristische optimalisatietechnieken hebben daarbij het grote voordeel

van algemeenheid, zodat ze vaak op een ruimere klasse van problemen toepasbaar

zijn, en vallen bovendien vaak vrij eenvoudig te implementeren.

In deze doctoraatsthesis hebben we ons geconcentreerd op problemen die één

objectief nastreven. Echter, in vele toepassingen bestaan er problemen waar-

bij meerdere objectieven worden nagestreefd. Voorbeelden hiervan zijn onder

andere het grote aantal objectieven in bosbeheer (houtproductie, biodiversiteit,

waterkwaliteit, recreatie, enzovoort), de aanwezigheid van meerdere objectieven in

landbouw (maximale inkomsten met een minimum aan irrigatie, meststoffen en

aantal werkmensen), de optimalisatie van de verwijdering van meerdere componen-

ten in waterzuiveringinstallaties, enzovoort. Er bestaan verschillende manieren om

een probleem die meerdere objectieven nastreven te optimaliseren. Eén manier is

samenvoegen van de verschillende objectieffuncties tot één objectieffunctie, zoals we

reeds gedaan hebben voor de kalibratie van het hydrologisch model (Deel III). Een

meer complete aanpak is de constructie van een Pareto-front. Hiervoor bestaan

er verschillende algoritmen, maar wanneer vele objectieven aanwezig zijn wordt

dit toch heel complex. Een interessant toekomstig onderzoeksproject is dus om

ook in het geval van problemen waarbij meerdere objectieven worden nagestreefd,

een vergelijking te maken tussen probleemspecifieke methoden en metaheuristische

algoritmen. Ondanks de hogere wiskundige complexiteit, kan het rekening houden

met de meerdere objectieven ook tot een verbetering van de resultaten leiden voor

de problemen die in dit doctoraat met behulp van n objectief werden bestudeerd.
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Dutch summary

Zo kan ook in het subsetselectieprobleem (Deel II) gebruik gemaakt worden van een

tweede objectief, meer bepaald de afwijking van het gemiddelde, welke we in dit

doctoraat slechts gebruikt hebben als verificatie voor de geselecteerde subset.
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