307 research outputs found

    Isogeny graphs with maximal real multiplication

    Get PDF
    An isogeny graph is a graph whose vertices are principally polarized abelian varieties and whose edges are isogenies between these varieties. In his thesis, Kohel described the structure of isogeny graphs for elliptic curves and showed that one may compute the endomorphism ring of an elliptic curve defined over a finite field by using a depth first search algorithm in the graph. In dimension 2, the structure of isogeny graphs is less understood and existing algorithms for computing endomorphism rings are very expensive. Our setting considers genus 2 jacobians with complex multiplication, with the assumptions that the real multiplication subring is maximal and has class number one. We fully describe the isogeny graphs in that case. Over finite fields, we derive a depth first search algorithm for computing endomorphism rings locally at prime numbers, if the real multiplication is maximal. To the best of our knowledge, this is the first DFS-based algorithm in genus 2

    Pairing-based algorithms for jacobians of genus 2 curves with maximal endomorphism ring

    Get PDF
    Using Galois cohomology, Schmoyer characterizes cryptographic non-trivial self-pairings of the â„“\ell-Tate pairing in terms of the action of the Frobenius on the â„“\ell-torsion of the Jacobian of a genus 2 curve. We apply similar techniques to study the non-degeneracy of the â„“\ell-Tate pairing restrained to subgroups of the â„“\ell-torsion which are maximal isotropic with respect to the Weil pairing. First, we deduce a criterion to verify whether the jacobian of a genus 2 curve has maximal endomorphism ring. Secondly, we derive a method to construct horizontal (â„“,â„“)(\ell,\ell)-isogenies starting from a jacobian with maximal endomorphism ring

    Explicit CM-theory for level 2-structures on abelian surfaces

    Full text link
    For a complex abelian variety AA with endomorphism ring isomorphic to the maximal order in a quartic CM-field KK, the Igusa invariants j1(A),j2(A),j3(A)j_1(A), j_2(A),j_3(A) generate an abelian extension of the reflex field of KK. In this paper we give an explicit description of the Galois action of the class group of this reflex field on j1(A),j2(A),j3(A)j_1(A),j_2(A),j_3(A). We give a geometric description which can be expressed by maps between various Siegel modular varieties. We can explicitly compute this action for ideals of small norm, and this allows us to improve the CRT method for computing Igusa class polynomials. Furthermore, we find cycles in isogeny graphs for abelian surfaces, thereby implying that the `isogeny volcano' algorithm to compute endomorphism rings of ordinary elliptic curves over finite fields does not have a straightforward generalization to computing endomorphism rings of abelian surfaces over finite fields

    Easy scalar decompositions for efficient scalar multiplication on elliptic curves and genus 2 Jacobians

    Get PDF
    The first step in elliptic curve scalar multiplication algorithms based on scalar decompositions using efficient endomorphisms-including Gallant-Lambert-Vanstone (GLV) and Galbraith-Lin-Scott (GLS) multiplication, as well as higher-dimensional and higher-genus constructions-is to produce a short basis of a certain integer lattice involving the eigenvalues of the endomorphisms. The shorter the basis vectors, the shorter the decomposed scalar coefficients, and the faster the resulting scalar multiplication. Typically, knowledge of the eigenvalues allows us to write down a long basis, which we then reduce using the Euclidean algorithm, Gauss reduction, LLL, or even a more specialized algorithm. In this work, we use elementary facts about quadratic rings to immediately write down a short basis of the lattice for the GLV, GLS, GLV+GLS, and Q-curve constructions on elliptic curves, and for genus 2 real multiplication constructions. We do not pretend that this represents a significant optimization in scalar multiplication, since the lattice reduction step is always an offline precomputation---but it does give a better insight into the structure of scalar decompositions. In any case, it is always more convenient to use a ready-made short basis than it is to compute a new one

    Isogeny graphs with maximal real multiplication

    Get PDF
    An isogeny graph is a graph whose vertices are principally polarizable abelian varieties and whose edges are isogenies between these varieties. In his thesis, Kohel describes the structure of isogeny graphs for elliptic curves and shows that one may compute the endomorphism ring of an elliptic curve defined over a finite field by using a depth-first search (DFS) algorithm in the graph. In dimension 2, the structure of isogeny graphs is less understood and existing algorithms for computing endomorphism rings are very expensive. In this article, we show that, under certain circumstances, the problem of determining the endomorphism ring can also be solved in genus 2 with a DFS-based algorithm. We consider the case of genus-2 Jacobians with complex multiplication, with the assumptions that the real multiplication subring is maximal and has class number one. We describe the isogeny graphs in that case, locally at prime numbers which split in the real multiplication subfield. The resulting algorithm is implemented over finite fields, and examples are provided. To the best of our knowledge, this is the first DFS-based algorithm in genus 2

    Computing endomorphism rings of abelian varieties of dimension two

    Get PDF
    Generalizing a method of Sutherland and the author for elliptic curves, we design a subexponential algorithm for computing the endomorphism rings of ordinary abelian varieties of dimension two over finite fields. Although its correctness and complexity analysis rest on several assumptions, we report on practical computations showing that it performs very well and can easily handle previously intractable cases.Comment: 14 pages, 2 figure

    Families of explicitly isogenous Jacobians of variable-separated curves

    Get PDF
    We construct six infinite series of families of pairs of curves (X,Y) of arbitrarily high genus, defined over number fields, together with an explicit isogeny from the Jacobian of X to the Jacobian of Y splitting multiplication by 2, 3, or 4. For each family, we compute the isomorphism type of the isogeny kernel and the dimension of the image of the family in the appropriate moduli space. The families are derived from Cassou--Nogu\`es and Couveignes' explicit classification of pairs (f,g) of polynomials such that f(x_1) - g(x_2) is reducible

    Isogeny graphs of ordinary abelian varieties

    Get PDF
    Fix a prime number â„“\ell. Graphs of isogenies of degree a power of â„“\ell are well-understood for elliptic curves, but not for higher-dimensional abelian varieties. We study the case of absolutely simple ordinary abelian varieties over a finite field. We analyse graphs of so-called l\mathfrak l-isogenies, resolving that they are (almost) volcanoes in any dimension. Specializing to the case of principally polarizable abelian surfaces, we then exploit this structure to describe graphs of a particular class of isogenies known as (â„“,â„“)(\ell, \ell)-isogenies: those whose kernels are maximal isotropic subgroups of the â„“\ell-torsion for the Weil pairing. We use these two results to write an algorithm giving a path of computable isogenies from an arbitrary absolutely simple ordinary abelian surface towards one with maximal endomorphism ring, which has immediate consequences for the CM-method in genus 2, for computing explicit isogenies, and for the random self-reducibility of the discrete logarithm problem in genus 2 cryptography.Comment: 36 pages, 4 figure
    • …
    corecore