research

Explicit CM-theory for level 2-structures on abelian surfaces

Abstract

For a complex abelian variety AA with endomorphism ring isomorphic to the maximal order in a quartic CM-field KK, the Igusa invariants j1(A),j2(A),j3(A)j_1(A), j_2(A),j_3(A) generate an abelian extension of the reflex field of KK. In this paper we give an explicit description of the Galois action of the class group of this reflex field on j1(A),j2(A),j3(A)j_1(A),j_2(A),j_3(A). We give a geometric description which can be expressed by maps between various Siegel modular varieties. We can explicitly compute this action for ideals of small norm, and this allows us to improve the CRT method for computing Igusa class polynomials. Furthermore, we find cycles in isogeny graphs for abelian surfaces, thereby implying that the `isogeny volcano' algorithm to compute endomorphism rings of ordinary elliptic curves over finite fields does not have a straightforward generalization to computing endomorphism rings of abelian surfaces over finite fields

    Similar works

    Full text

    thumbnail-image

    Available Versions