155,465 research outputs found

    Computing an Exact Gaussian Scale-Space

    Full text link

    Ensemble Kalman methods for high-dimensional hierarchical dynamic space-time models

    Full text link
    We propose a new class of filtering and smoothing methods for inference in high-dimensional, nonlinear, non-Gaussian, spatio-temporal state-space models. The main idea is to combine the ensemble Kalman filter and smoother, developed in the geophysics literature, with state-space algorithms from the statistics literature. Our algorithms address a variety of estimation scenarios, including on-line and off-line state and parameter estimation. We take a Bayesian perspective, for which the goal is to generate samples from the joint posterior distribution of states and parameters. The key benefit of our approach is the use of ensemble Kalman methods for dimension reduction, which allows inference for high-dimensional state vectors. We compare our methods to existing ones, including ensemble Kalman filters, particle filters, and particle MCMC. Using a real data example of cloud motion and data simulated under a number of nonlinear and non-Gaussian scenarios, we show that our approaches outperform these existing methods

    Optimal low-rank approximations of Bayesian linear inverse problems

    Full text link
    In the Bayesian approach to inverse problems, data are often informative, relative to the prior, only on a low-dimensional subspace of the parameter space. Significant computational savings can be achieved by using this subspace to characterize and approximate the posterior distribution of the parameters. We first investigate approximation of the posterior covariance matrix as a low-rank update of the prior covariance matrix. We prove optimality of a particular update, based on the leading eigendirections of the matrix pencil defined by the Hessian of the negative log-likelihood and the prior precision, for a broad class of loss functions. This class includes the F\"{o}rstner metric for symmetric positive definite matrices, as well as the Kullback-Leibler divergence and the Hellinger distance between the associated distributions. We also propose two fast approximations of the posterior mean and prove their optimality with respect to a weighted Bayes risk under squared-error loss. These approximations are deployed in an offline-online manner, where a more costly but data-independent offline calculation is followed by fast online evaluations. As a result, these approximations are particularly useful when repeated posterior mean evaluations are required for multiple data sets. We demonstrate our theoretical results with several numerical examples, including high-dimensional X-ray tomography and an inverse heat conduction problem. In both of these examples, the intrinsic low-dimensional structure of the inference problem can be exploited while producing results that are essentially indistinguishable from solutions computed in the full space

    Filtering and Smoothing with Score-Driven Models

    Full text link
    We propose a methodology for filtering, smoothing and assessing parameter and filtering uncertainty in misspecified score-driven models. Our technique is based on a general representation of the well-known Kalman filter and smoother recursions for linear Gaussian models in terms of the score of the conditional log-likelihood. We prove that, when data are generated by a nonlinear non-Gaussian state-space model, the proposed methodology results from a first-order expansion of the true observation density around the optimal filter. The error made by such approximation is assessed analytically. As shown in extensive Monte Carlo analyses, our methodology performs very similarly to exact simulation-based methods, while remaining computationally extremely simple. We illustrate empirically the advantages in employing score-driven models as misspecified filters rather than purely predictive processes.Comment: 33 pages, 5 figures, 6 table
    • …
    corecore