365 research outputs found

    Computing Real Roots of Real Polynomials -- An Efficient Method Based on Descartes' Rule of Signs and Newton Iteration

    Get PDF
    Computing the real roots of a polynomial is a fundamental problem of computational algebra. We describe a variant of the Descartes method that isolates the real roots of any real square-free polynomial given through coefficient oracles. A coefficient oracle provides arbitrarily good approximations of the coefficients. The bit complexity of the algorithm matches the complexity of the best algorithm known, and the algorithm is simpler than this algorithm. The algorithm derives its speed from the combination of Descartes method with Newton iteration. Our algorithm can also be used to further refine the isolating intervals to an arbitrary small size. The complexity of root refinement is nearly optimal

    Computing Real Roots of Real Polynomials ... and now For Real!

    Full text link
    Very recent work introduces an asymptotically fast subdivision algorithm, denoted ANewDsc, for isolating the real roots of a univariate real polynomial. The method combines Descartes' Rule of Signs to test intervals for the existence of roots, Newton iteration to speed up convergence against clusters of roots, and approximate computation to decrease the required precision. It achieves record bounds on the worst-case complexity for the considered problem, matching the complexity of Pan's method for computing all complex roots and improving upon the complexity of other subdivision methods by several magnitudes. In the article at hand, we report on an implementation of ANewDsc on top of the RS root isolator. RS is a highly efficient realization of the classical Descartes method and currently serves as the default real root solver in Maple. We describe crucial design changes within ANewDsc and RS that led to a high-performance implementation without harming the theoretical complexity of the underlying algorithm. With an excerpt of our extensive collection of benchmarks, available online at http://anewdsc.mpi-inf.mpg.de/, we illustrate that the theoretical gain in performance of ANewDsc over other subdivision methods also transfers into practice. These experiments also show that our new implementation outperforms both RS and mature competitors by magnitudes for notoriously hard instances with clustered roots. For all other instances, we avoid almost any overhead by integrating additional optimizations and heuristics.Comment: Accepted for presentation at the 41st International Symposium on Symbolic and Algebraic Computation (ISSAC), July 19--22, 2016, Waterloo, Ontario, Canad

    A Near-Optimal Algorithm for Computing Real Roots of Sparse Polynomials

    Full text link
    Let pZ[x]p\in\mathbb{Z}[x] be an arbitrary polynomial of degree nn with kk non-zero integer coefficients of absolute value less than 2τ2^\tau. In this paper, we answer the open question whether the real roots of pp can be computed with a number of arithmetic operations over the rational numbers that is polynomial in the input size of the sparse representation of pp. More precisely, we give a deterministic, complete, and certified algorithm that determines isolating intervals for all real roots of pp with O(k3log(nτ)logn)O(k^3\cdot\log(n\tau)\cdot \log n) many exact arithmetic operations over the rational numbers. When using approximate but certified arithmetic, the bit complexity of our algorithm is bounded by O~(k4nτ)\tilde{O}(k^4\cdot n\tau), where O~()\tilde{O}(\cdot) means that we ignore logarithmic. Hence, for sufficiently sparse polynomials (i.e. k=O(logc(nτ))k=O(\log^c (n\tau)) for a positive constant cc), the bit complexity is O~(nτ)\tilde{O}(n\tau). We also prove that the latter bound is optimal up to logarithmic factors

    Computing Real Roots of Real Polynomials

    Full text link
    Computing the roots of a univariate polynomial is a fundamental and long-studied problem of computational algebra with applications in mathematics, engineering, computer science, and the natural sciences. For isolating as well as for approximating all complex roots, the best algorithm known is based on an almost optimal method for approximate polynomial factorization, introduced by Pan in 2002. Pan's factorization algorithm goes back to the splitting circle method from Schoenhage in 1982. The main drawbacks of Pan's method are that it is quite involved and that all roots have to be computed at the same time. For the important special case, where only the real roots have to be computed, much simpler methods are used in practice; however, they considerably lag behind Pan's method with respect to complexity. In this paper, we resolve this discrepancy by introducing a hybrid of the Descartes method and Newton iteration, denoted ANEWDSC, which is simpler than Pan's method, but achieves a run-time comparable to it. Our algorithm computes isolating intervals for the real roots of any real square-free polynomial, given by an oracle that provides arbitrary good approximations of the polynomial's coefficients. ANEWDSC can also be used to only isolate the roots in a given interval and to refine the isolating intervals to an arbitrary small size; it achieves near optimal complexity for the latter task.Comment: to appear in the Journal of Symbolic Computatio

    Near Optimal Subdivision Algorithms for Real Root Isolation

    Full text link
    We describe a subroutine that improves the running time of any subdivision algorithm for real root isolation. The subroutine first detects clusters of roots using a result of Ostrowski, and then uses Newton iteration to converge to them. Near a cluster, we switch to subdivision, and proceed recursively. The subroutine has the advantage that it is independent of the predicates used to terminate the subdivision. This gives us an alternative and simpler approach to recent developments of Sagraloff (2012) and Sagraloff-Mehlhorn (2013), assuming exact arithmetic. The subdivision tree size of our algorithm using predicates based on Descartes's rule of signs is bounded by O(nlogn)O(n\log n), which is better by O(nlogL)O(n\log L) compared to known results. Our analysis differs in two key aspects. First, we use the general technique of continuous amortization from Burr-Krahmer-Yap (2009), and second, we use the geometry of clusters of roots instead of the Davenport-Mahler bound. The analysis naturally extends to other predicates.Comment: 19 pages, 3 figure

    When Newton meets Descartes: A Simple and Fast Algorithm to Isolate the Real Roots of a Polynomial

    Full text link
    We introduce a new algorithm denoted DSC2 to isolate the real roots of a univariate square-free polynomial f with integer coefficients. The algorithm iteratively subdivides an initial interval which is known to contain all real roots of f. The main novelty of our approach is that we combine Descartes' Rule of Signs and Newton iteration. More precisely, instead of using a fixed subdivision strategy such as bisection in each iteration, a Newton step based on the number of sign variations for an actual interval is considered, and, only if the Newton step fails, we fall back to bisection. Following this approach, our analysis shows that, for most iterations, we can achieve quadratic convergence towards the real roots. In terms of complexity, our method induces a recursion tree of almost optimal size O(nlog(n tau)), where n denotes the degree of the polynomial and tau the bitsize of its coefficients. The latter bound constitutes an improvement by a factor of tau upon all existing subdivision methods for the task of isolating the real roots. In addition, we provide a bit complexity analysis showing that DSC2 needs only \tilde{O}(n^3tau) bit operations to isolate all real roots of f. This matches the best bound known for this fundamental problem. However, in comparison to the much more involved algorithms by Pan and Sch\"onhage (for the task of isolating all complex roots) which achieve the same bit complexity, DSC2 focuses on real root isolation, is very easy to access and easy to implement

    On the Complexity of Real Root Isolation

    Full text link
    We introduce a new approach to isolate the real roots of a square-free polynomial F=i=0nAixiF=\sum_{i=0}^n A_i x^i with real coefficients. It is assumed that each coefficient of FF can be approximated to any specified error bound. The presented method is exact, complete and deterministic. Due to its similarities to the Descartes method, we also consider it practical and easy to implement. Compared to previous approaches, our new method achieves a significantly better bit complexity. It is further shown that the hardness of isolating the real roots of FF is exclusively determined by the geometry of the roots and not by the complexity or the size of the coefficients. For the special case where FF has integer coefficients of maximal bitsize τ\tau, our bound on the bit complexity writes as O~(n3τ2)\tilde{O}(n^3\tau^2) which improves the best bounds known for existing practical algorithms by a factor of n=degFn=deg F. The crucial idea underlying the new approach is to run an approximate version of the Descartes method, where, in each subdivision step, we only consider approximations of the intermediate results to a certain precision. We give an upper bound on the maximal precision that is needed for isolating the roots of FF. For integer polynomials, this bound is by a factor nn lower than that of the precision needed when using exact arithmetic explaining the improved bound on the bit complexity
    corecore