31 research outputs found

    Piecewise smooth chebfuns

    Get PDF
    Algorithms are described that make it possible to manipulate piecewise-smooth functions on real intervals numerically with close to machine precision. Breakpoints are introduced in some such calculations at points determined by numerical rootfinding, and in others by recursive subdivision or automatic edge detection. Functions are represented on each smooth subinterval by Chebyshev series or interpolants. The algorithms are implemented in object-oriented MATLAB in an extension of the chebfun system, which was previously limited to smooth functions on [-1, 1]

    The chebop system for automatic solution of differential equations

    Get PDF
    In MATLAB, it would be good to be able to solve a linear differential equation by typing u = L\f, where f, u, and L are representations of the right-hand side, the solution, and the differential operator with boundary conditions. Similarly it would be good to be able to exponentiate an operator with expm(L) or determine eigenvalues and eigenfunctions with eigs(L). A system is described in which such calculations are indeed possible, based on the previously developed chebfun system in object-oriented MATLAB. The algorithms involved amount to spectral collocation methods on Chebyshev grids of automatically determined resolution

    Convergence of linear barycentric rational interpolation for analytic functions

    Get PDF
    Polynomial interpolation to analytic functions can be very accurate, depending on the distribution of the interpolation nodes. However, in equispaced nodes and the like, besides being badly conditioned, these interpolants fail to converge even in exact arithmetic in some cases. Linear barycentric rational interpolation with the weights presented by Floater and Hormann can be viewed as blended polynomial interpolation and often yields better approximation in such cases. This has been proven for differentiable functions and indicated in several experiments for analytic functions. So far, these rational interpolants have been used mainly with a constant parameter usually denoted by d, the degree of the blended polynomials, which leads to small condition numbers but to merely algebraic convergence. With the help of logarithmic potential theory we derive asymptotic convergence results for analytic functions when this parameter varies with the number of nodes. Moreover, we present suggestions on how to choose d in order to observe fast and stable convergence, even in equispaced nodes where stable geometric convergence is provably impossible. We demonstrate our results with several numerical examples

    An extension of Chebfun to two dimensions

    Get PDF
    An object-oriented MATLAB system is described that extends the capabilities of Chebfun to smooth functions of two variables defined on rectangles. Functions are approximated to essentially machine precision by using iterative Gaussian elimination with complete pivoting to form “chebfun2” objects representing low rank approximations. Operations such as integration, differentiation, function evaluation, and transforms are particularly efficient. Global optimization, the singular value decomposition, and rootfinding are also extended to chebfun2 objects. Numerical applications are presented

    Chebyshev model arithmetic for factorable functions

    Get PDF
    This article presents an arithmetic for the computation of Chebyshev models for factorable functions and an analysis of their convergence properties. Similar to Taylor models, Chebyshev models consist of a pair of a multivariate polynomial approximating the factorable function and an interval remainder term bounding the actual gap with this polynomial approximant. Propagation rules and local convergence bounds are established for the addition, multiplication and composition operations with Chebyshev models. The global convergence of this arithmetic as the polynomial expansion order increases is also discussed. A generic implementation of Chebyshev model arithmetic is available in the library MC++. It is shown through several numerical case studies that Chebyshev models provide tighter bounds than their Taylor model counterparts, but this comes at the price of extra computational burden

    Exploiting structure in floating-point arithmetic

    Get PDF
    Invited paper - MACIS 2015 (Sixth International Conference on Mathematical Aspects of Computer and Information Sciences)International audienceThe analysis of algorithms in IEEE floating-point arithmetic is most often carried out via repeated applications of the so-called standard model, which bounds the relative error of each basic operation by a common epsilon depending only on the format. While this approach has been eminently useful for establishing many accuracy and stability results, it fails to capture most of the low-level features that make floating-point arithmetic so highly structured. In this paper, we survey some of those properties and how to exploit them in rounding error analysis. In particular, we review some recent improvements of several classical, Wilkinson-style error bounds from linear algebra and complex arithmetic that all rely on such structure properties

    Linear barycentric rational quadrature

    Get PDF
    Linear interpolation schemes very naturally lead to quadrature rules. Introduced in the eighties, linear barycentric rational interpolation has recently experienced a boost with the presentation of new weights by Floater and Hormann. The corresponding interpolants converge in principle with arbitrary high order of precision. In the present paper we employ them to construct two linear rational quadrature rules. The weights of the first are obtained through the direct numerical integration of the Lagrange fundamental rational functions; the other rule, based on the solution of a simple boundary value problem, yields an approximation of an antiderivative of the integrand. The convergence order in the first case is shown to be one unit larger than that of the interpolation, under some restrictions. We demonstrate the efficiency of both approaches with numerical test

    Chebyshev Expansions for Solutions of Linear Differential Equations

    Get PDF
    A Chebyshev expansion is a series in the basis of Chebyshev polynomials of the first kind. When such a series solves a linear differential equation, its coefficients satisfy a linear recurrence equation. We interpret this equation as the numerator of a fraction of linear recurrence operators. This interpretation lets us give a simple view of previous algorithms, analyze their complexity, and design a faster one for large orders
    corecore