
Exploiting structure in floating-point arithmetic

Claude-Pierre Jeannerod

To cite this version:

Claude-Pierre Jeannerod. Exploiting structure in floating-point arithmetic. Mathematical As-
pects of Computer and Information Sciences (MACIS), Nov 2015, Berlin, Germany. Springer,
9582, 2016, Lecture Notes in Computer Science. <10.1007/978-3-319-32859-1 2>. <hal-
01247059>

HAL Id: hal-01247059

https://hal.inria.fr/hal-01247059

Submitted on 21 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-01247059

Exploiting structure in floating-point arithmetic

Claude-Pierre Jeannerod

Inria
Laboratoire LIP (CNRS, ENSL, Inria, UCBL), Université de Lyon

Abstract. The analysis of algorithms in IEEE floating-point arithmetic
is most often carried out via repeated applications of the so-called stan-
dard model, which bounds the relative error of each basic operation by
a common epsilon depending only on the format. While this approach
has been eminently useful for establishing many accuracy and stabil-
ity results, it fails to capture most of the low-level features that make
floating-point arithmetic so highly structured. In this paper, we survey
some of those properties and how to exploit them in rounding error
analysis. In particular, we review some recent improvements of several
classical, Wilkinson-style error bounds from linear algebra and complex
arithmetic that all rely on such structure properties.

Keywords: floating-point arithmetic, IEEE standard 754-2008, round-
ing error analysis, high relative accuracy

1 Introduction

When analyzing a priori the behaviour of a numerical algorithm in IEEE floating-
point arithmetic, one most often relies exclusively on the so-called standard
model: for base β, precision p, and rounding to nearest, this model says that
the result r̂ of each basic operation op ∈ {+,−,×, /} on two floating-point num-
bers x and y satisfies

r̂ = (x op y)(1 + δ), |δ| 6 u (1)

with u = 1
2β

1−p the unit roundoff. (Similar relations are also assumed for the
square root and the fused multiply-add (FMA) operations.)

This model has been used long before the appearance of the first version of
IEEE standard 754 [17], [18], and the fact that it gives backward error results
is already emphasized by Wilkinson [43]: considering for example floating-point
addition, it is easily deduced from (1) that r̂ is the exact sum of the slightly
perturbed data x(1 + δ) and y(1 + δ), and, applying this repeatedly, that the
computed approximation to the sum of n floating-point numbers xi has the
form

∑n
i=1 x̃i with |x̃i − xi|/|xi| 6 (1 + u)n−1 − 1 = (n − 1)u + O(u2) for all i.

Backward error analysis based on the standard model (1) has developed far
beyond this basic example and turned out to be eminently useful for establishing
many accuracy and stability results, as Higham’s treatise [14] shows.

Although the standard model holds for IEEE 754 arithmetic as long as un-
derflow and overflow do not occur, it fails, however, to capture most of the
low-level features that make this arithmetic so highly structured. For example,
by ensuring a relative error less than one, (1) implies that r̂ has the same sign
as the exact value x op y, but it does not say that δ should be zero when x op y
is a floating-point number.

Such low-level features are direct consequences of the two main ingredients
of IEEE standard arithmetic. The first ingredient is the set F of floating-point
numbers, which (up to ignoring underflow and overflow) can be viewed as

F = {0} ∪
{
Mβe : M, e ∈ Z, βp−1 6 |M | < βp

}
. (2)

The second ingredient is a rounding function RN : R→ F, which maps any real
number to a nearest element in F:

|RN(t)− t| = min
f∈F
|f − t| for all t ∈ R, (3)

with ties broken according to a given rule (say, round to nearest even). This
rounding function is then used by IEEE standard arithmetic to operate on
floating-point data as follows: in the absence of underflow and overflow, x op y
must be computed as

r̂ = RN(x op y).

This way of combining the structured data in (2) and the minimization prop-
erty (3) implies that r̂ enjoys many more mathematical properties than just (1).

The goal of this paper is to show the benefits of exploiting such lower level
features in the context of rounding error analysis. We begin by recalling some
of these features in section 2. Although the list given there is by no means ex-
haustive (cf. Rump, Ogita, and Oishi [37, §2]), it should already give a good
idea of what can be deduced from (2) and (3). We then review some recent im-
provements of several classical, Wilkinson-style error bounds from linear algebra
and complex arithmetic that all rely on such structure properties. Specifically,
we will see in section 3 that various general algorithms (for summation, inner
products, matrix factorization, polynomial evaluation, . . .) now have a priori
error bounds which are both simpler and sharper than the classical ones. In sec-
tion 4 we will focus on more specific algorithms for core computations like 2× 2
determinants or complex products, and show that in such cases exploiting the
low-level features of IEEE standard arithmetic leads to proofs of high relative
accuracy and tight error bounds.

Throughout this paper we assume for simplicity that β is even, that RN
rounds to nearest even, and that underflow and overflow do not occur. (For
summation, however, the results presented here still hold in the presence of un-
derflow, since then floating-point addition is known to be exact; see Hauser [13].)

For more on floating-point arithmetic, we refer to the complementary texts by
Brent and Zimmermann [3, §3], Corless and Fillion [6, App. A], Demmel [9, §1.5],
Goldberg [10], Golub and Van Loan [11, §2.7], Higham [14, §2], [15], Knuth [27,
§4.2], Monniaux [29], Muller et al. [31], Overton [33], Priest [34], Trefethen [41],
and Trefethen and Bau [42, §13].

2 Low-level properties

Structure of the floating-point number set. By construction, the set F
contains zero, has the symmetry property F = −F, and is invariant under scaling
(that is, multiplication by an integer power of the base): xβk ∈ F for all x ∈ F
and k ∈ Z. More precisely, every element of F is a multiple (by some ±βk) of
an element of the subset F ∩ [1, β). The elements of this subset have the form
1 + jβ1−p, where j is an integer such that 0 6 j < (β − 1)βp−1 and, since
u = 1

2β
1−p, this can be expressed concisely as follows:

F ∩ [1, β) = {1, 1 + 2u, 1 + 4u, 1 + 6u, . . .}.

The numbers lying exactly halfway between two consecutive elements of F, such
as for example 1 + u and 1 + 3u, are called midpoints for F.

Some first consequences of rounding to nearest. Since by definition
|RN(t) − t| 6 |f − t| for all f in F, choosing t = x + ε with x ∈ F and ε ∈ R
gives |RN(x + ε) − (x + ε)| 6 |ε|. With ε = 0 we recover the obvious property
that rounding a floating-point number leaves it unchanged:

x ∈ F ⇒ RN(x) = x. (4)

Setting ε = y with y in F, we deduce further that for floating-point addition the
error bound implied by the standard model (1) can be refined slightly:

x, y ∈ F ⇒ |RN(x+ y)− (x+ y)| 6 min{u|x+ y|, |x|, |y|}. (5)

(Similarly, a sharper bound can be deduced for the FMA operation by taking
ε = yz.) We will see in section 3 how to exploit such a refinement in the context
of floating-point summation.

Besides (4), other basic features include the following ones:

t ∈ R ⇒ |RN(t)| = RN(|t|), (6)

t ∈ R, k ∈ Z ⇒ RN(tβk) = RN(t)βk, (7)

t, t′ ∈ R, t 6 t′ ⇒ RN(t) 6 RN(t′). (8)

Combining (4) with the monotonicity property (8), we see for example that
if x ∈ F satisfies x 6 t for some real t, then x 6 RN(t).

As another example, we note that (4), (7), and (8) already suffice to prove
that the classical approximation to the mean of two floating-point numbers be-
haves as expected in base 2 (but not in base 10): using (7) and then (4) gives
r̂ := RN(RN(x+y)/2) = RN((x+y)/2); then, using f := min{x, y} 6 (x+y)/2 6
max{x, y} =: g together with (8), we deduce that RN(f) 6 r̂ 6 RN(g) and, ap-
plying (4) again, we conclude that f 6 r̂ 6 g.

The functions ufp and ulp. A very convenient tool to go beyond the standard
model is provided by the notion of unit in the first place (ufp), defined in [37] as

ufp(t) =

{
0 if t = 0,

βblogβ |t|c if t ∈ R\{0}.

Its relationship with the classical notion of unit in the last place (ulp) is via the
equality ulp(t) = 2uufp(t), and its definition implies immediately that

t ∈ R\{0} ⇒ ufp(t) 6 |t| < βufp(t). (9)

From (4), (6), (8), it then follows that

t ∈ R ⇒ ufp(t) 6 |RN(t)| 6 βufp(t).

Thus, RN(t) belongs to a range for which the distance between two consecutive
floating-point numbers is exactly 2uufp(t), and being nearest to t implies

|RN(t)− t| 6 uufp(t).

In terms of ulp’s, this is just the usual half-an-ulp absolute error bound (attained
at every midpoint) and, dividing further by |t| > 0, we arrive at

t ∈ R\{0} ⇒ |RN(t)− t|
|t|

6 u
ufp(t)

|t|
. (10)

This inequality is interesting for at least three reasons. First, recalling (9), it
allows us to recover the uniform bound u claimed by the standard model (1).
Second, it shows that the relative error can be bounded by about u/β instead
of u when |t| approaches its upper bound βufp(t); this is related to a phenomenon
called wobbling precision [14, p. 39] and indicates that when deriving sharp error
bounds the most difficult cases are likely to occur when |t| lies in the leftmost part
of its range [ufp(t), βufp(t)). Third, it makes it easy to check that the bound u
is in fact never attained, as noted in [14, p. 38], since either |t| = ufp(t) ∈ F or
ufp(t)/|t| < 1. Indeed, the following slightly stronger statement holds:

t ∈ R\{0} ⇒ |RN(t)− t|
|t|

6
u

1 + u
. (11)

If |t| > (1+u)ufp(t), the above inequality follows directly from the one in (10).
Else, rounding to nearest implies that |RN(t)| = ufp(t) 6 |t| < (1+u)ufp(t) and,
recalling that t has the same sign as its rounded value, we conclude that

|RN(t)− t|
|t|

= 1− ufp(t)

|t|
< 1− 1

1 + u
=

u

1 + u
.

The bound in (11) is given by Knuth in [27, p. 232] and, in the special case
where t = x + y or t = xy with x, y ∈ F, it was already noted by Dekker [8]
(in base 2) and then by Holm [16] (in any base). Furthermore, it turns out to
be attained if and only if t is the midpoint ±(1 + u)ufp(t); see [25]. This best
possible bound refines the standard model (1) only slightly, but we shall see in
the rest of this paper that it can be worth exploiting in various situations.

Exact floating-point subtraction and EFTs. We now briefly review what
can be obtained exactly using floating-point and rounding to nearest. A first
classical result is Sterbenz’ theorem [40, p. 138], which ensures that floating-point
subtraction is exact when the two operands are close enough to each other:

x, y ∈ F, y/2 6 x 6 2y ⇒ x− y ∈ F.

Another exactness property is that the absolute error due to floating-point
addition or multiplication is itself a floating-point number:

x, y ∈ F, op ∈ {+,×} ⇒ x op y − RN(x op y) ∈ F.

Furthermore, various floating-point algorithms are available for computing si-
multaneously the rounded value r̂ = RN(x op y) and the exact value of the
associated rounding error e = x op y − r̂. For addition, these are the Fast2Sum
algorithm of Kahan [26] and Dekker [8], and the more general 2Sum algorithm
of Knuth [27] and Møller [28]. For multiplication, it suffices to use the FMA
operation as follows:

r̂ ← RN(xy), e← RN(xy − r̂). (12)

(If no FMA is available, the pair (r̂, e) can be obtained using 7 multiplications
and 10 additions, as shown by Dekker in [8].) These algorithms define in each
case a so-called error-free transformation (EFT) [32], which maps (x, y) ∈ F2

to (r̂, e) ∈ F2 such that x op y = r̂ + e. In section 4 we will see in particu-
lar how to exploit the transformation given by (12), possibly in combination
with Sterbenz’s theorem. For more examples of EFT-based, provably accurate
algorithms—especially in the context of summation and elementary function
evaluation—we refer to [35] and [31] and the references therein.

3 Revisiting some classical Wilkinson-style error bounds

3.1 Summation

Given x1, . . . , xn ∈ F, we consider first the evaluation of the sum
∑n
i=1 xi by

means of n− 1 floating-point additions, in any order. Following Wilkinson [43],
we may apply the standard model (1) repeatedly in order to obtain the back-
ward error result shown in section 1, from which a forward error bound for the
computed value r̂ then follows directly:∣∣∣r̂ − n∑

i=1

xi

∣∣∣ 6 α

n∑
i=1

|xi|, α = (1 + u)n−1 − 1. (13)

Such a bound is easy to derive, valid for any order, and a priori essentially best
possible since there exist special values of the xi for which the ratio error/(error
bound) tends to 1 as u → 0. The expression giving α, however, is somehow
unwieldy and it is now common practice to have it replaced by the concise yet

rigorous upper bound γn−1, using Higham’s γk notation “γk = ku/(1 − ku) if
ku < 1” [14, p. 63]. Both bounds have the form (n−1)u+O(u2) and the second
one further assumes implicitly that the dimension n satisfies (n− 1)u < 1.

Recently, it was shown by Rump [36] that for recursive summation one can
in fact always replace α in (13) by the simpler and sharper expression

α = (n− 1)u.

In other words, the terms of order O(u2) can be removed, and this without any
restriction on n. The proof given in [36, p. 206] aims to bound the forward error
|r̂−

∑n
i=1 xi| directly, focusing on the last addition and proceeding by induction

on n; in particular, one key ingredient is the refined model (5) of floating-point

addition, which is used here to handle the case |xn| 6 u
∑n−1
i=1 |xi|. As noted

in [24, §3], this proof technique is in fact not restricted to recursive summation,
so the constant (n− 1)u eventually holds for any summation order.

3.2 Other examples of O(u2)-free error bounds

Similar improvements have been obtained for the error bounds of several other
computational problems, which we summarize in Table 1. The algorithms for
which these new bounds hold are the classical ones (described for example
in [14]) and the role played by α depends on the problem as follows: for dot
products, α should be such that |r̂ − xT y| 6 α|x|T |y| with x, y ∈ Fn and r̂

denoting the computed value; for matrix multiplication, |Ĉ − AB| 6 α|A||B|
with A ∈ F∗×n and B ∈ Fn×∗; for Euclidean norms (in dimension n), powers,
and products, |r̂− r| 6 α|r|; for triangular system solving and LU and Cholesky
matrix factorizations, we consider the usual backward error bounds |∆T | 6 α|T |
for (T +∆T)x̂ = b, |∆A| 6 α|L̂||Û | for L̂Û = A+∆A, and |∆A| 6 α|R̂T ||R̂| for

R̂T R̂ = A+∆A. (Here the matrices T , Û , R̂ have dimensions n× n, and L̂ has
dimensions m× n with m > n.) Finally, for the evaluation of a(x) =

∑n
i=0 aix

i

with Horner’s rule, α is such that |r̂ − a(x)| 6 α
∑n
i=0 |aixi|.

The new values of α shown in Table 1 are free of any O(u2) term and thus
simpler and sharper than the classical ones. In the last three cases, the price to
be paid for those refined constants is some mild restriction on n; we refer to [38]
for a precise condition and an example showing that it is indeed necessary.

4 Provably accurate numerical kernels

4.1 Computation of ab + cd

As a first example of such kernels, let us consider the evaluation of ab + cd for
a, b, c, d ∈ F. This operation occurs frequently in practice and is especially useful
for complex arithmetic, discriminants, and robust orientation predicates. Since it
is not part of the set of core IEEE 754-2008 functions for which correct rounding
is required or recommended (and despite the existence of hardware designs as

Table 1. Some classical Wilkinson-style constants made simpler and sharper. Unless
otherwise stated these results hold for any ordering, and (?) means “if n . u−1/2.”

Problem Classical α New α Reference(s)

summation (n− 1)u+O(u2) (n− 1)u [36], [24]

dot prod., mat. mul. nu+O(u2) nu [24]

Euclidean norm (n
2

+ 1)u+O(u2) (n
2

+ 1)u [25]

Tx = b, A = LU nu+O(u2) nu [39]

A = RTR (n+ 1)u+O(u2) (n+ 1)u [39]

xn (recursive, β = 2) (n− 1)u+O(u2) (n− 1)u (?) [12]

product x1x2 · · ·xn (n− 1)u+O(u2) (n− 1)u (?) [38]

poly. eval. (Horner) 2nu+O(u2) 2nu (?) [38]

the one by Brunie [4, §3.3.2]), this operation will in general be implemented in
software using basic floating-point arithmetic. When doing so, however, some
care is needed and a classical scheme like RN(RN(ab) + RN(cd)) or, if an FMA
is available, RN(ab+ RN(cd)) can produce a highly inaccurate answer.

To avoid this, the following sequence of four operations was suggested by
Kahan (see [14, p. 60]):

ŵ := RN(cd); f̂ := RN(ab+ ŵ); e := RN(cd− ŵ); r̂ := RN(f̂ + e).

Here the FMA operation is used to produce f̂ and also to implement an EFT
for the product cd, as in (12), thus giving e = cd− ŵ exactly. By applying to ŵ,

f̂ , and r̂ the refined standard model given by (11) it is then easy to prove that

|r̂ − r|
|r|

6 2u(1 + ψ), r = ab+ cd, ψ =
u|cd|
2|r|

. (14)

This kind of analysis (already done by Higham in the 1996 edition of [14]) shows
that Kahan’s algorithm computes ab + cd with high relative accuracy as long
as ψ 6� 1. The latter condition, however, does not always hold, as there exist
inputs for which ψ is of the order of u−1 and the relative error bound 2u(1 +ψ)
is larger than 1.

This classical analysis was refined in [21], where we show that Kahan’s al-
gorithm above is in fact always highly accurate: first, a careful analysis of the
absolute errors ε1 = f̂ − (ab + ŵ) and ε2 = r̂ − (f̂ + e) using the ufp (or ulp)
function gives |ε1|, |ε2| 6 βuufp(r), so that |r̂− r| = |ε1 + ε2| 6 2βu|r|; then, by
studying ε1 and ε2 simultaneously via a case analysis comparing |ε2| to uufp(r),
we deduce that the constant 2βu can be replaced by 2u (that is, the term ψ can
in fact be removed from the bound in (14)); third, we show that this bound is
asymptotically optimal (as u→ 0) by defining

a = b = βp−1 + 1, c = βp−1 + β
2β

p−2, d = 2βp−1 + β
2β

p−2,

and checking (by hand or, since recently, using a dedicated Maple library [22])
that the error committed for such inputs has the form 2u− 4u2 +O(u3).

A similar scheme was proposed by Cornea, Harrison, and Tang [7, p. 273],
which ensures further that the value returned for ab+cd is the same as for cd+ab.
(Such a feature may be desirable when, say, implementing complex arithmetic.)
We refer to [30] and [19] for sharp error analyzes combining ufp-based arguments,
the refined bound u/(1 + u), and Sterbenz’ theorem.

4.2 Complex multiplication

Another important numerical kernel is the evaluation of the real and imaginary
parts R = ac− bd and I = ad+ bc of the complex product z = (a+ ib)(c+ id).

Consider first the conventional way, which produces R̂ = RN(RN(ac)−RN(bd))

and Î = RN(RN(ad) + RN(bc)). Although R̂ or Î can be completely inaccurate,
it is known that high relative accuracy holds in the normwise sense: Brent,
Percival, and Zimmermann [2] showed that ẑ = R̂+ iÎ satisfies

|ẑ − z|
|z|

6
√

5u

and that this bound is asymptotically optimal (at least in base 2); in particular,
the constant

√
5 = 2.23 . . . improves upon classical and earlier ones like

√
8 =

2.82 . . . by Wilkinson [44, p. 447] and 1 +
√

2 = 2.41 . . . by Champagne [5].

Assume now that an FMA is available. In this case, R̂ can be obtained as
RN(ac − RN(bd)) or RN(RN(ac) − bd), and similarly for Î, so that z can be
evaluated using four different schemes. We showed in [20] that for each of these
schemes the bound

√
5u mentioned above can be reduced further to 2u and that

this new bound is asymptotically optimal. We also proved that this normwise
bound 2u remains sharp even if both R̂ and Î are computed with high relative
accuracy as in section 4.1.

The bound
√

5u was obtained in [2] via a careful ulp-based case analysis. For
the bound 2u we have proceeded similarly in [20, §3] but, as we observe in [25],
in this case a much shorter proof follows from using just the refined standard
model given by (11).

A direct application of these error bounds is to complex division: as noted by
Baudin in [1], if αu bounds the normwise relative error of multiplication, then the
bound (α+3)u+O(u2) holds for division—assuming the classical formula x/y =
(xy)/(yy)—and thus we can take α + 3 = 5 or 5.23 . . . depending on whether
the FMA operation is available or not. However, despite this and some recent
progress made in the case of complex inversion [23], the best possible constants
for complex division (with or without an FMA) remain to be determined.

Acknowledgements

I am grateful to Ilias Kotsireas, Siegfried M. Rump, and Chee Yap for giving me
the opportunity to write this survey. This work was supported in part by the
French National Research Agency, under grant ANR-13-INSE-0007 (MetaLibm).

References

1. Baudin, M.: Error bounds of complex arithmetic (June 2011), available at http:

//forge.scilab.org/upload/compdiv/files/complexerrorbounds_v0.2.pdf

2. Brent, R.P., Percival, C., Zimmermann, P.: Error bounds on complex floating-point
multiplication. Mathematics of Computation 76, 1469–1481 (2007)

3. Brent, R.P., Zimmerman, P.: Modern Computer Arithmetic. Cambridge University
Press (2010)

4. Brunie, N.: Contributions to Computer Arithmetic and Applications to Embedded
Systems. Ph.D. thesis, École Normale Supérieure de Lyon, Lyon, France (May
2014), available at https://tel.archives-ouvertes.fr/tel-01078204

5. Champagne, W.P.: On finding roots of polynomials by hook or by crook. Master’s
thesis, University of Texas, Austin, Texas (1964)

6. Corless, R.M., Fillion, N.: A Graduate Introduction to Numerical Methods, From
the Viewpoint of Backward Error Analysis. Springer (2013)

7. Cornea, M., Harrison, J., Tang, P.T.P.: Scientific Computing on ItaniumR©-based
Systems. Intel Press, Hillsboro, OR, USA (2002)

8. Dekker, T.J.: A floating-point technique for extending the available precision. Nu-
merische Mathematik 18, 224–242 (1971)

9. Demmel, J.W.: Applied Numerical Linear Algebra. SIAM, Philadelphia (1997)
10. Goldberg, D.: What every computer scientist should know about floating-point

arithmetic. ACM Computing Surveys 23(1), 5–48 (1991)
11. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins University

Press, Baltimore, MD, USA, fourth edn. (2013)
12. Graillat, S., Lefèvre, V., Muller, J.M.: On the maximum relative error when

computing integer powers by iterated multiplications in floating-point arith-
metic. Numerical Algorithms (2015), http://link.springer.com/article/10.

1007/s11075-015-9967-8

13. Hauser, J.R.: Handling floating-point exceptions in numeric programs. ACM Trans.
Program. Lang. Syst. 18(2), 139–174 (1996)

14. Higham, N.J.: Accuracy and Stability of Numerical Algorithms. SIAM, Philadel-
phia, second edn. (2002)

15. Higham, N.J.: Floating-point arithmetic. In: Higham, N.J., Dennis, M.R., Glendin-
ning, P., Martin, P.A., Santosa, F., Tanner, J. (eds.) The Princeton Companion to
Applied Mathematics, pp. 96–97. Princeton University Press (2015)

16. Holm, J.E.: Floating-Point Arithmetic and Program Correctness Proofs. Ph.D.
thesis, Cornell University, Ithaca, NY, USA (Aug 1980)

17. IEEE Computer Society: IEEE Standard for Binary Floating-Point Arithmetic,
ANSI/IEEE Standard 754-1985. IEEE Computer Society, New York (1985)

18. IEEE Computer Society: IEEE Standard for Floating-Point Arithmetic, IEEE
Standard 754-2008. IEEE Computer Society, New York (2008)

19. Jeannerod, C.P.: A radix-independent error analysis of the Cornea-Harrison-Tang
method, to appear in ACM Trans. Math. Software; preprint available at https:

//hal.inria.fr/hal-01050021

20. Jeannerod, C.P., Kornerup, P., Louvet, N., Muller, J.M.: Error bounds on complex
floating-point multiplication with an FMA, to appear in Mathematics of Compu-
tation, preprint available at https://hal.inria.fr/hal-00867040v4

21. Jeannerod, C.P., Louvet, N., Muller, J.M.: Further analysis of Kahan’s algorithm
for the accurate computation of 2× 2 determinants. Mathematics of Computation
82(284), 2245–2264 (2013)

http://forge.scilab.org/upload/compdiv/files/complexerrorbounds_v0.2.pdf
http://forge.scilab.org/upload/compdiv/files/complexerrorbounds_v0.2.pdf
https://tel.archives-ouvertes.fr/tel-01078204
http://link.springer.com/article/10.1007/s11075-015-9967-8
http://link.springer.com/article/10.1007/s11075-015-9967-8
https://hal.inria.fr/hal-01050021
https://hal.inria.fr/hal-01050021
https://hal.inria.fr/hal-00867040v4

22. Jeannerod, C.P., Louvet, N., Muller, J.M., Plet, A.: A library for symbolic
floating-point arithmetic (2015), preprint available at https://hal.inria.fr/

hal-01232159

23. Jeannerod, C.P., Louvet, N., Muller, J.M., Plet, A.: Sharp error bounds for com-
plex floating-point inversion (2015), preprint available at https://hal-ens-lyon.
archives-ouvertes.fr/ensl-01195625

24. Jeannerod, C.P., Rump, S.M.: Improved error bounds for inner products in floating-
point arithmetic. SIAM J. Matrix Anal. Appl. 34(2), 338–344 (2013)

25. Jeannerod, C.P., Rump, S.M.: On relative errors of floating-point operations: op-
timal bounds and applications (2014), preprint available at https://hal.inria.

fr/hal-00934443

26. Kahan, W.: Further remarks on reducing truncation errors. Communications of
the ACM 8(1), 40 (1965)

27. Knuth, D.E.: The Art of Computer Programming, Volume 2, Seminumerical Al-
gorithms. Addison-Wesley, Reading, MA, USA, third edn. (1998)

28. Møller, O.: Quasi double-precision in floating point addition. BIT 5, 37–50 (1965)
29. Monniaux, D.: The pitfalls of verifying floating-point computations. ACM Trans.

Program. Lang. Syst. 30(3), 12:1–12:41 (2008)
30. Muller, J.M.: On the error of computing ab+cd using Cornea, Harrison and Tang’s

method. ACM Trans. Math. Software 41(2), 7:1–7:8 (2015)
31. Muller, J.M., Brisebarre, N., de Dinechin, F., Jeannerod, C.P., Lefèvre, V.,

Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arith-
metic. Birkhäuser Boston (2010)

32. Ogita, T., Rump, S.M., Oishi, S.: Accurate sum and dot product. SIAM J. Sci.
Comput. 26(6), 1955–1988 (2005)

33. Overton, M.L.: Numerical Computing with IEEE Floating Point Arithmetic: In-
cluding One Theorem, One Rule of Thumb, and One Hundred and One Exercises.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2001)

34. Priest, D.M.: On Properties of Floating Point Arithmetics: Numerical Stability
and the Cost of Accurate Computations. Ph.D. thesis, Mathematics Department,
University of California, Berkeley, CA, USA (Nov 1992)

35. Rump, S.M.: Ultimately fast accurate summation. SIAM J. Sci. Comput. 31(5),
3466–3502 (2009)

36. Rump, S.M.: Error estimation of floating-point summation and dot product. BIT
52(1), 201–220 (2012)

37. Rump, S.M., Ogita, T., Oishi, S.: Accurate floating-point summation part I: Faith-
ful rounding. SIAM J. Sci. Comput. 31(1), 189–224 (2008)

38. Rump, S.M., Bünger, F., Jeannerod, C.P.: Improved error bounds for floating-point
products and Horner’s scheme. BIT (2015), http://link.springer.com/article/
10.1007/s10543-015-0555-z

39. Rump, S.M., Jeannerod, C.P.: Improved backward error bounds for LU and
Cholesky factorizations. SIAM J. Matrix Anal. Appl. 35(2), 684–698 (2014)

40. Sterbenz, P.H.: Floating-Point Computation. Prentice-Hall (1974)
41. Trefethen, L.N.: Computing numerically with functions instead of numbers. Math-

ematics in Computer Science 1(1), 9–19 (2007)
42. Trefethen, L.N., Bau III, D.: Numerical Linear Algebra. SIAM, Philadelphia (1997)
43. Wilkinson, J.H.: Error analysis of floating-point computation. Numerische Mathe-

matik 2, 319–340 (1960)
44. Wilkinson, J.H.: The Algebraic Eigenvalue Problem. Oxford University Press

(1965)

https://hal.inria.fr/hal-01232159
https://hal.inria.fr/hal-01232159
https://hal-ens-lyon.archives-ouvertes.fr/ensl-01195625
https://hal-ens-lyon.archives-ouvertes.fr/ensl-01195625
https://hal.inria.fr/hal-00934443
https://hal.inria.fr/hal-00934443
http://link.springer.com/article/10.1007/s10543-015-0555-z
http://link.springer.com/article/10.1007/s10543-015-0555-z

	Exploiting structure in floating-point arithmetic

