118 research outputs found

    Graphical Models and Symmetries : Loopy Belief Propagation Approaches

    Get PDF
    Whenever a person or an automated system has to reason in uncertain domains, probability theory is necessary. Probabilistic graphical models allow us to build statistical models that capture complex dependencies between random variables. Inference in these models, however, can easily become intractable. Typical ways to address this scaling issue are inference by approximate message-passing, stochastic gradients, and MapReduce, among others. Exploiting the symmetries of graphical models, however, has not yet been considered for scaling statistical machine learning applications. One instance of graphical models that are inherently symmetric are statistical relational models. These have recently gained attraction within the machine learning and AI communities and combine probability theory with first-order logic, thereby allowing for an efficient representation of structured relational domains. The provided formalisms to compactly represent complex real-world domains enable us to effectively describe large problem instances. Inference within and training of graphical models, however, have not been able to keep pace with the increased representational power. This thesis tackles two major aspects of graphical models and shows that both inference and training can indeed benefit from exploiting symmetries. It first deals with efficient inference exploiting symmetries in graphical models for various query types. We introduce lifted loopy belief propagation (lifted LBP), the first lifted parallel inference approach for relational as well as propositional graphical models. Lifted LBP can effectively speed up marginal inference, but cannot straightforwardly be applied to other types of queries. Thus we also demonstrate efficient lifted algorithms for MAP inference and higher order marginals, as well as the efficient handling of multiple inference tasks. Then we turn to the training of graphical models and introduce the first lifted online training for relational models. Our training procedure and the MapReduce lifting for loopy belief propagation combine lifting with the traditional statistical approaches to scaling, thereby bridging the gap between statistical relational learning and traditional statistical machine learning

    Modeling Scalability of Distributed Machine Learning

    Full text link
    Present day machine learning is computationally intensive and processes large amounts of data. It is implemented in a distributed fashion in order to address these scalability issues. The work is parallelized across a number of computing nodes. It is usually hard to estimate in advance how many nodes to use for a particular workload. We propose a simple framework for estimating the scalability of distributed machine learning algorithms. We measure the scalability by means of the speedup an algorithm achieves with more nodes. We propose time complexity models for gradient descent and graphical model inference. We validate our models with experiments on deep learning training and belief propagation. This framework was used to study the scalability of machine learning algorithms in Apache Spark.Comment: 6 pages, 4 figures, appears at ICDE 201

    Efficient Parallel Processing of k-Nearest Neighbor Queries by Using a Centroid-based and Hierarchical Clustering Algorithm

    Get PDF
    The k-Nearest Neighbor method is one of the most popular techniques for both classification and regression purposes. Because of its operation, the application of this classification may be limited to problems with a certain number of instances, particularly, when run time is a consideration. However, the classification of large amounts of data has become a fundamental task in many real-world applications. It is logical to scale the k-Nearest Neighbor method to large scale datasets. This paper proposes a new k-Nearest Neighbor classification method (KNN-CCL) which uses a parallel centroid-based and hierarchical clustering algorithm to separate the sample of training dataset into multiple parts. The introduced clustering algorithm uses four stages of successive refinements and generates high quality clusters. The k-Nearest Neighbor approach subsequently makes use of them to predict the test datasets. Finally, sets of experiments are conducted on the UCI datasets. The experimental results confirm that the proposed k-Nearest Neighbor classification method performs well with regard to classification accuracy and performance

    A MapReduce Framework for Analysing Portfolios of Catastrophic Risk with Secondary Uncertainty

    Get PDF
    AbstractThe design and implementation of an extensible framework for performing exploratory analysis of complex property portfolios of catastrophe insurance treaties on the Map-Reduce model is presented in this paper. The framework implements Aggregate Risk Analysis, a Monte Carlo simulation technique, which is at the heart of the analytical pipeline of the modern quantitative insurance/reinsurance pipeline. A key feature of the framework is the support for layering advanced types of analysis, such as portfolio or program level aggregate risk analysis with secondary uncertainty (i.e. computing Probable Maximum Loss (PML) based on a distribution rather than mean values). Such in-depth analysis is not supported by production-based risk management systems since they are constrained by hard response time requirements placed on them. On the other hand, this paper reports preliminary experimental results to demonstrate that in-depth aggregate risk analysis can be realized using a framework based on the MapReduce model

    Revisiting Exact kNN Query Processing with Probabilistic Data Space Transformations

    Get PDF
    The state-of-the-art approaches for scalable kNN query processing utilise big data parallel/distributed platforms (e.g., Hadoop and Spark) and storage engines (e.g, HDFS, NoSQL, etc.), upon which they build (tree based) indexing methods for efficient query processing. However, as data sizes continue to increase (nowadays it is not uncommon to reach several Petabytes), the storage cost of tree-based index structures becomes exceptionally high. In this work, we propose a novel perspective to organise multivariate (mv) datasets. The main novel idea relies on data space probabilistic transformations and derives a Space Transformation Organisation Structure (STOS) for mv data organisation. STOS facilitates query processing as if underlying datasets were uniformly distributed. This approach bears significant advantages. First, STOS enjoys a minute memory footprint that is many orders of magnitude smaller than indexes in related work. Second, the required memory, unlike related work, increases very slowly with dataset size and, thus, enjoys significantly higher scalability. Third, the STOS structure is relatively efficient to compute, outperforming traditional index building times. The new approach comes bundled with a distributed coordinator-based query processing method so that, overall, lower query processing times are achieved compared to the state-of-the-art index-based methods. We conducted extensive experimentation with real and synthetic datasets of different sizes to substantiate and quantify the performance advantages of our proposal
    • …
    corecore