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Abstract—The state-of-the-art approaches for scalable kNN
query processing utilise big data parallel/distributed platforms
(e.g., Hadoop and Spark) and storage engines (e.g, HDFS, NoSQL,
etc.), upon which they build (tree based) indexing methods for effi-
cient query processing. However, as data sizes continue to increase
(nowadays it is not uncommon to reach several Petabytes), the
storage cost of tree-based index structures becomes exceptionally
high. In this work, we propose a novel perspective to organise
multivariate (mv) datasets. The main novel idea relies on data
space probabilistic transformations and derives a Space Transfor-
mation Organisation Structure (STOS) for mv data organisation.
STOS facilitates query processing as if underlying datasets were
uniformly distributed. This approach bears significant advan-
tages. First, STOS enjoys a minute memory footprint that is
many orders of magnitude smaller than indexes in related work.
Second, the required memory, unlike related work, increases very
slowly with dataset size and, thus, enjoys significantly higher
scalability. Third, the STOS structure is relatively efficient to
compute, outperforming traditional index building times. The
new approach comes bundled with a distributed coordinator-
based query processing method so that, overall, lower query
processing times are achieved compared to the state-of-the-art
index-based methods. We conducted extensive experimentation
with real and synthetic datasets of different sizes to substantiate
and quantify the performance advantages of our proposal.

I. INTRODUCTION AND RELATED WORK

In the era of big data, many devices continuously generate
huge amounts of data, rendering traditional off-the-shelf data
processing tools inadequate to cope with the ever growing data.
To this end, several parallel/distributed processing approaches
and systems have emerged, e.g., Hadoop-MapReduce [13] and
Spark [40], but such frameworks cannot efficiently process
some fundamental queries such as kNN.

For efficient exact kNN queries processing (N.B. in this
paper we are not dealing with approximated kNN queries)
several solutions are proposed: for e.g. MapReduce based [9],
[1], [3], [16]; Spark based [39], [4], [38], [37]; and HBase
based [7], [21], [22], [27]. But to save space, the current state
of the art methods: the best from MapReduce echo system
SHadoop [16], the best from Spark echo system Simba [37],
and the best from HBase COWI/CONI [7] will be discussed;
all these approaches deal with 2- or 3-dimensional data.

Both SHadoop and Simba maintain relatively large data-
blocks, based on the block size of the Distributed File System
(DFS) in which they operate; e.g., 128 MB in the case of the
Hadoop DFS (HDFS). During kNN query processing, as each

block stores millions of data points, accessing such large data
blocks incurs high disk and network I/O overheads.

To circumvent the issues faced by Simba and SHadoop,
CONI/COWI divides a dataset into much smaller chunks a.k.a
cells and stores the cells in NoSQL key-value datastore (HBase
[19]). CONI/COWI surgically accesses only a very small but
relevant number of data points and as such achieves up to three
orders of magnitude lower query processing times comparing
against Simba and SHadoop.

A dataset can be partitioned by a tree-based multivariate
(mv) index approach such as Quad-Trees (QT) [17], R-Trees
[20] and K-D trees [6]. During indexing process, those meth-
ods build a tree-like data structure that assumed to reside in
memory to serve as index. But when indexing a large-scale
dataset, the size (in bytes) of the index can be quite large, and
sometimes even surpassing the size of the dataset itself[35].
This is further aggravated when opting to divide a dataset into
smaller cells.

To prevent the size of the index from exceeding the
available memory, one can impose a lower limit on the cell
size, and hence decreases the size of the tree. But for large-
scale datasets, having large sized cells decreases performance
and indeed the scalability of the approach. To alleviate this
problem, CONI used a coordinator-based approach, storing
part of the index in a key-value store (HBase); by doing this,
CONI can have smaller cells without worrying about the index
size. However, this approach has two drawbacks: (i) accessing
HBase at query time incurs high disk I/O compared to an index
that resides in memory, and (ii) CONI needs to replicate parts
of the index contents in order to create a balanced tree and,
as such, may have a larger disk footprint.

On the other hand, the traditional mv index approaches
are designed to run on centralised system and hence might
not efficiently adopted in a parallel/distributed systems; con-
sequently, the current state-of-the-art data partitioning methods
leave much to be desired. For example, to partition a dataset,
SHadoop initially builds an in-memory R-tree based on a
small sample drawn randomly from the input data and then
bulk-loads the sample data to the in-memory R-tree using a
Sort-Tile-Recursive (STR) packaging method [24]. Afterwards,
the whole dataset is partitioned based on the in-memory R-
tree using MapReduce. Similarly, the default data partitioning
method in SIMBA and recent Spark based methods [34], [36],
is the same as SHadoop. But such indexing method does not



work well with non-uniformly distributed data [32], [7].

COWI/CONI partition a datset using a QuadTree (QT) in
MapReduce, but a recent survey [32] that evaluates MapRe-
duce based data partitioning methods concluded that even
though QT provides better data proximity, efficiency for search
queries, and low network transfer overhead as compared to
other data partitioning methods, QT requires high index storage
space, index building time, and has poor applicability in high
dimensions. Also, the authors of SHadoop in [15] ran extensive
experiments and measured data partitioning time of mv index
approaches in MR. The main conclusion is that index building
times of these mv index methods are very similar as the
indexing process is dominated by the MR job that scans the
whole file; the main difference between all those methods is
the in-memory step which operates on a small sample, and this
opens the space to incorporate more complicated techniques.

Therefore, the central conclusion is that current scal-
able kNN query processing strategies suffer from significant
drawbacks, especially for non-uniformly distributed datasets.
Specifically, all related works: (1) fail to address the obvious
efficiency and scalability problems that result from increasing
index sizes; (2) struggle to index non-uniform big data; and/or
(3) face problems related to high indexing time, high index
storage space and poor applicability in higher dimensions.
Fundamentally, keeping in mind that datasets can be massive
and that any system would be called upon to execute a large
number of different query types (not just kNN queries), the
luxury of kNN query processing using large indexes that grow
with a size of a dataset is simply not affordable.

In this paper, we propose a novel perspective for organising
datasets that alleviates the need for traditional mv indexes; our
contributions stem from the following key observations:

First, Uniform Grid-based method performs exceptionally
well over datasets that have a uniform distribution. This is due
to the facts that: (i) as all cells have equal size, it enjoys good
storage load balance; (ii) as all cells have equal width, all that
is required to locate the cell to which a point belongs is the
width of the cell and no any memory-hungry index; (iii) as
its memory footprint is small and doesn’t grow with the size
of the dataset and/or the number of cells, the domain space
can be divided into small-sized cells thus benefiting query
performance without adverse effects on index size and/or fault
tolerance; and (iv) it has good applicability in high dimensions.

Second, unfortunately, real-world datasets rarely are uni-
formly distributed. Furthermore, methods based on a uniform
grid partitioning are not suitable for non-uniform datasets, as
in those cases the distribution of points to cells can be very
skewed, resulting in unpredictable and long query processing
times when retrieving and processing large cells.

Third, when the Random Variables (RVs) of a dataset are
independent, the distribution of the dataset can be transformed
to joint uniform distribution. This can be achieved using well-
known statistical methods, coined Independence Copula [18].
Even when the RVs are not independent, if the joint and
marginal distributions of the RVs belong to the family of
elliptical distributions [8], then removing correlation between
the RVs implies independence [29].

Fourth, however, many real world datasets are generated by

non elliptical mv distributions; therefore, removing correlation
between RVs of such datasets does not imply independence.
Fortunately, any continuous distribution can be approximated
by finite Gaussian Mixture Models (GMMs) to arbitrary
accuracy [26]. Clustering a dataset with the right number
of components enables GMMs to approximate the unknown
underlying probability density function of a dataset [26]. Since
each component (cluster) of a GMM has a mv Gaussian (and
thus elliptical) distribution, removing the correlation between
RVs of each component transforms the RVs of the cluster to
independent RVs. Therefore, using the Independence Copula
method, the distribution of each component can be transformed
to a joint uniform distribution.

In this paper, following the above observations, we exploit
the fact that typically the input dataset is either generated by a
family of elliptical distributions or can be approximated well
by GMM. The central idea of our work is that, by transforming
the data generated or approximated by a family of elliptical
distributions into uniformly distributed data, we are able to
build a grid index (with a uniformly distributed grid cell
population) over the dataset. As a result, traditional (tree-like)
indexes are not needed, in memory or on disk, and thus we
can avoid sacrifices to performance and scalability.

Contribution: Our salient contributions are:

• A novel approach for organising mv datasets, based on
a Space Transformation Organisation Structure (STOS),
which facilitates kNN query processing as if the under-
lying datasets are uniformly distributed. This approach
ensures:
◦ Extremely low memory footprint, several orders of

magnitude smaller than index-based approaches.
◦ A memory footprint that is practically independent of

the dataset size and the number of data points per grid
cell – a fact that ensures scalability.

◦ Fast STOS computation time, that is smaller than
traditional index building times, by several orders of
magnitude.

◦ Easy and fast recoverability, as the minute size of STOS
allows for several copies of it to be distributed, thus
allowing the system to be up and running quickly after
failures.

◦ Query processing similar or better than traditional (tree-
based) indexing approaches.

The rest of the paper is organised as follows: § II-A
presents definitions, while § II-A elaborates on the problem
analysis and fundamentals. Then, § II-A explains the prelimi-
nary, § III details our proposed method, § IV and § V reports
on implementation details and experimental evaluation, while
§ VI concludes the paper.

II. DATA SPACE TRANSFORMATION FUNDAMENTALS

A. Core Definitions

Definition 1. If the total number of data points in a uniformly
distributed domain space is |D|, and α number of data points
are needed to be stored per cell, the domain space can be
partitioned into |C| = |D|/α equal-width cells. The cell width
r is computed as r = w/(|C|)1/d, where w is the width of the
uniform domain space and d is the number of dimensions.



Fig. 1. Original Distribution Fig. 2. Marginally uniform

Definition 2. Let a closed interval on a number line start
at 0 and be divided into finite consecutive half-open intervals,
each of which has equal length r. Given a random real number
q ≥ 0, the starting point of the half-open interval in which it
lies can be computed by b qr c · r.

Definition 3 ([30]). The minimum distance between a mv
query point q and a Minimum Bounding hyper-Rectangle
(MBR) b is denoted by the Euclidean norm:

f(q,w; s) = ‖q− s(w)‖,

where s(w) = [s1, . . . , sd] ∈ Rd and

si =


wi, if qi < wi;

wi + r, if qi ≥ wi + r;

qi, otherwise.

where r is b’s width and w its lower-left coordinates.

By transforming the arbitrary distribution of a dataset into
multivariate (mv) joint uniform distribution, one can utilise a
uniform grid to gain the advantages mentioned previously. In
the remainder of this section, we explain how to transform an
arbitrary mv distribution into mv joint uniform distribution,
which is the core idea behind the new proposed approach.

B. Statistical Analysis via Copulas

Copulas are mv probability distributions for which the
marginal probability distribution of each variable is uniform,
and are used to describe dependence between random variables
(RVs). According to Sklar’s theorem (Theorem 1), any mv
distribution can be written in terms of a univariate uniform
distribution of each RV and a copula that captures the depen-
dence among those RVs.

Theorem 1. (Sklar’s theorem [33]). Let H be a d-dim.
cumulative distribution function H(x1, x2, . . . , xd) =
P [X1 ≤ x1, X2 ≤ x2, . . . , Xd ≤ xd] of random variables
(X1, X2, . . . , Xd) with marginals Fi(x) = P [Xi ≤ xi].
Then there exists a copula distribution C with
uniform marginals such that H(x1, x2, . . . , xd) =
C(F1(x1), F2(x2), . . . , Fd(xd)).

Example 1: Consider the real dataset called The Population
Biology of Abalone – Haliotis species – in Tasmania [25]
(hereinafter referred to as simply Abalone). Abalone has eight
RVs, but to save space four RVs are shown in a scatterplot
matrix in Figure 1. The bivariate joint distributions of those
RVs are shown in the lower off-diagonal, the upper off-
diagonal shows the Pearson correlation, and the entries on the
diagonal depict the marginal distribution of each RV. The four

RVs of Abalone are expressed by copulas as shown in Figure
2. It is worth noting that the bivariate distribution between any
two of RVs of Figure 2 is not necessarily uniform.

In the literature, there are several families of copulas. Here,
we focus only on a specific type of copula called Independence
copula whose RVs are statistically independent of each other.
The marginal and joint distribution of Independence copula is
uniform. However, since the RVs of most real-world datasets
have some kind of dependence, Independence Copula cannot
be directly applied in these cases. On the other hand, two
independent RVs have zero correlation, but the inverse is not
always true. Nonetheless, when the marginal and joint distribu-
tions of RVs of a dataset are elliptical distributions, removing
correlation results in independent RVs [29]. Unfortunately,
many real-world datasets have non-elliptical distributions, so
removing the correlations among RVs of such datasets does not
yield independent RVs. Any continuous mv distribution can
be approximated arbitrarily well by finite Gaussian Mixture
Models (GMM) to arbitrary accuracy [26]. A mv Gaussian
distribution is a member of elliptical distributions thus by
removing the correlation among RVs that belong to a GMM,
it eliminates the dependencies among them.

We can transform any arbitrary distribution of a dataset to
have a joint uniform distribution in the following four steps:
(i) clustering: approximate the distribution of the dataset using
GMM. Then, within each GMM cluster: (ii) de-correlation: re-
move statistical correlation among RVs; (iii) marginal uniform
transformation: transform the marginal distribution of every
RV to standard uniform distribution; (iv) goodness of fit testing:
check if every pair of RVs can be defined by an independence
copula. Our approach elaborates on these steps.

C. Data Clustering Methodology

Gaussian Mixture Models (GMM) are used for clustering
data points that are heterogeneous and stem from different
sources. GMM models the density of mv RVs as a weighted
sum of Gaussian density and is defined as:

f(x) = ΣM
m=1πmψm(x;µm,Σm) (1)

where x is a RV, ψm(x;µm,Σm) is a Gaussian density with
mean vector µm and covariance matrix Σm, and πm are the
positive mixing weights that satisfy the constraint ΣM

m1
πm = 1.

Given M is the smallest integer such that πm > 0 for 1 ≤
m ≤ M , and (µa,Σa) 6= (µb,Σb) for 1 ≤ a 6= b ≤ M , the
complete set of parameters of GMM θ = {µ1,Σ1, . . . ,µm,
ΣM , π1, . . . , πM} can be estimated by maximum likelihood
method via the EM algorithm[14].

GMM uses an estimated number of clusters when the
actual number of components is unknown. However, too many
components may over-fit the data, and too few components
may not be flexible enough to approximate the true density
[11]. Selecting the right number of components is a non-
trivial problem [23] and has a significant effect on how well a
dataset can be transformed into mv joint uniform distribution.
In the literature, a consistent estimator of the correct number
of clusters, the Bayesian Information criterion (BIC) [31] is
used widely. Even though our approach does not depend on
a specific model, in this work we adapt BIC to estimate the
correct number of components/clusters M .



Fig. 3. Original Data Space Fig. 4. Independent Data Space Fig. 5. Uniform Data Space Fig. 6. PDF and ECDF

D. Removing Statistical Correlation

After clustering a dataset, we can remove the correlation
between RVs of a cluster to transform the RVs into independent
RVs. We therefore explain how to remove dependency between
the RVs and then describe how to transform the marginal
distribution of each RVs to a standard uniform. The correlation
between RVs of a vector x such that x ∈ Mi, where Mi is
the ith cluster of a GMM, can be removed by multiplying x
by a whitening matrix A:

Σ−1 = ATA, (2)

where Σ−1 is the inverse of the covariance matrix of Mi.
Usually, Cholesky decomposition is adopted to estimate matrix
A from Σ−1.

Example 2: Using GMM, after clustering the four RVs of
dataset Abalone into two components, the scatter plot matrix of
one of the components is reported in Figure 3. As shown in the
upper off-diagonal of the figure, there is a strong correlation
between the RVs of the cluster. After multiplying by the
whitening matrix A, the correlation between RVs becomes
zero, as can be seen at the upper off-diagonal plots in Figure
4. This implies that the original RVs of the GMM cluster are
transformed into independent RVs.

E. Transforming to Uniform Data Space

To transform the marginal distributions of the independent
RVs to standard uniform, the well known Probability Integral
Transformation (PIT) Theorem 2 is applied.

Theorem 2. (Probability Integral Transformation [10, chapter
2, p. 54]). Let random variable Y have a continuous distri-
bution with cumulative distribution function (cdf ) FY (y) =
P (Y ≤ y) and define the random variable U = FY (y). Then
U is uniformly distributed in (0,1) with P (U ≤ u) = u, 0 <
u < 1.

Proof: ( see [10, chapter 2, p. 54])

By convention, a RV Y generated by a continuous prob-
ability distribution function (pdf ) is denoted by p(y) and the
cumulative distribution function of Y is denoted by FY (y).
The relationship between p(y) and FY (y) of a RV Y is: if∫ +∞
−∞ p(y)dy = 1, then there exists another continuous random

variable u = FY (y) =
∫ y

−∞ p(y) dy = P (Y ≤ y), thus u is
called a cdf of y, and as such U is a monotonic non-decreasing
function of Y where 0 < u < 1. To compute the cdf of a
RV Y requires to solve FY (y) =

∫ y

−∞ p(y) dy, but for many
distributions the integral is not available in a closed form.
Hence, the cdf of such RVs can be computed empirically:

F̂Y (y) =
1

n
Σn

i=11xi≤y (3)

where xi is the ith data point in the dataset, n is the total
number of data points in the dataset and 1xi ≤ y = 1 if xi ≤ y
otherwise 1xi ≤ y = 0.

Example 3: Consider one of the RVs of the previous
example, called Length. To compute the ecdf of the Length RV,
all n Length values in the dataset must be sorted in ascending
order (assuming there are n in points the Abalone dataset).
Then starting from zero, and by jumping 1/n for each of the n
data points, a monotonic increasing function is drawn between
0 and 1; see the upper right and the lower left of Figure 6.
The upper left histogram of figure 6 shows the marginal pdf of
Length; whereas the lower right histogram shows the marginal
cdf of Length. NB: the cdf of a continuous RV follows the
standard uniform distribution.

For the sake of completeness, we provide (3) to express cdf
of a RV has uniform distribution. However, computing cdf in
such a way is inefficient especially when dealing with big data,
thus, the cdf of a standard normal distribution is computed by:

F (x) =

∫ x

−∞

exp−x
2/2

√
2π

, (4)

where the integral is not available in a closed form and is
approximated numerically [12].

F. Goodness of Fit

So far, we discussed how RVs are clustered, de-correlated
and transformed to a marginally uniform distribution. We
can then transform the transformed RVs and plot their pair-
wise distribution; e.g., Figure 5 depicts this plot for the same
four RVs of Abalone used in earlier figures. Note that their
joint distribution is shown to be uniform. However, we have
yet to statistically measure if there is a pairwise dependency
among the RVs. The pairwise dependency between two RVs
of Independence copula can be statistically determined based
on Kendall’s Tau (denoted by τ ). When two random variables
Y1 and Y2 are independent, the distribution of τ is close to a
normal distribution with zero mean and variance 2(2n+5)

9n(n−1) [18].
Thus, the p-value for dependency test is computed as:

p-value = 2(1− φ(T )),

T =

√
(9n(n− 1))

(2(2n+ 5))
× |τ |

(5)

where φ is the standard normal distribution. Therefore, one can
accept the null hypothesis (i.e., the two RVs are independent)
at 95% level of acceptance when the p-value is ≤ 0.05.



TABLE I. P-VALUES OF BI-VARIATE INDEPENDENCE COPULA TESTS

Length Diameter W.weight S.weight
Length - 0.4132669 0.7220138 0.5368411

Diameter 0.4132669 - 0.6690015 0.5266671
W.weight 0.7220138 0.6690015 - 0.3699861
S.weight 0.5368411 0.5266671 0.3699861 -

For instance, we run pairwise dependency tests for the four
RVs of Abalone, as shown in Figure 5, and provide p-value
results in Table I. As none of the p-value results is below
0.05, we accept our null hypothesis, i.e., we have successfully
transformed the original distribution of Abalone (Figure 3) into
mv standard uniform distribution (Figure 5).

III. DATA SPACE TRANSFORMATION ORGANIZATION

A. Comparison with Tree-based Approaches

After transforming the distribution of the data into a
joint uniform distribution, one can partition the uniformly
distributed data into |C| number of cells as explained in
Definition 1; for example, from the Abalone dataset two RVs,
Length and Shell Weight, are partitioned using uniform grid
as shown in Figure 7.
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If we inverse transforms cells in the uniform domain space
(Figure 7) back into the independent space (Figure 8) or into
the original space (Figure 9), the size of the corresponding
cells of the latter two domain spaces might shrink or expand.
Recall that Disjoint Tree-based index approaches divide the
data space into several cells that have different sizes but contain
approximately an equal number of data points. Hence, while
avoiding building and maintaining a tree-like data structure,
we manage to partition the non-uniform domain space (Figure
8 and 9) in the same way as tree-based approaches.

B. Computing Exact kNN

During the above-mentioned transformation process, the
domain spaces can be rotated, shrunk or stretched. Hence,
as the Euclidean distance between any two points in the
original space will be different than the Euclidean distance
between the corresponding mapped points in the independent
space (and similarly for the uniform space), only data points
from the original domain space must be considered when the
Euclidean distance metric is used to compute kNN queries.
However, in-spite of the discrepancy of the distance in the
three domain spaces, data points that lie in a given cell in
original space their corresponding points in the independent
(or uniform) space also lie within the corresponding cell in
the independent (uniform) space. We base our transformation
on this proposition by providing the Lemma 1.

Lemma 1. For all data points that reside within a cell in the
uniform space, their corresponding data points lie within the

boundaries of the corresponding cell in the independent and
original spaces.

Proof: Let ui be the value of the ith dimension of a data
point u that lies in cell Cuni in the uniform space such that
[cuni min

i ≤ ui ≤ cuni max
i ] where cuni min

i and cuni max
i

are minimum and maximum values of the ith dimension of
Cuni, respectively. Let data point y be the point resulting from
transforming u to the independent space with yi being its value
in ith dimension and cell Cind resulting from transforming
Cuni to the independent space with cind min

i and cind max
i

are minimum and maximum values of the ith dimension of
cind. Similarly, consider a cell Corg and data point x created
by transforming Cind and y to the original space, respectively.
We shall first prove that a point belongs to Cind iff it belongs
to Cuni. Then, by the transitivity, it is sufficient to show that
a point belongs to Corg iff it belongs to Cind.

Case 1: Independent and Uniform Data Spaces. We need
to prove that [cind min

i ≤ yi ≤ cind max
i ] is true. Each RV of

the uniform space is a cdf of a RV in the independent space:

cuni min
i ≤ ui ≤ cuni max

i ⇔
FY (Y ≤ cind min

i ) ≤ FY (Y ≤ yi) ≤ FY (Y ≤ cind max
i ).

Since cdf is a monotonic increasing function and let φ be the
inverse of cdf ,we obtain that:

φ(cuni min
i ) ≤ φ(ui) ≤ φ(cuni max

i )

⇔ F−1Y (Y ≤ cind min
i ) ≤ F−1Y (Y ≤ yi) ≤ F−1Y (Y ≤ cind max

i )

⇔ cind min
i ≤ yi ≤ cind max

i .

Case 2: Independent and Original Data spaces. We now
prove that data point x lies within Corg iff y lies within
Cind. Without loss of generality, consider that the data points
corg min, x and corg max are perpendicular and corg min and
corg max are located on the boundaries of Corg. Consider that
cind min and cind max are corresponding points to corg min

and corg max, respectively, and are located on the boundaries
of Cind. To proof by contradiction, let us assume x does not
lie within Corg when y lies within Cind. Since A−1 is the
inverse of the whitening matrix in (2), we have that:

(corg min
i > xi) ∨ (xi > corg max

i )⇔
((A−1cind min)i0 > (A−1y)i0) ∨ ((A−1y)i0 > (A−1cind max)i0)

By multiplying both sides by A, we obtain:

((AA−1cind min)i0 > (AA−1y)i0)

∨ ((AA−1y)i0 > (AA−1cind max)i0)

⇔ ((Icind min)i0 > (Iy)i0) ∨ ((Iy)i0 > (I−1cind max)i0)

⇔ (cind min
i > yi) ∨ (yi > cind max

i ).

The last equivalence does not hold when y lies within Cind;
hence our assumption that x does not lie within Corg when y
lies within Cind must be wrong. That is, x lies within Corg

iff y lies within Cind.

Computing exact kNN might require accessing several
neighbouring cells, but in the original domain space retriev-
ing neighbouring cells to a given cell is impossible without
building memory hungry indexes. Fortunately, in the uniform
space, due to the fact that cells have equal size, retrieving



neighbouring cells is strait-forward. For instance, if cells
are represented by their lower-left coordinate, the lower-left
coordinates of the neighbouring cells can be computed by
adding or subtracting the r width/height of the grid-cells (see
Definition 1) to the ith dimension of the lower-left coordinate
of the given cell. At this point, it is worth mentioning that
while memory hungry indexes are not required in the uniform
space, but only data points from original space are needed for
computing kNN queries. Therefore, to compute exact kNN
without having memory hungry index, we transform the data
to the uniform space and then partition the data space adopting
a uniform-grid. But now, each cell of the uniform space stores
the corresponding data points from the original space.

At first glance, such a design, i.e., a hybrid of the uniform
and original domain spaces, might seem counter-intuitive be-
cause usually, e.g. as in tree-based index approaches, only the
original domain space is used. However, it should be noted
that the lower-left coordinate of cells in the original space
can be defined as a function of the lower-left coordinate of a
corresponding cell in the uniform space as follows:

x = A−1K(u), (6)

where x is a lower-left coordinate of a cell in the original
space, A−1 the inverse of the whitening matrix, K is a
function (inverse cdf of RVs) that transforms back the RVs
of the uniform space to the RVs of the independent space,
and u is a lower-left coordinate of a corresponding cell in
the uniform space. Thus, this can be seen as representing the
unequal-sized cells of the original space by equal-sized cells
of the uniform space.

IV. DATA AND QUERY PROCESSING

We now describe the technical details of our proposed solu-
tion. First, we discuss the creation of the STOS, then elaborate
on how the STOS is used during kNN query processing.

A. The STOS Methodology

The methodology in STOS can be split into two phases:
data pre-processing and data organisation.

Data Pre-processing Phase. The steps in this phase are:

1) Using a MapReduce (MR) job, draw a random sample
from the input dataset and count the total number of data
points in the input dataset.

2) Operating on that sample, determine the correct number
of GMM components M using the BIC, and then compute
the mean vector µm, covariance matrix Σm, and the
positive mixing weight πm of each cluster m.

3) For each cluster m, determine the whitening matrix A
(eq. (2)), de-correlate each cluster and transform the joint
distribution of the de-correlated cluster into a joint mv
uniform distribution.

4) Run pairwise dependence test at 95% level of accuracy
for every transformed cluster; if the test fails either start
from Step (2) using a different number of clusters M or
reduce the level of accuracy.

5) Finally, use the positive mixing weights, average number
of data points to be stored per cell (defined by a user),
and the total number of data points in the input dataset

to determine the cell width for each transformed cluster
(definition 1).

Data Organisation Phase. This phase consists of a MR job,
where the mappers go through the points at their input and for
each of these points, they:

1) Assign the data point to a cluster using a naive Bayesian
algorithm.

2) Transform it to the uniform space using the statistical
parameters of the cluster as computed in the Data Pre-
processing Phase.

3) Assign it to a cell within the cluster, based on definition 1
and definition 2.

4) Finally, emit a key-value pair, where the key is a con-
catenation of the cluster ID and the coordinates of the
lower-left corner of the cell in the uniform space, and the
value is the data point in the original space. The reducers
also compute per-cluster metadata (MBRs) that contain
the minimum and maximum value for every dimension
of each cluster.

To expedite the query processing process, the reorganised
data output by the above reducers must not stored in flat files,
instead, in a table in the HBase. The schema used follows
the aforementioned design; i.e., each row in this table has a
rowkey that is the concatenation of a cluster ID and the lower-
left coordinates of a cell in the uniform space, and contains
a single column with all data points (in the original space)
mapped to that cell. Moreover, instead of inserting the data
points into the table one by one, the standard HBase bulk
loading [5] technique is used.

B. Query Processing

When a query point q from a kNN query arrives at the
system then the following steps are processed in the STOS:

1) We compute the distance between q and the MBR of each
cluster (definition 3). Then, the closest cluster is selected.

2) The query point q is transformed into the uniform space,
using the statistical parameters of the selected cluster,
thus, resulting in a new point quni.

3) This new point is mapped to a cell in the cluster using
definition 2 and, thus, the rowkey of the corresponding
row in HBase is computed.

4) The contents of the above cell are retrieved from HBase
and an initial kNN answer is computed, using the Eu-
clidean distance between q and the retrieved data points.
If k > α (where α is the (average) number of data points
per cell – definition 1), then we further retrieve as many
neighbouring cells as necessary to ensure we fetch at least
k data points.

5) We then compute the distance, ρ, between q and the kth
data element of the initial kNN answer, and draw a hyper-
square whose centre is q and whose width is 2× ρ.

6) Finally, all rows that intersect and/or covered by the
hyper-square are retrieved and the final kNN result is
computed and returned.

V. PERFORMANCE EVALUATION

A. Experimental setup

The experiments were ran on a 5-node cluster; each node
is a Dell R720 server with 4 Intel Xeon CPUs (8 cores each),



64GB RAM, and 2TB disk space.

1) Datasets: We use synthetic and real datasets of various
sizes and dimensions in our experiments. The synthetic data
has four clusters, of which three clusters have Gaussian distri-
butions and one cluster has lognormal distribution, i.e., whose
logarithm is Gaussian distribution. Based on the distribution
of the synthetic data we generated three datasets. The first
synthetic dataset contains around 8 billion points (total size of
approx. 250GB), the second one includes 16 billion points
(total size of approx. 500 GB), and the third one around
32 billion points (total size of approx. 1TB). Moreover, we
use two real datasets from the UCL machine learning data
repository: Istanbul stock exchange national 100 index [2]
and Activity Recognition system based on Multisensor data
fusion (AReM) [28]. To compare fairly with COWI, which is
a QT-based approach, as it is already known that QT has poor
applicability in high dimensions [32], we only consider the first
two dimensions of the Istanbul dataset, and from the AReM
dataset, we take the first and third dimensions of two the activ-
ities (cycling and walking). In addition, we present the query
performance of our method in high dimensions: six and nine
dimensions from the AReM and Istanbul datasets, respectively.
In order to generate (relatively) large-scale datasets and in light
of the fact that available real-world datasets are typically of
small sizes, we proceeded as follows: We generated six (2-
d) datasets based on the parameters of the two real datasets
(a practice that is prevalent in the related literature; e.g.,
see [21]). The first three datasets were generated based on
the Istanbul dataset and contain 8, 16 and 32 billion data
points, respectively. Three more datasets were generated based
on the ARem dataset, containing also 8, 16 and 32 billion
data points, respectively. The dataset sizes are approximately
250GB, 500GB, and 1TB for the 8, 16, and 32 billion data
points, respectively. Given standard replication factors in the
NoSQL and HDFS stores used by the STOS, these datasets
reach the near-maximum available storage space. For higher
dimensional data, we generated six datasets. Three datasets
were generated based on AReM (6-d) and the dataset sizes
are approximately 250GB, 500GB, and 1TB that contain 2.6,
5.33, and 10.6 billion data points, respectively. Three more
datasets were generated based on the Istanbul (9-d) dataset that
contained 1.7, 3.5 and 7.1 billion data points and the sizes are
approximately 250GB, 500GB, and 1TB, respectively.

2) Queries and Performance metrics:

Queries. 10k queries per dataset were generated and used for
the performance evaluations that follow. For each query, a
query point was generated uniformly at random and the system
was asked for the kNN data points per dataset for this query
point. This was repeated for each value of k ∈ {10, 100, 1000}.
Performance Metrics. We measure the STOS building time in
minutes (min) and the coefficient of variation (COV) defined
as the ratio: sd/E to measure the load-balancing of cells,
where sd is the standard deviation of the number of points
per cell and E is the average number of points per cell.
Moreover, we measure memory requirements (in megabytes)
to store STOS structure. To estimate the time to recover
from failure, we measure STOS loading time in milliseconds
(ms). Furthermore, after executing all queries sequentially, we
compute the average query response time in ms per value of
k. To measure the network overhead during query processing,

(a) Creation/Building Time (b) HBase Bulk-Loading Time

Fig. 10. STOS vs. COWI Creation/Index Building/Storing – AReM datasets

we consider the average number of rows (cells) retrieved and
the average number of data points accessed per query.

As mentioned earlier, it is generally accepted that build-
ing indexes for competing kNN processing methods is an
expensive process and fraught with difficulties. For instance,
we were not able to index the datasets using the publicly
available codes of SHadoop and Simba. Hence, we compare
our approach against COWI. Note that [7] already showed that
COWI achieves approximately three orders of magnitude better
performance compared to SHadoop and Simba. In the same
work, COWI was shown to enjoy a better query performance
than CONI (as CONI stores the index in HBase table, thus,
requiring extra HBase accesses to read index data). It is hence
sufficient to compare STOS against only COWI.

B. Performance Assessment: STOS vs Index Overheads

Figure 10(a) shows the STOS building times vis-a-vis the
COWI index building times for different sizes of the AReM
datasets. The COWI indexing time is roughly five times higher
than that of STOS. In the literature, it is well-known that
QT has high index building time, while Uniform Grid has a
relatievely low index construction time [32]. Hence, the results
of this experiment are as expected confirming that this still
holds in STOS and COWI.

We also use the standard HBase bulk loading [5] technique
to load the STOS-organised data into an HBase table. If the
distribution of the row-keys of the HBase table is uniform, then
the [5]-based loads are very efficient. Otherwise, a human ex-
pert is required to manually split the regions of the HBase table
to expedite the bulk-loading process. Likewise, as shown in
Figure 10(b), STOS’s uniform distribution blends excellently
with the existing techniques and has a better bulk-loading
process than COWI: COWI Man depicts the case when
COWI’s regions of the HBase table are partitioned manually,
whereas COWI van stands for no manually partitioning of
the regions. Note: it is not always straightforward to partition
a non-uniformly distributed row-keys set into equal-sized par-
titions manually.

Moreover, we measure the time recovery from failure
(index or STOS loading time) for different dataset sizes as
shown in Figure 11(a). In COWI, 6 sec to 26 sec are needed
to load the index in memory. In addition, the index loading
time increases linearly with the size of a dataset. The STOS
loading time, on the other hand, is constant and dramatically
lower, standing at 0.014 sec.

To evaluate the storage space requirements, we also mea-
sure the memory footprint of each method as shown in Figure



(a) Loading Time (b) Size In Memory(Bytes)

Fig. 11. STOS vs. COWI Loading – AReM datasets

(a) Creation/Index Building Time (b) HBase Bulk-Loading Time

Fig. 12. STOS vs. COWI Creation/Index Building/Storing – Istanbul datasets

11(b). In COWI, 0.60 GB to 2.4 GB are required to store the
index of the datasets. On the other hand, the STOS’s space
requirement is constant and dramatically (approximately three
orders of magnitude) smaller, standing at 0.0012 GB for the
different sizes of the dataset.

The index loading time and space requirements of COWI
might seem to be small, in absolute numbers. However, it
is worth mentioning that the space requirement of COWI is
around 0.25% of the size of the dataset and we observe a linear
increase of index loading time w.r.t. the dataset size. That is,
if the dataset grows to petabytes then tens of GBs would be
required. Furthermore, w.r.t. index loading times, given the
linear increase observed for COWI, for a 1PB dataset, circa 7
hours would be needed to load the index.

The results for the Istanbul datasets are very similar, lead-
ing to the same conclusions as the AReM datasets. Although
a detailed discussion is omitted for space limitations, we show
the STOS and COWI-index building times, HBase bulk loading
times, index loading times and memory footprints in Figures
12(a), 12(b), 13(a), and 13(b), respectively.

C. Performance Assessment: Query Performance

We now turn to assessing query processing performance.
As shown in Figure 14(a), we compare the kNN query
response time of STOS against COWI based on the 250GB,
500GB and 1TB AReM-derived datasets. We measured the
kNN query response time in milliseconds (ms) for different
values of k. In STOS, the query response time varies from
10ms to 29ms, while in COWI, the query response time is
roughly similar and ranges from 8ms to 39ms. The results
clearly indicate that STOS has better or similar performance
compared to COWI, and both approaches show excellent scal-
ability, i.e., very small query response times despite significant
increases in the dataset size.

To further assess the query processing performance, we
measure the average number of rows accessed per query, as

(a) Creation Time (b) Size In Memory(Bytes)

Fig. 13. STOS vs. COWI Loading – Istanbul datasets

(a) Query Response Times (b) Average # of Rows Accessed Per
Query

Fig. 14. Query Processing Times and Accessed Data (Rows) – AReM datasets

shown in Figure 14(b), for different dataset sizes and values
of k. STOS accesses on average 1.18 rows per query when
k=10 (with, on average, 2000 data points are stored per row)
and for k=100 and k=1000 on average 1.64 and 3.35 rows
were accessed, respectively. COWI accessed on average 1.15,
1.54, and 3.34 rows for k=10, k=100 and k=1000, respectively,
when on average 2000 data points are stored per row. This
demonstrates that COWI accessed roughly the same number
of rows, but in both methods, the size of the dataset has no
significant impact on the average number of rows accessed per
query. The average number of rows per query is affected by the
value of k; i.e., large values of k produce large query ranges.

On the other hand, as shown on Figure 15(a), on average,
STOS accessed a smaller number of data points per query than
COWI. Initially, this seems counter-intuitive because one can
ask how can COWI access more data points while accessing
a similar number of rows as STOS? Note that, even though
both methods contain on average the same number of data
points, as shown in Figure 15(b), the coefficient of variation
(COV), which measures the variation around the mean number
of points per row across rows, in STOS is 2% while in COWI is
between 36% to 45%. This presents also independent evidence
as to the ability of STOS to partition the space equitably, with
cells having nearly-equal sizes. This is significant since, as we
have found, partition sizes affect directly the load balancing
among the processes tasked with building the tree indexes
or STOS itself and the query processing times. Therefore,
STOS building processes are more robust (less likely to hang
during MR) and query processing times are more predictable as
evidenced by the COV values. The query performance results
for the Istanbul dataset are very similar; Figures 16(a), 16(b)
and 17 show query response times, average number of rows
accessed per query and the average number of data points
accessed per query respectively.

In conclusion, both approaches in general scale very well
w.r.t. the average number of rows accessed per query with



(a) Average # of Data Points Ac-
cessed per Query

(b) Coefficient of Variation of Num-
ber of Data Points Per Cell

Fig. 15. Query Processing Costs – AReM datasets

(a) Query Response Times (b) Average # of Rows Accessed Per
Query

Fig. 16. Query Processing Costs: Query Processing Times and Accessed
Data (Rows) – Istanbul datasets

increasing dataset sizes, with STOS having a clear edge.

D. Performance Assessment: STOS in High Dimensions

In the related work section, we discussed the largely-held
view that QT indexes are not appropriate for datasets with high
data dimensionality. This is due to the fact that QT divides
a cell into 2d sub-cells and creates too many nearly empty
cells in high d dimensional space. Hence, during the query
processing most of the points in the QT will be accessed and,
thus, the performance is similar to exhaustive search.

In our context, we assess the behaviour of STOS when data
dimensionality increases. As shown in Figure 18(a), we focus
on STOS building time and show how it is affected by the six
dimensions of the AReM dataset and nine dimensions of the
Istanbul dataset. Note that the creation time of STOS is not
affected by the number of dimensions as the times required
for 6-d, 9-d and 2-d datasets are quite similar. On the other
hand, index loading time (Figure 18(b)) and memory footprint
(Figure 18(c)) are not affected by the size of the datasets. We
observe a slight increase in memory requirement, from 1.8 KB
to 2.6 KB, as the data dimension increases from 6-d to 9-d.
We also notice a slight increase in index loading time as the
number of dimensions increases.

As shown in Figure 18(d), the query response time of
dataset AReM ranges from 166ms to 1425ms; whereas for
dataset Istanbul from 773ms to 4246ms. Again, the query
response time does not show significant change with the
different size of datasets, but the number of dimensions and
different values of k significantly influence the query response
time, as expected. Similarly, Figures 18(e) and 18(f) illustrate
the average number of rows and data points accessed per query,
respectively. Note, as the data dimensionality increases, the
average number of rows and data points accessed per query
increase significantly. However, STOS manages to process

Fig. 17. Average # of Data Points Accessed per Query – Istanbul Datasets

(a) Creation Time (b) Loading Time

(c) Size In Memory (Bytes) (d) Query Response Time

(e) Average # of Rows Accessed Per
Query

(f) Average # of Data Points Accessed
Per Query

Fig. 18. STOS vs High-dimensional Data – Istanbul (9-d) and AReM (6-d)

kNN queries on average from hundreds of milliseconds to a
few seconds for the 6-d and 9-d datasets.

VI. CONCLUSIONS

High efficiency and scalability during kNN query process-
ing has up until now depended on expensive (tree) indexes
held globally and locally within data nodes of big data clusters.
Indexes are memory-hungry, time-consuming to build and are
associated with building algorithms, which are difficult to
implement to perform well within big data platforms. We
contribute with a new perspective and structure, STOS, for
organising multivariate datasets for kNN query processing
avoiding the above problems. STOS exploits the fact that
typically datasets can be transformed to uniform spaces. Its
core idea is to utilise probabilistic data space transformations,
which essentially facilitate query processing as if the underly-
ing datasets were uniformly distributed, greatly simplifying the
problem and its solution. STOS can do away with memory-
hungry indexes requiring state with a minute memory footprint.
Our methodology enjoys memory requirements that represent
an improvement over the state of the art by up to 6 orders



of magnitude. Additionally, STOS memory footprint remains
(nearly) constant as dataset sizes grow, unlike traditional
tree-based indexes. Furthermore, the times required to build
STOS are smaller by several orders of magnitude compared to
traditional tree-index building times. At the same time, STOS
is able to surgically access and transfer very small data chunks
during query processing, thus, achieving very small query
processing times. The above facts are critical in ensuring even
higher overall kNN query processing efficiency and scalability.
We have showcased the viability of STOS and substantiated
the above claims using extensive experimentation over several
real-world (big) datasets of various dimensions.
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