3,507 research outputs found

    A Practical Method to Estimate Information Content in the Context of 4D-Var Data Assimilation. II: Application to Global Ozone Assimilation

    Get PDF
    Data assimilation obtains improved estimates of the state of a physical system by combining imperfect model results with sparse and noisy observations of reality. Not all observations used in data assimilation are equally valuable. The ability to characterize the usefulness of different data points is important for analyzing the effectiveness of the assimilation system, for data pruning, and for the design of future sensor systems. In the companion paper (Sandu et al., 2012) we derive an ensemble-based computational procedure to estimate the information content of various observations in the context of 4D-Var. Here we apply this methodology to quantify the signal and degrees of freedom for signal information metrics of satellite observations used in a global chemical data assimilation problem with the GEOS-Chem chemical transport model. The assimilation of a subset of data points characterized by the highest information content yields an analysis comparable in quality with the one obtained using the entire data set

    Fluctuating hydrodynamics of multi-species, non-reactive mixtures

    Full text link
    In this paper we discuss the formulation of the fuctuating Navier-Stokes (FNS) equations for multi-species, non-reactive fluids. In particular, we establish a form suitable for numerical solution of the resulting stochastic partial differential equations. An accurate and efficient numerical scheme, based on our previous methods for single species and binary mixtures, is presented and tested at equilibrium as well as for a variety of non-equilibrium problems. These include the study of giant nonequilibrium concentration fluctuations in a ternary mixture in the presence of a diffusion barrier, the triggering of a Rayleigh-Taylor instability by diffusion in a four-species mixture, as well as reverse diffusion in a ternary mixture. Good agreement with theory and experiment demonstrates that the formulation is robust and can serve as a useful tool in the study of thermal fluctuations for multi-species fluids. The extension to include chemical reactions will be treated in a sequel paper

    Optimal Reconstruction of Inviscid Vortices

    Full text link
    We address the question of constructing simple inviscid vortex models which optimally approximate realistic flows as solutions of an inverse problem. Assuming the model to be incompressible, inviscid and stationary in the frame of reference moving with the vortex, the "structure" of the vortex is uniquely characterized by the functional relation between the streamfunction and vorticity. It is demonstrated how the inverse problem of reconstructing this functional relation from data can be framed as an optimization problem which can be efficiently solved using variational techniques. In contrast to earlier studies, the vorticity function defining the streamfunction-vorticity relation is reconstructed in the continuous setting subject to a minimum number of assumptions. To focus attention, we consider flows in 3D axisymmetric geometry with vortex rings. To validate our approach, a test case involving Hill's vortex is presented in which a very good reconstruction is obtained. In the second example we construct an optimal inviscid vortex model for a realistic flow in which a more accurate vorticity function is obtained than produced through an empirical fit. When compared to available theoretical vortex-ring models, our approach has the advantage of offering a good representation of both the vortex structure and its integral characteristics.Comment: 33 pages, 10 figure

    Optimal feeding is optimal swimming for all P\'eclet numbers

    Full text link
    Cells swimming in viscous fluids create flow fields which influence the transport of relevant nutrients, and therefore their feeding rate. We propose a modeling approach to the problem of optimal feeding at zero Reynolds number. We consider a simplified spherical swimmer deforming its shape tangentially in a steady fashion (so-called squirmer). Assuming that the nutrient is a passive scalar obeying an advection-diffusion equation, the optimal use of flow fields by the swimmer for feeding is determined by maximizing the diffusive flux at the organism surface for a fixed rate of energy dissipation in the fluid. The results are obtained through the use of an adjoint-based numerical optimization implemented by a Legendre polynomial spectral method. We show that, to within a negligible amount, the optimal feeding mechanism consists in putting all the energy expended by surface distortion into swimming - so-called treadmill motion - which is also the solution maximizing the swimming efficiency. Surprisingly, although the rate of feeding depends strongly on the value of the P\'eclet number, the optimal feeding stroke is shown to be essentially independent of it, which is confirmed by asymptotic analysis. Within the context of steady actuation, optimal feeding is therefore found to be equivalent to optimal swimming for all P\'eclet numbers.Comment: 14 pages, 6 figures, to appear in Physics of Fluid

    Forward and Adjoint Radiance Monte Carlo Models for Quantitative Photoacoustic Imaging

    Get PDF
    In quantitative photoacoustic imaging, the aim is to recover physiologically relevant tissue parameters such as chromophore concentrations or oxygen saturation. Obtaining accurate estimates is challenging due to the non-linear relationship between the concentrations and the photoacoustic images. Nonlinear least squares inversions designed to tackle this problem require a model of light transport, the most accurate of which is the radiative transfer equation. This paper presents a highly scalable Monte Carlo model of light transport that computes the radiance in 2D using a Fourier basis to discretise in angle. The model was validated against a 2D finite element model of the radiative transfer equation, and was used to compute gradients of an error functional with respect to the absorption and scattering coefficient. It was found that adjoint-based gradient calculations were much more robust to inherent Monte Carlo noise than a finite difference approach. Furthermore, the Fourier angular discretisation allowed very efficient gradient calculations as sums of Fourier coefficients. These advantages, along with the high parallelisability of Monte Carlo models, makes this approach an attractive candidate as a light model for quantitative inversion in photoacoustic imaging
    • …
    corecore