136,248 research outputs found

    Incremental Recompilation of Knowledge

    Full text link
    Approximating a general formula from above and below by Horn formulas (its Horn envelope and Horn core, respectively) was proposed by Selman and Kautz (1991, 1996) as a form of ``knowledge compilation,'' supporting rapid approximate reasoning; on the negative side, this scheme is static in that it supports no updates, and has certain complexity drawbacks pointed out by Kavvadias, Papadimitriou and Sideri (1993). On the other hand, the many frameworks and schemes proposed in the literature for theory update and revision are plagued by serious complexity-theoretic impediments, even in the Horn case, as was pointed out by Eiter and Gottlob (1992), and is further demonstrated in the present paper. More fundamentally, these schemes are not inductive, in that they may lose in a single update any positive properties of the represented sets of formulas (small size, Horn structure, etc.). In this paper we propose a new scheme, incremental recompilation, which combines Horn approximation and model-based updates; this scheme is inductive and very efficient, free of the problems facing its constituents. A set of formulas is represented by an upper and lower Horn approximation. To update, we replace the upper Horn formula by the Horn envelope of its minimum-change update, and similarly the lower one by the Horn core of its update; the key fact which enables this scheme is that Horn envelopes and cores are easy to compute when the underlying formula is the result of a minimum-change update of a Horn formula by a clause. We conjecture that efficient algorithms are possible for more complex updates.Comment: See http://www.jair.org/ for any accompanying file

    Cooperative agent-based software architecture for distributed simulation

    Get PDF
    This paper proposes a cooperative multiagent model using distributed object-based systems for supporting distributed virtual environment and distributed simulation technologies for military and government applications. The agent model will use the condition-event driven rule based system as the basis for representing knowledge. In this model, the updates and revision of beliefs of agents corresponds to modifying the knowledge base. These agents are reactive and respond to stimulus as well as the environment in which they are embedded. Further, these agents are smart and can learn from their actions. The distributed agent-based software architecture will enable us to realise human behaviour model environment and computer-generated forces (also called computer-generated actor (CGA)) architectures. The design of the cooperative agent-based architecture will be based on mobile agents, interactive distributed computing models, and advanced logical modes of programming. This cooperative architecture will be developed using Java based tools and distributed databases

    State-of-the-art on evolution and reactivity

    Get PDF
    This report starts by, in Chapter 1, outlining aspects of querying and updating resources on the Web and on the Semantic Web, including the development of query and update languages to be carried out within the Rewerse project. From this outline, it becomes clear that several existing research areas and topics are of interest for this work in Rewerse. In the remainder of this report we further present state of the art surveys in a selection of such areas and topics. More precisely: in Chapter 2 we give an overview of logics for reasoning about state change and updates; Chapter 3 is devoted to briefly describing existing update languages for the Web, and also for updating logic programs; in Chapter 4 event-condition-action rules, both in the context of active database systems and in the context of semistructured data, are surveyed; in Chapter 5 we give an overview of some relevant rule-based agents frameworks

    Introducing Dynamic Behavior in Amalgamated Knowledge Bases

    Full text link
    The problem of integrating knowledge from multiple and heterogeneous sources is a fundamental issue in current information systems. In order to cope with this problem, the concept of mediator has been introduced as a software component providing intermediate services, linking data resources and application programs, and making transparent the heterogeneity of the underlying systems. In designing a mediator architecture, we believe that an important aspect is the definition of a formal framework by which one is able to model integration according to a declarative style. To this purpose, the use of a logical approach seems very promising. Another important aspect is the ability to model both static integration aspects, concerning query execution, and dynamic ones, concerning data updates and their propagation among the various data sources. Unfortunately, as far as we know, no formal proposals for logically modeling mediator architectures both from a static and dynamic point of view have already been developed. In this paper, we extend the framework for amalgamated knowledge bases, presented by Subrahmanian, to deal with dynamic aspects. The language we propose is based on the Active U-Datalog language, and extends it with annotated logic and amalgamation concepts. We model the sources of information and the mediator (also called supervisor) as Active U-Datalog deductive databases, thus modeling queries, transactions, and active rules, interpreted according to the PARK semantics. By using active rules, the system can efficiently perform update propagation among different databases. The result is a logical environment, integrating active and deductive rules, to perform queries and update propagation in an heterogeneous mediated framework.Comment: Other Keywords: Deductive databases; Heterogeneous databases; Active rules; Update

    A New Rational Algorithm for View Updating in Relational Databases

    Full text link
    The dynamics of belief and knowledge is one of the major components of any autonomous system that should be able to incorporate new pieces of information. In order to apply the rationality result of belief dynamics theory to various practical problems, it should be generalized in two respects: first it should allow a certain part of belief to be declared as immutable; and second, the belief state need not be deductively closed. Such a generalization of belief dynamics, referred to as base dynamics, is presented in this paper, along with the concept of a generalized revision algorithm for knowledge bases (Horn or Horn logic with stratified negation). We show that knowledge base dynamics has an interesting connection with kernel change via hitting set and abduction. In this paper, we show how techniques from disjunctive logic programming can be used for efficient (deductive) database updates. The key idea is to transform the given database together with the update request into a disjunctive (datalog) logic program and apply disjunctive techniques (such as minimal model reasoning) to solve the original update problem. The approach extends and integrates standard techniques for efficient query answering and integrity checking. The generation of a hitting set is carried out through a hyper tableaux calculus and magic set that is focused on the goal of minimality.Comment: arXiv admin note: substantial text overlap with arXiv:1301.515
    • …
    corecore