
INTERNATIONAL CONFERENCE ON COMMUNICATION, COMPUTER AND POWER (ICCCP'09) MUSCAT, FEBRUARY 15-18, 2009

© SQU-2009 ISSN: 1813-419X -

Cooperative Agent-based Software

Architecture for Distributed Simulation

V.K.Murthy1 , E.V.Krishnamurthy2

Abstract- This paper proposes a cooperative multi-
agent model using distributed object-based systems for
supporting distributed virtual environment and
distributed simulation technologies for military and
government applications. The agent model will use the
condition-event driven rule based system as the basis for
representing knowledge. In this model, the updates and
revision of beliefs of agents corresponds to modifying the
knowledge base. These agents are reactive and respond
to stimulus as well as the environment in which they are
embedded. Further, these agents are smart and can
learn from their actions. The distributed agent-based
software architecture will enable us to realise human
behaviour model environment and computer-generated
forces (also called computer-generated actor (CGA))
architectures. The design of the cooperative agent-based
architecture will be based on mobile agents, interactive
distributed computing models, and advanced logical
modes of programming. This cooperative architecture
will be developed using Java based tools and distributed
databases.

Index Terms- Agent-based simulation, Computer
Generated Forces, Intelligent Agents, Distributed
Simulation, Agent-based Combat Modeling

 I. INTRODUCTION

 A cooperative multi-agent model is proposed using
object-based systems for supporting distributed virtual
environment and distributed simulation technologies for
military and government applications. In this paper, we
propose a distributed agent-based software architecture that
will enable us to realise intelligent military operations
planning systems and computer-generated forces (also
called computer-generated actor (CGA)) systems. These
CGA systems will be useful in modeling cyber warfare, or
information warfare.

1 Colleges of Applied Sciences, Ministry of Higher Education, Sultanate of
Oman, and Australian National University, Canberra, ACT 0200, Australia
edayathuk@gmail.com and ariyalurk@gmail.com.
 2Australian National University, Canberra, ACT 0200 Australia,
Evk.Krishnamurthy@anu.edu.au

Agents have intentions and actions. They are autonomous
and they have a built in control to act only if they want to.
In addition, agents are flexible, proactive and have
multithreaded control. An agent is a system that is capable
of perceiving events in its environment, or representing
information about the current state of affairs and of acting in
its environment guided by perceptions and stored
information. Agents can be classified based on their
functionality: collaborative agents that cooperate; interface
agents that act as personal assistants; mobile agents that
migrate among hosts to enhance the efficiency of
computation and improve the network throughput;
information agents that manage, manipulate and collate
information from many distributed sources; reactive agents
that respond to stimulus and respond in an environment
where they are embedded; smart agents that learn from their
actions; hybrid agents that can combine any of the
functionalities of the above agents.
 We describe in detail how a set of smart agents can be
used for collaboration and cooperation. We will develop an
integrated agent-based model that links with the distributed
software engineering methodology. This model also
provides an insight into the self-organized criticality in a
network of agents [1-9]. These smart cooperative software
agents are useful in realizing distributed military operations
planning systems. The multi-agent model can simulate the
collaboration and cooperation of human participants and
hence we can construct a suitable human behaviour model
in a distributed environment.
 The agent model has the following features [10-12]:
1. Derivation of events and actions by interpreting inputs. A
rule-based system provides the basis for representing
knowledge. Update and revision of beliefs are formalized.
2. Process of going from goals to plans and actions
provides for program design.
3. Deterministic, nondeterministic and probabilistic choice
functions can be incorporated. Hence cooperation and
collaboration among agents are possible.
4. Condition + events, intention + action, subjunctive/
abductive reasoning and failure recovery can be embedded
in the transactional and workflow approach.
5. Algorithm and protocol design for distributed systems
based on utility functions becomes easy.

24

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications of the IAS Fellows

https://core.ac.uk/display/291579240?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

INTERNATIONAL CONFERENCE ON COMMUNICATION, COMPUTER AND POWER (ICCCP'09) MUSCAT, FEBRUARY 15-18, 2009

© SQU-2009 ISSN: 1813-419X -

6. Emergence in which the total system exhibits new
properties can be realised in a large number of
interconnected agents.
7. Permits development of distributed software tools using
Java for multi-agent systems engineering.
8. Has the simplicity and adaptability for realisation as a
distributed transaction-based paradigm for collaboration.
9. Provides an insight into the self-organized criticality in a
network of agents.

 II. AGENT MODEL

 A multi-agent system consists of the following
subsystems [6]:
(1) Environment U: Those states which completely
describe the universe containing all the agents.
(2) Input (Percept): This is an input from the environment.
Depending upon the sensory capabilities (input interface to
the universe or environment) an agent can partition U into a
standard set of messages T, using a sensory function
Perception (PERCEPT):
PERCEPT: U T.
PERCEPT is interpreted by an agent and involves various
senses such as see, read and hear. The messages are
assumed to be of standard types based on an interaction
language that is interpreted identically by all agents.
(3) Mind M: The agent has a mind M (namely, a problem
domain knowledge consisting of an internal database for the
problem domain data and a set of problem domain rules)
that can be clearly understood by the agent without
involving any sensory function. The database D sentences
are in first order predicate calculus (also known as
extensional database) and agents mental actions are viewed
as inferences arising from the associated rules that result in
an intentional database, that changes (revises or updates) D.
 The beliefs are first order logic sentences resulting from
information about the environment at a certain time. These
beliefs can be of three types:
(i) Elementary belief: This is assumed or self supported,
(ii) Derived belief: This is got from perception and
communication.
(iii) Inferential belief: This is got through analysis.
An agent’s mind therefore knows what the belief is, how it
was arrived at and why it is true. A distributed belief is
composed of the union of the beliefs of all agents. Thus M
can be represented by an ordered pair of elements (D, P). D
is a set of beliefs about objects, their attributes and
relationships stored as an internal database and P is a set of
rules expressed as preconditions and consequences
(conditions and actions). When T is input, if the conditions
given in the left-hand side of P match T the elements from
D that correspond to the right-hand side are taken from D
and suitable actions are carried out locally (in M) as well as
on the environment.
(4) Organizational Knowledge (O): Since each agent
needs to communicate with the external world or other
agents, we assume that O contains all the information about
the relationships among the different agents. For example,
the connectivity relationship for communication, the data
dependencies between agents, interference among agents

with respect to rules, information about the location of
different domain rules are in O.
(5) INTRAN: M is suitably revised or updated by the
function called Internal transaction (INTRAN). Revision
means acquisition of new information about the world state,
while update means change of the agent's view of the world.
Revision of M corresponds to a transformation of U due to
occurrence of events and transforming an agent's view due
to acquisition of new information that modifies rules in P or
their mode of application (deterministic, nondeterministic or
probabilistic) and corresponding changes in database D (e.g
modifying the tax-rules). Updates to M correspond to
changes in U due to the occurrence of events that changes D
but not P (e.g. inserting a new tax -payer in D). That is:
INTRAN: M X T M
 (6) EXTRAN: External action is defined through a
function called global or external transaction (EXTRAN)
that maps an epistemic state and a partition from an external
state into an action performed by the agent. That is:
EXTRAN: M X T Æ A
This means that the current state of mind and a new input
activates an external action from A.
(7) EFFECT: The agent also has an effectory capability on
U by performing an action from a set of actions A (ask, tell,
hear, read, write, speak, send, smell, taste, receive, silent),
or more complex actions. Such actions are carried out
according to a particular agent’s role and governed by an
etiquette called protocols. The effect of these actions is
defined by a function EFFECT, that modifies the world
states, through the actions of an agent:
EFFECT: A X U U; EFFECT can involve additions,
deletions and modifications to U. Thus an agent is defined
by:
(U, T, M (P,D),O,A,PERCEPT,INTRAN,EXTRAN, EFFECT).
The interpreter repeatedly executes selected rules in P, until
no rule can be fired.
 The nature of internal production rules P, their mode of
application and the action set A determines whether an
agent is deterministic, nondeterministic, probabilistic or
fuzzy. Rule application policy in a production system P can
be modified by:
(1) Assigning probability/fuzziness for applying a rule.
(2) Assigning strength to a rule by using a measure of its
past success.
(3) Introducing a support for a rule by using a measure of
its likely relevance to the current situation.
 The above factors provide for competition and
cooperation among the different rules. Such a model is
useful for collaboration and cooperation involving many
agents.

 III. AGENT-BASED COLLABORATION

 Agent-based collaboration is an interactive process
among many smart mobile agents that results in varying
degrees of cooperation and competition and ultimately leads
to commitment [3, 4, 5]. This will result in total agreement,
consensus or disagreement. Agents connected by a network
sharing a common knowledge base exchange private
knowledge through transactions and create new knowledge.
Each agent transacts its valuable private knowledge with
other agents and the resulting transactional knowledge is
shared as common knowledge. Agents may benefit by

25

INTERNATIONAL CONFERENCE ON COMMUNICATION, COMPUTER AND POWER (ICCCP'09) MUSCAT, FEBRUARY 15-18, 2009

© SQU-2009 ISSN: 1813-419X -

exchanging their private knowledge if their utility will be
increased. This knowledge is traded in if their utilities can
be improved. If during a transaction the difference between
external and internal knowledge is positive this difference is
added to private knowledge; else it is treated as common
knowledge. The graph that links the agents is called the
collaboration graph. A collaboration protocol is viewed as a
set of public rules that dictate the conduct of an agent with
other agents to achieve a desired final outcome in sharing
the knowledge and performing actions that satisfy a desired
goal satisfying some utility functions. A directed graph can
be used to represent a collaboration process. This graph
expresses the connectivity relationship among the agents,
that can be real or conceptual and can be dynamic or static
depending upon the problem at hand.
 Multi-agents can cooperate to achieve a common goal to
complete a task to aid the customer. The negotiation follows
rule-based strategies that are computed locally by its host
server. Here competing offers are to be considered;
occasionally cooperation may be required. Special rules may
be needed to take care of risk factors, domain knowledge
dependencies between attributes, positive and negative end
conditions. When making a transaction several agents have
to negotiate and converge to some final set of values that
satisfies their common goal. Such a goal should also be cost
effective so that it is in an agreed state at the minimum cost
or a utility function. To choose an optimal strategy each
agent must build a plan of action and communicate with
other agents. For communication among the agents one can
think of various models: (i) arbitration model in which each
client-agent communicates through an arbitrator (ii) auction
in which there is a central coordinator who collects the
information from participants and make them public, and
(iii) Direct search which involves catalogue/directory
service. When there is no coordinator, collaboration and
negotiation can lead to a self-organized criticality and this
can lead to a speculation bubble or a crash, or a stagnation
and a phase transition among such states.

 IV. AGENT-BASED NEGOTIATION

 Human problem solving uses an act-verify strategy
through preconditions and actions. When a human solves a
problem, the solution process has a similarity to the
transaction handling problem; for each transaction is an
exploratory non pre-programmed real-time procedure that
uses a memory recall (Read), acquires a new information
and performs a memory revision (Write). Each transaction is
also in addition provided with the facility for repair
(recovery-Undo) much like the repair process encountered
in human problem solving. In human problem solving,
several independent or dependent information is acquired
from various knowledge sources and their consistency is
verified before completing a step of the solution to achieve
each subgoal; this process corresponds to committing a
subtransaction in a distributed transaction processing
system, before proceeding to reach the next level of subgoal
arranged in a hierarchy. Thus the transactional approach
provides for a propose, act and verify strategy by offering a
nonprocedural style of programming (called 'subjunctive
programming') in which a hypothetical proposal or action
(what if changes) is followed by verification, commitment

or abort and restoration. So this paradigm is well-suited for
smart agent-based negotiation in distributed simulation.

 V. DISTRIBUTED NEGOTIATION

 A distributed negotiation protocol has the following
properties:
(1) The negotiation leads to a finite number of states.
(2) The negotiation process does not enter cyclic or infinite
sequences but always reaches a terminal state.
 We now describe how to carry out distributed multi-agent
negotiation by sending, receiving, handshaking and
acknowledging messages and performing some local
computations. A multi-agent negotiation has the following
features:
1. There is a seeding agent who initiates the negotiation.
2. Each agent can be active or inactive.
3. Initially all agents are inactive except for a specified
seeding agent, which initiates the computation.
4. An active agent can do local computation, send and
receive messages and can spontaneously become inactive.
5. An inactive agent becomes active, if and only if, it
receives a message.
6. Each agent may retain its current belief, revise or update
its belief as a result of receiving a new message by
performing a local computation. If it modifies its belief, it
communicates its new belief to other concerned agents; else
it does not modify its belief and remains silent.

 VI. NEGOTIATION TERMINATION

 In order that the distributed negotiation protocol is
successful we need to ensure that the negotiation process
ultimately terminates. For this purpose, we now describe an
algorithm that can detect the global termination of a
negotiation protocol. Let us assume that the N agents are
connected through a communication network represented by
a directed graph G with N nodes and M directed arcs. Let us
also denote the outdegree of each node i by Oud (i) and
indegree by Ind(i). Also we assume that an initiator or a
seeding agent exists to initiate the transactions. The seeding
agent (SA) holds an initial amount of money C. When the
SA sends a data message to other agents, it pays a
commission:
 C/(Oud (SA) + 1) to each of its agents and retains the same
amount for itself. When an agent receives a credit it does the
following:

a. Let agent j receive a credit C(M(i)) due to some data
message M(i) sent from agent i . If j passes on data
messages to other agents j retains C((M(i)) / (Oud(j)+1) for
its credit and distributes the remaining amount to other
Oud(j) agents. If there is no data message from agent j to
others, then j credits C(M(i)) for that message in its own
savings account; but this savings will not be passed on to
any other agent, even if some other message is received
eventually from another agent.
b. When no messages are received and no messages are sent
out by every agent, it waits for a time-out and sends or

26

INTERNATIONAL CONFERENCE ON COMMUNICATION, COMPUTER AND POWER (ICCCP'09) MUSCAT, FEBRUARY 15-18, 2009

© SQU-2009 ISSN: 1813-419X -

broadcasts or writes on a transactional blackboard its
savings account balance to the initiator.
c. The initiator on receiving the message broadcast adds up
all the agents' savings account and its own and verifies
whether the total tallies to C.
d. In order to store savings and transmit commission we use
an ordered pair of integers to denote a rational number and
assume that each agent has a provision to handle exact
rational arithmetic. If we assume C=1, we only need to carry
out multiplication and store the denominator of the rational
number.
 We prove the following theorems to describe the validity
of
 the above algorithm:
Theorem 1: If there are negotiation cycles that correspond
to indefinite arguments among the agents (including the
initiator itself) then the initiator cannot tally its sum to C.
Proof: Assume that there are two agents i and j are engaged
in a rule dependent argument cycle. This means i and j are
revising their beliefs forever without coming to an
agreement, and wasting the common resource C. Let the
initial credit of i be x. If i passes a message to j, then i holds
x/2 and j gets x/2. If eventually j passes a message to i ,then
its credit is x/4 and i has a credit x.3/4 ; if there is
continuous exchange of messages for ever then their total
credit remains (x - x/2k) with x/2k being carried away by
the message at k th exchange. Hence the total sum will
never tally in a finite time.
Theorem 2: The above algorithm terminates if and only if
the initiator tallies the sum of all the agents savings to C.
Proof: If part: If the initiator tallies the sum to C this implies
that all the agents have sent their savings and no message is
in transit carrying some credit and there is no chattering
among agents.
Only if part: The credit assigned can be only distributed in
the following manner:
a. An agent has received a message and credit in a buffer; if
it has sent a message then a part of the credit is lost; else it
holds the credit in savings.
b. Each message carries a credit; so, if a message is lost in
transit or communication fails then total credit cannot be
recovered.
Thus termination can happen only if the total sum tallies to
C, i.e., the common resource is not wasted and all the agents
have reached an agreement on their beliefs.
 We will illustrate the above algorithm using the E-auction
scenario in which there is a single auctioneer and a set of
clients participating in the auction.

 VII. NEGOTIATION EXAMPLE

 Auction process is a kind of controlled competition
among a set of agents (clients and auctioneer) coordinated
by the auctioneer. We use this example since it is simple to
explain the concept of agents, their beliefs and actions as
outlined in Section 2. In this example, the belief is first
obtained from the auctioneer and other clients through
communication and these are successively updated. Finally,
the distributed belief among all participants is composed of
all the existing beliefs of every agent involved in the
process.
 The rules that govern the auction protocol are as follows:

(1) At the initial step the auctioneer-agent begins the
process and opens the auction.
(2) At every step, decided by a time stamp, only one of
the client-agent is permitted to bid and the auctioneer relays
this information. The bidding client agent is called active
and it does not bid more than once and this client becomes
inactive until a new round begins.
(3) After the auctioneer relays the information a new client
becomes active and bids a value strictly greater than a finite
fixed amount of the earlier bid.
(4) When at a given time-out period no client-agent
responds, the last bid is chosen for the sale of the goods and
the auction is closed.
 Note that the Rule 3 here corresponds to English auction,
but it can be different depending upon the nature of the
auction.

 Agent-Based Protocol
 Let us assume that there are three clients (A, B, C) and an
auctioneer G. The auctioneer G initiates the auction. Then
each of the clients A,B and C broadcasts their bid and
negotiates, and the auctioneer relays the information. The
bidding value is known to all the clients and the auctioneer.
When the bid reaches a price above a certain reserve price,
and no bid comes forth until a time-out, G terminates the
auction and the object goes under the hammer for that price.
In E-auction the above scenario can be realised and the
negotiation termination algorithm can be used.
 At initiation, the node G is the seeding agent (auctioneer).
It transmits the information to each client the beginning of
the E-auction. Also it starts with a credit 1 and retains a
credit of 1 /(Oud (SA)+ 1 to itself, and transmits the same
amount to its neighbours (A, B, C) which in this case is 1/4.
The retained credit for each transmission is indicated near
the node. To start with the agent-client A bids a value. Then
all clients and G get this information and the credits. Then
agent-client node B updates its earlier belief from the new
message received from G; but the other nodes A, C do not
update their initial beliefs and remain silent .The agent-
client node C then bids. Finally as indicated in the rules
described above, we sum over all the retained credits after
each transmission.

 VIII . AGENT-BASED SIMULATION

 The agent negotiation system can be used to model a
distributed battlefield simulation system. In this system, the
military operations are modelled as a distributed process
among many soldiers (agents) coordinated by the group
commander (controlling agent).
 In this simulation system, the domain data D, rules P and
organizational knowledge O are based on three factors:
(1) The experience and knowledge of a soldier is based
totally on his criteria (elementary belief)
(2) The soldier acquires knowledge through
communication with other other soldiers and commanders;
such a soldier is called a fundamentalist (derived belief).
(3) The soldier acquires knowledge by observing the
behavior of other soldiers and commanders; such a soldier is
called a trend chaser (inferential belief). In practice a soldier
is influenced by the above factors and the modified
knowledge is incorporated in D, P and O.

27

INTERNATIONAL CONFERENCE ON COMMUNICATION, COMPUTER AND POWER (ICCCP'09) MUSCAT, FEBRUARY 15-18, 2009

© SQU-2009 ISSN: 1813-419X -

 In a battlefield (military) simulation system, a soldier or a
commander (an agent) can perform various actions
including Attack and Retreat. Each agent can communicate
with other agents and this creates a bond among them. This
results in the modification of the organizational knowledge
O. This bond is created with a certain probability
determined by a parameter, which characterises the
willingness of a soldier or commander to comply with
others.
 We can assume that any two soldiers or commanders
(agents) are randomly connected with a certain probability.
This divides the agents into clusters of different sizes whose
members are linked either directly or indirectly via a chain
of intermediate agents. These groups are coalitions of
military participants who share the same opinion about their
activity. The decision of each group is independent of its
size and the decision taken by other clusters.
 Using percolation theory [11] it can be shown that when
every agent is on average connected to another, more and
more agents join the spanning cluster, and the cluster begins
to dominate the overall behaviour of the system. This gives
rise to “Offensive Action” (if all the soldiers and
commanders decide to attack) and a “Defensive Action” (if
all the soldiers and commanders decide to retreat).
Accordingly, an analogy exists between “Offensive Action”
or “Defensive Action” and critical phenomena or phase
transitions in physics. Thus a distributed agent system can
eventually enter into a phase-transition like situation [1, 2,
8, 9, 11].

 When soldiers and commanders (agents) collaborate in a
battlefield simulation system, the collaboration graph
consists of many nodes and edges. As more military
participants join and their collaboration increase, the
number of links increase and the collaboration graph grows.
The links among the agents can be established in a certain
preferential manner rather than a uniform distribution.
Recently, Barabasi and Albert [2] observe that the growth
and preferential attachment leads to a power-law
distribution, namely, the probability P(k) that each agent
has k links is k - x, where x = 2.3. Thus the development of
distributed complex systems is governed by robust self-
organizing phenomena that go beyond the particulars of the
individual systems. Therefore complex systems involving a
large number of agents will self organize into a scale-free
state. This phenomenon will be useful in complex
distributed military operations planning systems involving
many smart agents.

 IX. CONCLUSION

 We have proposed a cooperative multi-agent model using
distributed object-based systems for supporting distributed
simulation technologies for military applications. These
agents are reactive and respond to stimulus as well as the
environment in which they are embedded. Further, these
agents are smart and can learn from their actions. The
distributed collaborative agent-based software architecture
will enable us to realise human behaviour model
environment and computer-generated forces architectures.
This model also provides an insight into the self-organized
criticality in a network of agents.

 REFERENCES

[1] Bak, P. 1996. How Nature works: The Science of Self-
organized criticality. Springer, New York.
[2] Barabasi, A and R. Albert. 1999. “Emergence of scaling in
random networks.” Science 286, 509-512.
[3] Chen, Q. and U. Dayal. 2000. “Multi agent cooperative
transactions for E-commerce.” Lecture Notes in Computer
Science 1901, 311-322.
[4] DeLoach, S. A. 2001. “Multiagent Systems Engineering.”
International Journal of Software Engineering and Knowledge
Engineering 11, 231-258.
[5] Dignum, F. and C. Sierra. 2000. “Agent Mediated E-
Commerce.” Lecture Notes in Artificial Intelligence 2003.
[6] Fisher, M. 1995. “Representing and executing agent-based
systems.” in Intelligent Agents,Woolridge,M.,and Jennings, N.R
(Eds.), Lecture Notes in Computer Science,Vol.890, Springer-
Verlag, New York, pp. 307-323,1995.
[7] N.R.Jennings,On agent -based software engineering, Artificial
Intelligence, Vol.117, pp.277-296,2000.
[8] S.Kirkpatrick and .B. Selman, Critical behaviour in the
satisfiability of random boolean expressions, Science, Vol.264,
pp.297-1301,1994.
[9] A.Lloyd and R.M.May, How viruses spread among computer
and people, Science, Vol.292, pp.1316-1317.,2001.
[10] Nagi, K. 2001. Transactional agents, Lecture Notes in
Computer Science. New York, Springer Verlag.
[11] Paul, W. and J. Baschnagel. 2000. Stochastic Processes.
Springer Verlag, New York.
[12] M.Winikoff et al, Simplifying the development of intelligent
agents, Lecture Notes in Artificial Intelligence, Vol. 2256, pp.
557-56,2001.

28

