1,102 research outputs found

    Cubical Cohomology Ring of 3D Photographs

    Get PDF
    Cohomology and cohomology ring of three-dimensional (3D) objects are topological invariants that characterize holes and their relations. Cohomology ring has been traditionally computed on simplicial complexes. Nevertheless, cubical complexes deal directly with the voxels in 3D images, no additional triangulation is necessary, facilitating efficient algorithms for the computation of topological invariants in the image context. In this paper, we present formulas to directly compute the cohomology ring of 3D cubical complexes without making use of any additional triangulation. Starting from a cubical complex QQ that represents a 3D binary-valued digital picture whose foreground has one connected component, we compute first the cohomological information on the boundary of the object, ∂Q\partial Q by an incremental technique; then, using a face reduction algorithm, we compute it on the whole object; finally, applying the mentioned formulas, the cohomology ring is computed from such information

    Computing Invariants of Simplicial Manifolds

    Full text link
    This is a survey of known algorithms in algebraic topology with a focus on finite simplicial complexes and, in particular, simplicial manifolds. Wherever possible an elementary approach is chosen. This way the text may also serve as a condensed but very basic introduction to the algebraic topology of simplicial manifolds. This text will appear as a chapter in the forthcoming book "Triangulated Manifolds with Few Vertices" by Frank H. Lutz.Comment: 13 pages, 3 figure

    Sheaf-Theoretic Stratification Learning from Geometric and Topological Perspectives

    Get PDF
    In this paper, we investigate a sheaf-theoretic interpretation of stratification learning from geometric and topological perspectives. Our main result is the construction of stratification learning algorithms framed in terms of a sheaf on a partially ordered set with the Alexandroff topology. We prove that the resulting decomposition is the unique minimal stratification for which the strata are homogeneous and the given sheaf is constructible. In particular, when we choose to work with the local homology sheaf, our algorithm gives an alternative to the local homology transfer algorithm given in Bendich et al. (2012), and the cohomology stratification algorithm given in Nanda (2017). Additionally, we give examples of stratifications based on the geometric techniques of Breiding et al. (2018), illustrating how the sheaf-theoretic approach can be used to study stratifications from both topological and geometric perspectives. This approach also points toward future applications of sheaf theory in the study of topological data analysis by illustrating the utility of the language of sheaf theory in generalizing existing algorithms

    Algebraic Topology

    Full text link
    The chapter provides an introduction to the basic concepts of Algebraic Topology with an emphasis on motivation from applications in the physical sciences. It finishes with a brief review of computational work in algebraic topology, including persistent homology.Comment: This manuscript will be published as Chapter 5 in Wiley's textbook \emph{Mathematical Tools for Physicists}, 2nd edition, edited by Michael Grinfeld from the University of Strathclyd

    Statistical Methods in Topological Data Analysis for Complex, High-Dimensional Data

    Get PDF
    The utilization of statistical methods an their applications within the new field of study known as Topological Data Analysis has has tremendous potential for broadening our exploration and understanding of complex, high-dimensional data spaces. This paper provides an introductory overview of the mathematical underpinnings of Topological Data Analysis, the workflow to convert samples of data to topological summary statistics, and some of the statistical methods developed for performing inference on these topological summary statistics. The intention of this non-technical overview is to motivate statisticians who are interested in learning more about the subject.Comment: 15 pages, 7 Figures, 27th Annual Conference on Applied Statistics in Agricultur
    • …
    corecore