4 research outputs found

    Saturation-based decision procedures for fixed domain and minimal model validity

    Get PDF
    Superposition is an established decision procedure for a variety of first-order logic theories represented by sets of clauses. A satisfiable theory, saturated by superposition, implicitly defines a minimal Herbrand model for the theory. This raises the question in how far superposition calculi can be employed for reasoning about such minimal models. This is indeed often possible when existential properties are considered. However, proving universal properties directly leads to a modification of the minimal model's termgenerated domain, as new Skolem functions are introduced. For many applications, this is not desired because it changes the problem. In this thesis, I propose the first superposition calculus that can explicitly represent existentially quantified variables and can thus compute with respect to a given fixed domain. It does not eliminate existential variables by Skolemization, but handles them using additional constraints with which each clause is annotated. This calculus is sound and refutationally complete in the limit for a fixed domain semantics. For saturated Horn theories and classes of positive formulas, the calculus is even complete for proving properties of the minimal model itself, going beyond the scope of known superpositionbased approaches. The calculus is applicable to every set of clauses with equality and does not rely on any syntactic restrictions of the input. Extensions of the calculus lead to various new decision procedures for minimal model validity. A main feature of these decision procedures is that even the validity of queries containing one quantifier alternation can be decided. In particular, I prove that the validity of any formula with at most one quantifier alternation is decidable in models represented by a finite set of atoms and that the validity of several classes of such formulas is decidable in models represented by so-called disjunctions of implicit generalizations. Moreover, I show that the decision of minimal model validity can be reduced to the superposition-based decision of first-order validity for models of a class of predicative Horn clauses where all function symbols are at most unary.Superposition ist eine bewährte Entscheidungsprozedur für eine Vielzahl von Theorien in Prädikatenlogik erster Stufe, die durch Klauseln repräsentiert sind. Eine erfüllbare und bezüglich Superposition saturierte Theorie definiert ein minimales Herbrand-Modell dieser Theorie. Dies wirft die Frage auf, inwiefern Superpositionskalküle zur Argumentation in solchen minimalen Modellen verwendet werden können. Das ist bei der Betrachtung existenziell quantifizierter Eigenschaften tatsächlich oft möglich. Die Analyseuniversell quantifizierter Eigenschaften führt jedoch unmittelbar zu einer Modifizierung der termgenerierten Domäne des minimalen Modells, da neue Skolemfunktionen eingeführt werden. Für viele Anwendungen ist dies unerwünscht, da es die Problemstellung verändert. In dieser Arbeit stelle ich den ersten Superpositionskalkül vor, der existenziell quantifizierte Variablen explizit darstellen und daher Berechnungen über einer gegebenen festen Domäne anstellen kann. In ihm werden existenziell quantifizierte Variablen nicht durch Skolemisierung eliminiert sondern mithilfe zusätzlicher Constraints gehandhabt, mit denen jede Klausel versehen wird. Dieser Kalkül ist korrekt und im Grenzwert widerspruchsvollständig für eine domänenspezifische Semantik. Für saturierte Horntheorien und Klassen positiver Formeln ist der Kalkül sogar korrekt für den Beweis von Eigenschaften des minimalen Modells selbst. Dies übersteigt die Möglichkeiten bisheriger superpositionsbasierter Ansätze. Der Kalkül ist auf beliebige Klauselmengen mit Gleichheit anwendbar und erlegt der Eingabe keine syntaktischen Beschränkungen auf. Erweiterungen des Kalküls führen zu verschiedenen neuen Entscheidungsverfahren für die Gültigkeit in minimalen Modellen. Ein Hauptmerkmal dieser Verfahren ist es, dass selbst die Gültigkeit von Anfragen entscheidbar ist, die einen Quantorenwechsel enthalten. Insbesondere beweise ich, dass die Gültigkeit jeder Formel mit höchstens einem Quantorenwechsel in durch endlich viele Atome repräsentierten Modellen entscheidbar ist, und gleiches gilt für die Gültigkeit mehrerer Klassen solcher Formeln in durch so genannte Disjunktionen impliziter Verallgemeinerungen repräsentieren Modellen. Außerdem zeige ich, dass für eine Klasse prädikativer Hornklauseln, bei denen alle vorkommenden Funktionssymbole maximal einstellig sind, die Entscheidbarkeit der Gültigkeit in minimalen Modellen auf superpositionsbasierte Entscheidbarkeit in Prädikatenlogik erster Stufe reduziert werden kann

    Higher inductive types, inductive families, and inductive-inductive types

    Get PDF
    Martin-Löf type theory is a formal language which is used both as a foundation for mathematics and the theoretical basis of a range of functional programming languages. Inductive types are an important part of type theory which is necessary to express data types by giving a list of rules stating how to form this data. In this thesis we we tackle several questions about different classes of inductive types. In the setting of homotopy type theory, we will take a look at higher inductive types based on homotopy coequalizers and characterize their path spaces with a recursive rule which looks like an induction principle. This encapsulates a proof technique known as ``encode-decode method''. In an extensional meta-theory we will then explore the phenomenon of induction-induction, specify inductice families and discuss how we can reduce each instance of an inductive-inductive type to an inductive family. Our result suggests a way to show that each type theory which encompasses inductive families can also express all inductive-inductive types

    Higher inductive types, inductive families, and inductive-inductive types

    Get PDF
    Martin-Löf type theory is a formal language which is used both as a foundation for mathematics and the theoretical basis of a range of functional programming languages. Inductive types are an important part of type theory which is necessary to express data types by giving a list of rules stating how to form this data. In this thesis we we tackle several questions about different classes of inductive types. In the setting of homotopy type theory, we will take a look at higher inductive types based on homotopy coequalizers and characterize their path spaces with a recursive rule which looks like an induction principle. This encapsulates a proof technique known as ``encode-decode method''. In an extensional meta-theory we will then explore the phenomenon of induction-induction, specify inductice families and discuss how we can reduce each instance of an inductive-inductive type to an inductive family. Our result suggests a way to show that each type theory which encompasses inductive families can also express all inductive-inductive types

    Temporal Logic Encodings for SAT-based Bounded Model Checking

    Get PDF
    Since its introduction in 1999, bounded model checking (BMC) has quickly become a serious and indispensable tool for the formal verification of hardware designs and, more recently, software. By leveraging propositional satisfiability (SAT) solvers, BMC overcomes some of the shortcomings of more conventional model checking methods. In model checking we automatically verify whether a state transition system (STS) describing a design has some property, commonly expressed in linear temporal logic (LTL). BMC is the restriction to only checking the looping and non-looping runs of the system that have bounded descriptions. The conventional BMC approach is to translate the STS runs and LTL formulae into propositional logic and then conjunctive normal form (CNF). This CNF expression is then checked by a SAT solver. In this thesis we study the effect on the performance of BMC of changing the translation to propositional logic. One novelty is to use a normal form for LTL which originates in resolution theorem provers. We introduce the normal form conversion early on in the encoding process and examine the simplifications that it brings to the generation of propositional logic. We further enhance the encoding by specialising the normal form to take advantage of the types of runs peculiar to BMC. We also improve the conversion from propositional logic to CNF. We investigate the behaviour of the new encodings by a series of detailed experimental comparisons using both hand-crafted and industrial benchmarks from a variety of sources. These reveal that the new normal form based encodings can reduce the solving time by a half in most cases, and up to an order of magnitude in some cases, the size of the improvement corresponding to the complexity of the LTL expression. We also compare our method to the popular automata-based methods for model checking and BMC
    corecore