128 research outputs found

    Strong ETH Breaks With Merlin and Arthur: Short Non-Interactive Proofs of Batch Evaluation

    Get PDF
    We present an efficient proof system for Multipoint Arithmetic Circuit Evaluation: for every arithmetic circuit C(x1,,xn)C(x_1,\ldots,x_n) of size ss and degree dd over a field F{\mathbb F}, and any inputs a1,,aKFna_1,\ldots,a_K \in {\mathbb F}^n, \bullet the Prover sends the Verifier the values C(a1),,C(aK)FC(a_1), \ldots, C(a_K) \in {\mathbb F} and a proof of O~(Kd)\tilde{O}(K \cdot d) length, and \bullet the Verifier tosses poly(log(dKF/ε))\textrm{poly}(\log(dK|{\mathbb F}|/\varepsilon)) coins and can check the proof in about O~(K(n+d)+s)\tilde{O}(K \cdot(n + d) + s) time, with probability of error less than ε\varepsilon. For small degree dd, this "Merlin-Arthur" proof system (a.k.a. MA-proof system) runs in nearly-linear time, and has many applications. For example, we obtain MA-proof systems that run in cnc^{n} time (for various c<2c < 2) for the Permanent, #\#Circuit-SAT for all sublinear-depth circuits, counting Hamiltonian cycles, and infeasibility of 00-11 linear programs. In general, the value of any polynomial in Valiant's class VP{\sf VP} can be certified faster than "exhaustive summation" over all possible assignments. These results strongly refute a Merlin-Arthur Strong ETH and Arthur-Merlin Strong ETH posed by Russell Impagliazzo and others. We also give a three-round (AMA) proof system for quantified Boolean formulas running in 22n/3+o(n)2^{2n/3+o(n)} time, nearly-linear time MA-proof systems for counting orthogonal vectors in a collection and finding Closest Pairs in the Hamming metric, and a MA-proof system running in nk/2+O(1)n^{k/2+O(1)}-time for counting kk-cliques in graphs. We point to some potential future directions for refuting the Nondeterministic Strong ETH.Comment: 17 page

    Violating Constant Degree Hypothesis Requires Breaking Symmetry

    Full text link
    The Constant Degree Hypothesis was introduced by Barrington et. al. (1990) to study some extensions of qq-groups by nilpotent groups and the power of these groups in a certain computational model. In its simplest formulation, it establishes exponential lower bounds for ANDdMODmMODq\mathrm{AND}_d \circ \mathrm{MOD}_m \circ \mathrm{MOD}_q circuits computing AND of unbounded arity nn (for constant integers d,md,m and a prime qq). While it has been proved in some special cases (including d=1d=1), it remains wide open in its general form for over 30 years. In this paper we prove that the hypothesis holds when we restrict our attention to symmetric circuits with mm being a prime. While we build upon techniques by Grolmusz and Tardos (2000), we have to prove a new symmetric version of their Degree Decreasing Lemma and apply it in a highly non-trivial way. Moreover, to establish the result we perform a careful analysis of automorphism groups of ANDMODm\mathrm{AND} \circ \mathrm{MOD}_m subcircuits and study the periodic behaviour of the computed functions. Finally, our methods also yield lower bounds when dd is treated as a function of nn

    Assorted algorithms and protocols for secure computation

    Get PDF

    Assorted algorithms and protocols for secure computation

    Get PDF

    効率的な秘匿情報検索法の提案

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学准教授 國廣 昇, 東京大学教授 山本 博資, 東京大学教授 杉山 将, 東京大学客員教授 Phong Nguyen, 筑波大学教授 佐久間 淳University of Tokyo(東京大学

    Ball arithmetic

    No full text
    33 pagesThe Mathemagix project aims at the development of a ''computer analysis'' system, in which numerical computations can be done in a mathematically sound manner. A major challenge for such systems is to conceive algorithms which are both efficient, reliable and available at any working precision. In this paper, we survey several older and newer such algorithms. We mainly concentrate on the automatic and efficient computation of high quality error bounds, based on a variant of interval arithmetic which we like to call ''ball arithmetic''
    corecore