7,084 research outputs found

    Privacy in the Genomic Era

    Get PDF
    Genome sequencing technology has advanced at a rapid pace and it is now possible to generate highly-detailed genotypes inexpensively. The collection and analysis of such data has the potential to support various applications, including personalized medical services. While the benefits of the genomics revolution are trumpeted by the biomedical community, the increased availability of such data has major implications for personal privacy; notably because the genome has certain essential features, which include (but are not limited to) (i) an association with traits and certain diseases, (ii) identification capability (e.g., forensics), and (iii) revelation of family relationships. Moreover, direct-to-consumer DNA testing increases the likelihood that genome data will be made available in less regulated environments, such as the Internet and for-profit companies. The problem of genome data privacy thus resides at the crossroads of computer science, medicine, and public policy. While the computer scientists have addressed data privacy for various data types, there has been less attention dedicated to genomic data. Thus, the goal of this paper is to provide a systematization of knowledge for the computer science community. In doing so, we address some of the (sometimes erroneous) beliefs of this field and we report on a survey we conducted about genome data privacy with biomedical specialists. Then, after characterizing the genome privacy problem, we review the state-of-the-art regarding privacy attacks on genomic data and strategies for mitigating such attacks, as well as contextualizing these attacks from the perspective of medicine and public policy. This paper concludes with an enumeration of the challenges for genome data privacy and presents a framework to systematize the analysis of threats and the design of countermeasures as the field moves forward

    Maintaining unlinkability in group based P2P environments

    Get PDF
    In the wake of the success of Peer-to-Peer (P2P) networking, security has arisen as one of its main concerns, becoming a key issue when evaluating a P2P system. Unfortunately, some systems' design focus targeted issues such as scalabil-ity or overall performance, but not security. As a result, security mechanisms must be provided at a later stage, after the system has already been designed and partially (or even fully) implemented, which may prove a cumbersome proposition. This work exposes how a security layer was provided under such circumstances for a specic Java based P2P framework: JXTA-Overlay.Arran de l'èxit de (P2P) peer-to-peer, la seguretat ha sorgit com una de les seves principals preocupacions, esdevenint una qüestió clau en l'avaluació d'un sistema P2P. Malauradament, alguns sistemes de disseny apunten focus de problemes com l'escalabilitat o l'acompliment general, però no de seguretat. Com a resultat d'això, els mecanismes de seguretat s¿han de proporcionar en una etapa posterior, després que el sistema ja ha estat dissenyat i parcialment (o fins i tot totalment) implementat, la qual cosa pot ser una proposició incòmode. Aquest article exposa com es va proveir una capa de seguretat sota aquestes circumstàncies per un Java específic basat en un marc P2P: JXTA-superposició.A raíz del éxito de (P2P) peer-to-peer, la seguridad ha surgido como una de sus principales preocupaciones, convirtiéndose en una cuestión clave en la evaluación de un sistema P2P. Desgraciadamente, algunos sistemas de diseño apuntan un foco de problemas como la escalabilidad o el desempeño general, pero no de seguridad. Como resultado de ello, los mecanismos de seguridad se proporcionarán en una etapa posterior, después de que el sistema ya ha sido diseñado y parcialmente (o incluso totalmente) implementado, lo que puede ser una proposición incómodo. Este artículo expone cómo se proveyó una capa de seguridad bajo estas circunstancias por un Java específico basado en un marco P2P: JXTA-superposición

    HotGrid: Graduated Access to Grid-based Science Gateways

    Get PDF
    We describe the idea of a Science Gateway, an application-specific task wrapped as a web service, and some examples of these that are being implemented on the US TeraGrid cyberinfrastructure. We also describe HotGrid, a means of providing simple, immediate access to the Grid through one of these gateways, which we hope will broaden the use of the Grid, drawing in a wide community of users. The secondary purpose of HotGrid is to acclimate a science community to the concepts of certificate use. Our system provides these weakly authenticated users with immediate power to use the Grid resources for science, but without the dangerous power of running arbitrary code. We describe the implementation of these Science Gateways with the Clarens secure web server

    A Light-Weight Group Signature Scheme for Wireless Networks Based-on BBS Short Group Signature

    Get PDF
    In the natural context of wireless network environment, the communications between wireless nodes are more easily observed for the goal of the network traffic analysis. Thus, to enable a secure and anonymous communication system from thwarting of such analysis attacks would be strongly desirable. In this paper, we propose a secure and anonymous communication system using pairing-based group signatures. The achievement of secure and anonymous communication is performed by allowing all valid member wireless nodes of a particular privilege group to authenticate each other without revealing their own identitie

    How robust are distributed systems

    Get PDF
    A distributed system is made up of large numbers of components operating asynchronously from one another and hence with imcomplete and inaccurate views of one another's state. Load fluctuations are common as new tasks arrive and active tasks terminate. Jointly, these aspects make it nearly impossible to arrive at detailed predictions for a system's behavior. It is important to the successful use of distributed systems in situations in which humans cannot provide the sorts of predictable realtime responsiveness of a computer, that the system be robust. The technology of today can too easily be affected by worn programs or by seemingly trivial mechanisms that, for example, can trigger stock market disasters. Inventors of a technology have an obligation to overcome flaws that can exact a human cost. A set of principles for guiding solutions to distributed computing problems is presented
    corecore