191,888 research outputs found

    Password Cracking and Countermeasures in Computer Security: A Survey

    Full text link
    With the rapid development of internet technologies, social networks, and other related areas, user authentication becomes more and more important to protect the data of the users. Password authentication is one of the widely used methods to achieve authentication for legal users and defense against intruders. There have been many password cracking methods developed during the past years, and people have been designing the countermeasures against password cracking all the time. However, we find that the survey work on the password cracking research has not been done very much. This paper is mainly to give a brief review of the password cracking methods, import technologies of password cracking, and the countermeasures against password cracking that are usually designed at two stages including the password design stage (e.g. user education, dynamic password, use of tokens, computer generations) and after the design (e.g. reactive password checking, proactive password checking, password encryption, access control). The main objective of this work is offering the abecedarian IT security professionals and the common audiences with some knowledge about the computer security and password cracking, and promoting the development of this area.Comment: add copyright to the tables to the original authors, add acknowledgement to helpe

    Cyber-crime Science = Crime Science + Information Security

    Get PDF
    Cyber-crime Science is an emerging area of study aiming to prevent cyber-crime by combining security protection techniques from Information Security with empirical research methods used in Crime Science. Information security research has developed techniques for protecting the confidentiality, integrity, and availability of information assets but is less strong on the empirical study of the effectiveness of these techniques. Crime Science studies the effect of crime prevention techniques empirically in the real world, and proposes improvements to these techniques based on this. Combining both approaches, Cyber-crime Science transfers and further develops Information Security techniques to prevent cyber-crime, and empirically studies the effectiveness of these techniques in the real world. In this paper we review the main contributions of Crime Science as of today, illustrate its application to a typical Information Security problem, namely phishing, explore the interdisciplinary structure of Cyber-crime Science, and present an agenda for research in Cyber-crime Science in the form of a set of suggested research questions

    “This is the way ‘I’ create my passwords ...":does the endowment effect deter people from changing the way they create their passwords?

    Get PDF
    The endowment effect is the term used to describe a phenomenon that manifests as a reluctance to relinquish owned artifacts, even when a viable or better substitute is offered. It has been confirmed by multiple studies when it comes to ownership of physical artifacts. If computer users also "own", and are attached to, their personal security routines, such feelings could conceivably activate the same endowment effect. This would, in turn, lead to their over-estimating the \value" of their existing routines, in terms of the protection they afford, and the risks they mitigate. They might well, as a consequence, not countenance any efforts to persuade them to adopt a more secure routine, because their comparison of pre-existing and proposed new routine is skewed by the activation of the endowment effect.In this paper, we report on an investigation into the possibility that the endowment effect activates when people adopt personal password creation routines. We did indeed find evidence that the endowment effect is likely to be triggered in this context. This constitutes one explanation for the failure of many security awareness drives to improve password strength. We conclude by suggesting directions for future research to confirm our findings, and to investigate the activation of the effect for other security routines

    POWER-SUPPLaY: Leaking Data from Air-Gapped Systems by Turning the Power-Supplies Into Speakers

    Get PDF
    It is known that attackers can exfiltrate data from air-gapped computers through their speakers via sonic and ultrasonic waves. To eliminate the threat of such acoustic covert channels in sensitive systems, audio hardware can be disabled and the use of loudspeakers can be strictly forbidden. Such audio-less systems are considered to be \textit{audio-gapped}, and hence immune to acoustic covert channels. In this paper, we introduce a technique that enable attackers leak data acoustically from air-gapped and audio-gapped systems. Our developed malware can exploit the computer power supply unit (PSU) to play sounds and use it as an out-of-band, secondary speaker with limited capabilities. The malicious code manipulates the internal \textit{switching frequency} of the power supply and hence controls the sound waveforms generated from its capacitors and transformers. Our technique enables producing audio tones in a frequency band of 0-24khz and playing audio streams (e.g., WAV) from a computer power supply without the need for audio hardware or speakers. Binary data (files, keylogging, encryption keys, etc.) can be modulated over the acoustic signals and sent to a nearby receiver (e.g., smartphone). We show that our technique works with various types of systems: PC workstations and servers, as well as embedded systems and IoT devices that have no audio hardware at all. We provide technical background and discuss implementation details such as signal generation and data modulation. We show that the POWER-SUPPLaY code can operate from an ordinary user-mode process and doesn't need any hardware access or special privileges. Our evaluation shows that using POWER-SUPPLaY, sensitive data can be exfiltrated from air-gapped and audio-gapped systems from a distance of five meters away at a maximal bit rates of 50 bit/sec

    The Effect of Human Error on Modern Security Breaches

    Get PDF

    Internet Gambling Bibliography: Update and Analysis

    Full text link

    IMPROVING SMART GRID SECURITY USING MERKLE TREES

    Get PDF
    Abstract—Presently nations worldwide are starting to convert their aging electrical power infrastructures into modern, dynamic power grids. Smart Grid offers much in the way of efficiencies and robustness to the electrical power grid, however its heavy reliance on communication networks will leave it more vulnerable to attack than present day grids. This paper looks at the threat to public key cryptography systems from a fully realized quantum computer and how this could impact the Smart Grid. We argue for the use of Merkle Trees in place of public key cryptography for authentication of devices in wireless mesh networks that are used in Smart Grid applications

    Actor-network procedures: Modeling multi-factor authentication, device pairing, social interactions

    Full text link
    As computation spreads from computers to networks of computers, and migrates into cyberspace, it ceases to be globally programmable, but it remains programmable indirectly: network computations cannot be controlled, but they can be steered by local constraints on network nodes. The tasks of "programming" global behaviors through local constraints belong to the area of security. The "program particles" that assure that a system of local interactions leads towards some desired global goals are called security protocols. As computation spreads beyond cyberspace, into physical and social spaces, new security tasks and problems arise. As networks are extended by physical sensors and controllers, including the humans, and interlaced with social networks, the engineering concepts and techniques of computer security blend with the social processes of security. These new connectors for computational and social software require a new "discipline of programming" of global behaviors through local constraints. Since the new discipline seems to be emerging from a combination of established models of security protocols with older methods of procedural programming, we use the name procedures for these new connectors, that generalize protocols. In the present paper we propose actor-networks as a formal model of computation in heterogenous networks of computers, humans and their devices; and we introduce Procedure Derivation Logic (PDL) as a framework for reasoning about security in actor-networks. On the way, we survey the guiding ideas of Protocol Derivation Logic (also PDL) that evolved through our work in security in last 10 years. Both formalisms are geared towards graphic reasoning and tool support. We illustrate their workings by analysing a popular form of two-factor authentication, and a multi-channel device pairing procedure, devised for this occasion.Comment: 32 pages, 12 figures, 3 tables; journal submission; extended references, added discussio

    Between Hype and Understatement: Reassessing Cyber Risks as a Security Strategy

    Get PDF
    Most of the actions that fall under the trilogy of cyber crime, terrorism,and war exploit pre-existing weaknesses in the underlying technology.Because these vulnerabilities that exist in the network are not themselvesillegal, they tend to be overlooked in the debate on cyber security. A UKreport on the cost of cyber crime illustrates this approach. Its authors chose to exclude from their analysis the costs in anticipation of cyber crime, such as insurance costs and the costs of purchasing anti-virus software on the basis that "these are likely to be factored into normal day-to-day expenditures for the Government, businesses, and individuals. This article contends if these costs had been quantified and integrated into the cost of cyber crime, then the analysis would have revealed that what matters is not so much cyber crime, but the fertile terrain of vulnerabilities that unleash a range of possibilities to whomever wishes to exploit them. By downplaying the vulnerabilities, the threats represented by cyber war, cyber terrorism, and cyber crime are conversely inflated. Therefore, reassessing risk as a strategy for security in cyberspace must include acknowledgment of understated vulnerabilities, as well as a better distributed knowledge about the nature and character of the overhyped threats of cyber crime, cyber terrorism, and cyber war
    • …
    corecore