11,275 research outputs found

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    Surface reconstruction for planning and navigation of liver resections

    Get PDF
    AbstractComputer-assisted systems for planning and navigation of liver resection procedures rely on the use of patient-specific 3D geometric models obtained from computed tomography. In this work, we propose the application of Poisson surface reconstruction (PSR) to obtain 3D models of the liver surface with applications to planning and navigation of liver surgery. In order to apply PSR, the introduction of an efficient transformation of the segmentation data, based on computation of gradient fields, is proposed. One of the advantages of PSR is that it requires only one control parameter, allowing the process to be fully automatic once the optimal value is estimated. Validation of our results is performed via comparison with 3D models obtained by state-of-art Marching Cubes incorporating Laplacian smoothing and decimation (MCSD). Our results show that PSR provides smooth liver models with better accuracy/complexity trade-off than those obtained by MCSD. After estimating the optimal parameter, automatic reconstruction of liver surfaces using PSR is achieved keeping similar processing time as MCSD. Models from this automatic approach show an average reduction of 79.59% of the polygons compared to the MCSD models presenting similar smoothness properties. Concerning visual quality, on one hand, and despite this reduction in polygons, clinicians perceive the quality of automatic PSR models to be the same as complex MCSD models. On the other hand, clinicians perceive a significant improvement on visual quality for automatic PSR models compared to optimal (obtained in terms of accuracy/complexity) MCSD models. The median reconstruction error using automatic PSR was as low as 1.03±0.23mm, which makes the method suitable for clinical applications. Automatic PSR is currently employed at Oslo University Hospital to obtain patient-specific liver models in selected patients undergoing laparoscopic liver resection

    Computer-assisted polyp matching between optical colonoscopy and CT colonography: a phantom study

    Full text link
    Potentially precancerous polyps detected with CT colonography (CTC) need to be removed subsequently, using an optical colonoscope (OC). Due to large colonic deformations induced by the colonoscope, even very experienced colonoscopists find it difficult to pinpoint the exact location of the colonoscope tip in relation to polyps reported on CTC. This can cause unduly prolonged OC examinations that are stressful for the patient, colonoscopist and supporting staff. We developed a method, based on monocular 3D reconstruction from OC images, that automatically matches polyps observed in OC with polyps reported on prior CTC. A matching cost is computed, using rigid point-based registration between surface point clouds extracted from both modalities. A 3D printed and painted phantom of a 25 cm long transverse colon segment was used to validate the method on two medium sized polyps. Results indicate that the matching cost is smaller at the correct corresponding polyp between OC and CTC: the value is 3.9 times higher at the incorrect polyp, comparing the correct match between polyps to the incorrect match. Furthermore, we evaluate the matching of the reconstructed polyp from OC with other colonic endoluminal surface structures such as haustral folds and show that there is a minimum at the correct polyp from CTC. Automated matching between polyps observed at OC and prior CTC would facilitate the biopsy or removal of true-positive pathology or exclusion of false-positive CTC findings, and would reduce colonoscopy false-negative (missed) polyps. Ultimately, such a method might reduce healthcare costs, patient inconvenience and discomfort.Comment: This paper was presented at the SPIE Medical Imaging 2014 conferenc
    • …
    corecore