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a  b  s  t  r  a  c  t

Computer-assisted  systems  for planning  and  navigation  of  liver resection  procedures  rely  on the use of
patient-specific  3D  geometric  models  obtained  from  computed  tomography.  In  this  work,  we  propose
the  application  of  Poisson  surface  reconstruction  (PSR)  to obtain  3D  models  of  the liver surface  with
applications  to  planning  and  navigation  of  liver  surgery.  In  order  to apply  PSR,  the  introduction  of  an
efficient  transformation  of  the segmentation  data,  based on  computation  of  gradient  fields,  is proposed.
One  of  the  advantages  of PSR is  that  it requires  only  one  control  parameter,  allowing  the process  to  be
fully  automatic  once  the  optimal  value  is  estimated.  Validation  of  our  results  is performed  via comparison
with  3D  models  obtained  by state-of-art  Marching  Cubes  incorporating  Laplacian  smoothing  and  decima-
tion  (MCSD).  Our  results  show  that  PSR provides  smooth  liver  models  with  better  accuracy/complexity
trade-off  than  those  obtained  by  MCSD.  After  estimating  the  optimal  parameter,  automatic  reconstruc-
tion  of liver  surfaces  using  PSR  is  achieved  keeping  similar  processing  time as  MCSD.  Models  from  this
automatic  approach  show  an  average  reduction  of  79.59%  of the  polygons  compared  to the  MCSD  mod-
els presenting  similar  smoothness  properties.  Concerning  visual  quality,  on  one  hand,  and  despite  this
reduction  in  polygons,  clinicians  perceive  the  quality  of  automatic  PSR  models  to  be the  same  as  complex

MCSD  models.  On  the other  hand,  clinicians  perceive  a significant  improvement  on visual  quality  for
automatic  PSR  models  compared  to  optimal  (obtained  in  terms  of  accuracy/complexity)  MCSD  models.
The  median  reconstruction  error  using  automatic  PSR  was  as low  as 1.03  ± 0.23  mm,  which  makes  the
method  suitable  for clinical  applications.  Automatic  PSR is  currently  employed  at Oslo  University  Hospital
to  obtain  patient-specific  liver  models  in selected  patients  undergoing  laparoscopic  liver resection.

ublis
© 2016  The  Authors.  P

. Introduction

Liver cancer is the second most common cause of cancer death
orldwide (Jemal et al., 2011). Hepatocellular carcinoma (HCC),
hich accounts for 70–80% of the cases (Vanni and Bugianesi,

014), presents a 5-year survival rate below 12% (El-serag, 2011).
olorectal cancer metastatic to the liver, on the other hand, devel-
ps in 50% of the cases of colorectal cancer, and presents 5-year
urvival rates up to 58% for selected patients undergoing liver

esection (Misiakos et al., 2011).

Liver resection is the treatment of choice for patients with
ocalized HCC (Bryant et al., 2008) and can potentially be a

∗ Corresponding author at: Norwegia Media Technology Lab, Faculty of Computer
cience and Media Technology, NTNU, Teknologivegen 22, 2815 Gjøvik, Norway.

E-mail address: rafael.palomar@ntnu.no (R. Palomar).
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895-6111/© 2016 The Authors. Published by Elsevier Ltd. This is an open access article u
hed  by Elsevier  Ltd. This  is an open  access  article  under  the  CC BY  license
(http://creativecommons.org/licenses/by/4.0/).

curative therapy. A successful surgical resection requires the com-
plete removal of the tumoral cells including a safety margin,
preserving as much healthy tissue as possible (Pawlik and Vauthey,
2008). Resections with adequate tumor-free margins lead to a bet-
ter prognosis (Taniai et al., 2007).

For more than a decade, computer-assisted surgical systems
have been helping surgeons and other clinicians in the decision
making process for planning and guiding surgical interventions. In
the case of liver resection, these systems have recently found their
way into the clinical practice, providing different patient-specific
models: geometric, mechanical and functional as well as simula-
tions. These models, ultimately rely on pre-operative computed
tomography (CT) or magnetic resonance imaging (MRI).
The use of patient-specific 3D geometric models improve the
capacity of surgeons to understand the liver and the underlying
vascular structures. Using three-dimensional (3D) reconstructions
have shown not only improvements in tumor localization and

nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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recision of surgery planning (Lamadé et al., 2000; Lang et al.,
005; Hansen et al., 2014), but also an improved orientation
nd confidence of the surgeon while operating (Lamata et al.,
010).

Marescaux et al. (1998) were the first in implementing a system
or planning and visualization applied to liver resection. In their
pproach, 3D models of the liver surface and vessels (tumors were
rtificially introduced) were built from MRI. The 3D models, based
n simplex meshes (Delingette, 1994), could be manipulated for
isualization and allowed deformations for simulation purposes.
ater, Selle et al. (2002) introduced the analysis of the hepatic
ascular structures, which enabled the identification of the liver
egments.

More recent approaches allowed the definition of a virtual
esection as well as new visualization techniques. Reitinger and
ornik (2006) presented a virtual reality environment in which the
lanning was performed by direct manipulation of 3D structures.
amata et al. (2008) also introduced a progressive clipping visu-
lization based on the advancement of resection during surgery.
ansen et al. (2013) encoded distance to critical structures in the

urface representing the virtual resection.
Most of the visualization systems for planning and navigation

f liver resection interventions, including all the aforementioned
orks, rely on the construction of 3D geometric models. These
odels have traditionally been obtained by isosurface extraction

rom segmented anatomical structures (parenchyma and venous
asculature) and tumors. Three-dimensional modeling of liver vas-
ulature has been widely studied in the literature (Oeltze and
reim, 2005; Schumann et al., 2007; Preim and Oeltze, 2008;
u et al., 2010, 2013; Hong et al., 2012), however, very little

ttention has been given to the modeling of parenchyma and
umors.

Marching cubes (MC) is the most widespread technique to
btain 3D models of anatomical structures in the liver. The method
as originally developed by Lorensen and Cline (1987) as an isosur-

ace extraction method from scalar volumetric data. A number of
xtensions to the original MC  have been proposed along the litera-
ure (Newman and Yi, 2006). MC  provides with accurate isosurfaces
hich strictly adheres to the underlying data. In the context of iso-

urface extraction from medical images, MC  leads to surfaces with a
igh number of polygons and vertices, and the appearance of stair-
ase artifacts. Different mechanisms like mesh smoothing (Gabriel
t al., 1996; Bade et al., 2006; Moench et al., 2010) and decima-
ion (Schroeder et al., 1992) have been employed to palliate these
ffects at the expense of adding more processing stages and control
arameters.

Poisson surface reconstruction (PSR), originally proposed by
azhdan et al. (2006), is a 3D surface reconstruction technique
hich works on dense clouds of oriented points. In the literature,

SR finds application in reconstructions where clouds of points
re inherent to the acquisition (scanning) technology. Examples
f such applications can be reconstruction of scenes using struc-
ured light sensors (Izadi et al., 2011), laser scanners (Sensing
t al., 2013) and stereo cameras (Habbecke and Kobbelt, 2007).
he noise resilience of PSR makes it a remarkable method for cop-
ng with the inherent noise acquired by these technologies. In
he medical imaging context, PSR has found very little applica-
ion perhaps due to the fact that, in this domain, the input data
onsist of 3D scalar fields rather than oriented cloud of points. In
rder to apply PSR to medical images, Leonardi et al. (2011) per-
ormed an estimation of the oriented clouds of points by fitting

 plane to a segmented surface point and its k-nearest neighbors.

ther approaches like (Wu  et al., 2010) propose an extension to
SR to perform adaptive polygonization with application to vessel
odeling.
aging and Graphics 53 (2016) 30–42 31

1.1. Major contributions

The goal of this work is to address two common problems in
3D modeling techniques in the context of surgery planning and
navigation. On one hand, integration of medical imaging, segmen-
tation and 3D modeling methods into clinical workflows requires
an elevated degree of automation. As an alternative to automation,
expert users can perform manual adjustments of the reconstruction
parameters. On the other hand, models employed in planning and
navigation are increasingly becoming more complex, both in terms
of resolution and dimensionality of the underlying data. Processing
these models is very demanding in terms of computing power,
especially with the introduction of real-time constraints.

To overcome these problems and with the aim of facilitating
the integration of 3D modeling techniques in clinical workflows,
we propose the application of PSR as a technique to model the liver
surface (parenchyma). In order to adapt the segmented images to
clouds of points (as required by PSR), a method based on gradient
fields computation is described (Section 2.1).

Unlike traditional analysis of 3D modeling techniques, where
different reconstruction parameters are considered separately, we
propose a multi-objective optimization framework consisting of
a bi-dimensional accuracy/complexity optimization space (Sec-
tion 3). The aim is to obtain optimal parameters which can lead
to automatic 3D model reconstructions.

2. Materials and methods

The approach presented in this work is used to obtain a 3D geo-
metric model of the liver surface from a segmented volumetric
image. Fig. 1 shows the processing stages of both our PSR approach
and state-of-the-art MCSD.

Isosurface extraction is considered to be an automatic process,
however, adding processing stages either after or before, introduces
additional parameters which make the process more complicated
and thus limiting its applicability and integration into clinical work-
flows. As opposed to MCSD, our strategy based on PSR requires only
one parameter.

In the following, we  describe our proposal. We  start first by
describing the computation of the oriented cloud of points from
segmented images. Then we briefly describe the application of PSR
to obtain the 3D models of the liver parenchyma.

2.1. Oriented cloud of points from liver segmentation

As depicted in Fig. 1, medical images, obtained from CT, are
represented by the scalar field defined as F : R

3 → R  in which the
point pi = (xi, yi, zi) with i = 1, 2, . . .,  N is given a value represent-
ing an intensity level F(pi) = v. Through a segmentation process,
the different points of the image, are assigned a class value (label)
li according to either anatomical or functional criteria. The seg-
mentation is then defined as a new scalar field S : R

3 → {l1, . . .,  lk}
with k the number of classes. In our case, since we are only inter-
ested in the liver parenchyma, our label map  is constrained to the
set {lp = 0, lb = 1} which only considers the classes parenchyma and
background. Fig. 2 shows an example of a scalar volume and its
correspondent liver segmentation overlayed.

In order to find the oriented cloud of points �V = {(pi, �ni)}, with
i = 1, 2, . . .,  N, where �ni are the inward normals at pi, we  exploit
two properties of the gradient of the segmented images. On one
hand we  use the fact that, the gradient of the segmented image,
at any point pi belonging to the surface of the parenchyma ∂M, is

orthonormal to the surface:

∇S(pi) ⊥ ∂M|pi
⇔ pi ∈ ∂M. (1)
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Fig. 1. Processing stages for the proposed approach, based on PSR (a) and the state-of-the-art MCSD (b).
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Fig. 2. Slice from CT imaging of the abdomen: (a) Scalar fi

On the other hand, the points pi laying on the surface ∂M,  can
e discriminated in terms of the gradient of the segmented image:

i ∈ ∂M ⇔ ‖∇S(pi)‖ > 0. (2)

Using the properties established in Eqs. (1) and (2), the definition
f a oriented cloud of points �V can be entirely expressed in terms
f the gradient of the binary image:

�
 = {(pi, �ni)} = { (pi, ∇S(pi)) | ‖∇S(pi)‖ > 0 }, (3)

ith i = 1, 2, . . .,  N.
In contrast to Leonardi et al. (2011), in which the authors esti-

ate the normals by local plane fitting of the k-nearest neighbors,
e propose the obtention of oriented clouds of points through the

pproximation of the gradient of segmented images. Our imple-
entation obtains the gradient of a 3D binary image through the

pplication of the 3D Sobel operator. This operator approximates
he partial derivatives individually through convolution of the seg-

ented parenchyma with kernel functions:

S =
(

∂S

∂x
,

∂S

∂y
,

∂S

∂z

)
=

(
Kx ∗ S, Ky ∗ S, Kz ∗ S

)
, (4)

here Kx, Ky, Kz ∈ R
3×3×3 are the third-order tensors represent-

ng the 3D Sobel kernel. The discrete nature of the Sobel operator

akes that the condition stated in Eq. (2) becomes true for voxels

ear the surface of the liver (both inside and outside). Therefore, our
mplementation considers Eq. (3) only for those voxels belonging
o the liver, this is, S(pi) = lp.
nd (b) segmentation of the parenchyma S overlayed on F.

2.2. Poisson surface reconstruction

PSR obtains smooth watertight (i.e. absence of holes in the mesh)
triangulated approximations of surfaces from oriented cloud of
points. The method utilizes a function fitting strategy which brings
the benefit of both local and global fitting approaches together.
Furthermore, PSR presents high resilience to noise.

Fig. 3 shows the general idea behind PSR. To obtain the surface,
PSR uses the oriented cloud of points �V to reconstruct an indica-
tor function XM : R

3 → R  of a parenchyma model M. This indicator
function resembles the segmented image S, this is, a function in
which the values inside the parenchyma are lp = 0 and the values
outside the parenchyma are lb = 1. The oriented cloud of points �V
can be thought of as a set of samples taken from the gradient of the
indicator function ∇XM . Then the problem can be stated as finding
the scalar function XM whose gradient best matches the cloud of
points �V :

X̃M = arg min
XM

‖∇XM − �V‖ (5)

with ‖ .‖ the Euclidean norm.
Kazhdan et al. (2006) make use of the divergence operator to

transform this problem into a variational problem optimized by
solving the Poisson equation:

�X  ≡ ∇ · ∇X  = ∇ · �V (6)

where X  is an indicator function and �V is a vector field.

The solution is represented through an adaptive and multi-

resolution basis. More precisely, PSR constructs the minimal octree
O with the property that every point sample falls into a leaf node
at depth d. Intuitively, one can think of the depth as a parameter



R. Palomar et al. / Computerized Medical Imaging and Graphics 53 (2016) 30–42 33

F ma: (a
f

c
l
(
t
B
o
t
T
s
s

〈

f
p

∂

l
m
P
m

2

a
s
i
2

t
o
e

s
i
(
e
T
v
b
(
g
t
d
f

3

a

ig. 3. Overview of Poisson surface reconstruction in 2D contour of liver parenchy
unction XM , and (d) surface ∂P.

ontrolling the granularity of the mesh. Higher depth values thus
ead to more complex models able to represent smaller features
and vice versa). Each octree node o ∈ O  is associated with a func-
ion Fo. Bolitho et al. (2009) proposes to associate a tri-variate
-spline (translated and scaled by the size of the node) to each node
f the octree. The span F of translated and scaled B-splines defines
he function space employed to solve the Poisson equation (Eq. (6)).
he system is solved through a finite elements approach where the
ystem is discretized by using elements Fo as test functions. The
olution is given by the function X̃ ∈ FO,F such that:

�X̃, Fo〉 = 〈∇ · �V, Fo〉 |∀o ∈ O  (7)

Finally, in order to obtain the surface approximation ∂P, isosur-
ace extraction is applied to the average value of X̃  at the sample
ositions:

P ≡ {q ∈ R
3 | X̃(q) = �} with � = 1

N

∑
(pi,�ni) ∈ �V

X̃(p) (8)

Different implementations of PSR have been proposed along the
iterature. The original approach (Kazhdan et al., 2006) extends the

ethod to the case of non-uniformly distributed cloud of points.
SR it is considered as an efficient method for which parallel imple-
entations have also been proposed (Bolitho et al., 2009).

.3. Experimental setup

In this work, we propose the application of PSR for planning
nd navigation of liver resection procedures compared to the
tate-of-the-art MCSD. For comparison purposes, we employ the
mplementation (C++) of MCSD included in 3D Slicer (Pieper et al.,
004) in its version 4.4.0.

Our PSR implementation (C++), which incorporates the compu-
ation of oriented cloud of points described in Section 2.1, is based
n Doria and Gelas (2010), who adapted the original by Kazhdan
t al. (2006).

The experiments are performed on a data set consisting of
ix CT volumes acquired from the abdomen of patients undergo-
ng liver resection under the Oslo-CoMet study (NCT01516710)
Fretland et al., 2015). These images were acquired with param-
ters normally employed for diagnostics and surgical purposes.
he images, presenting different image spacing and different liver
olumes (Table 1), were segmented (parenchyma, vessels, tumors)
y biomedical engineers in a semi-automatic way using ITK-Snap
Yushkevich et al., 2006) and reviewed by two  laparoscopic sur-
eons. All the data sets present anisotropic image spacing, and
herefore, are prone to generate staircase artifacts which may  be
istracting and confusing, since these do not have any anatomical
oundation.
. Evaluation criteria

In this section, the evaluation criteria to compare the PSR
pproach described in Section 2 to MCSD are established. There
) Oriented set of points �V , (b) gradient of the indicator function ∇XM , (c) indicator

are different ways to evaluate and compare 3D geometric models,
however, in this work, we focus on the desirable properties for plan-
ning an navigation of liver resection procedures, this is, accuracy,
mesh complexity and smoothness.

3.1. Mesh complexity and accuracy

Precise planning and navigation of liver resection procedures
requires high accuracy of the 3D models. Some works like Wu
et al. (2013) rely on the Hausdorff distance as a metric for accu-
racy, however, Hausdorff distance is known to be sensitive to noise,
which is inherent to medical images. In the same line as Oeltze and
Preim (2005) and Schumann et al. (2007), we  approximate the 3D
reconstruction accuracy using surface distance based metrics, par-
ticularly the point-to-surface distance ı̄(∂M) has been employed.
This distance is computed from all points pi in a reference cloud of
points �V to all the points q in the model ∂M (either obtained by PSR
or MCSD):

ı̄(∂M)  = 1
L

L∑
i=1

min
q ∈ ∂M

‖pi − q‖ pi ∈ �V, (9)

where L is the number of points in ∂M.
In mesh modeling, mesh complexity and accuracy are variables

related to each other. Decreasing the mesh complexity generally
leads to a decreased accuracy (and vice versa). Therefore, obtaining
an acceptable trade-off between complexity and accuracy can then
be established in terms of a multi-objective optimization problem
(i.e. obtaining low complexity and high accuracy).

Number of polygons and mean point-to-surface distance are
expressed in different units on different scales. To bring them into
a unit-less objective space on the same scale, linear normalization
is applied (Fig. 4), thus obtaining the normalized mean point-to-
surface distance ı̂ ∈ [0,  1] and the normalized number of polygons
N̂ ∈ [0,  1]:

⎧⎪⎨
⎪⎩

ı̂(∂M)  = ı̄(∂M)  − ı̄min

ı̄max − ı̄min

N̂(∂M)  = N − Nmin

Nmax − Nmin

, (10)

where N is the number of points in ∂M,  and ı̄min, ı̄max, Nmin and
Nmax refer to the extreme values, considering all models (including
MCSD and PSR) for a given parenchyma M.

By using normalization, it is established that both objectives are
equally important and so, the optimal reconstruction is obtained
by minimizing the objective score � defined as:

√

�(∂M)  = ı̂2(∂M)  + N̂2(∂M).  (11)

Models presenting a score value closer to 0, exhibit better trade-
off between accuracy and complexity. Then, the best model among
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Table 1
CT data set used in the evaluation.

Name Spacing Dimensions Liver volume CT
(in  mm) (in cm3) Scanner

P1 0.79 × 0.79 × 0.62 512 × 512 × 358 2289.25 G
P2 0.82 × 0.82 × 3.00 512 × 512 × 153 2289.39 S
P3 0.76 × 0.76 × 0.60 512 × 512 × 461 1853.56 G
P4 0.63 × 0.63 × 0.62 512 × 512 × 299 1579.10 G
P5 0.68 × 0.68 × 2.50 512 × 512 × 179 1503.66 G
P6 0.70 × 0.70 × 0.62 512 × 512 × 396 2326.09 G

G: GE Medical Systems Lightspeed VCT; S: Siemens Sensation 16.
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ig. 4. Normalization and objective score. (a) PSR and MCSD models represented in
ompute the best model (∂Mbest) in terms of accuracy and complexity.

ll PSR models ∂Pbest, the best model among all MCSD models ∂Cbest
nd the absolute best model ∂Mbest can be computed as follows:

∂Pbest = arg min
∂P

�(∂P), ∂P ∈ P
∂Cbest = arg min

∂C

�(∂C), ∂C ∈ C
∂Mbest = arg min

∂M

�(∂M), ∂M ∈ P ∪ C
, (12)

here P and C are the sets of all PSR and MCSD respectively, for a
iven parenchyma.

.2. Mesh smoothness

Liver parenchyma is inherently a smooth organ. Smoothness in
he 3D model is essential for visualization since it contributes to
he natural appearance of the organ. Evaluation of the smoothness
s performed through the discrete mean Gaussian curvature as a

etric of the roughness of the model ∂M:

¯ (∂M)  = 1
N

N∑
i=1

3(2� −
∑

j�j)

A(pi)
, pi ∈ ∂M,  (13)

here � j denote the angles between pairs of edges converging at pi
nd A(pi) is the sum of the areas of triangles having pi as vertex. Val-
es of the mean Gaussian curvature closer to 0 are then interpreted
s smoother appearance of the model.
Despite the fact that other curvature metrics (e.g. mean curva-
ure) are available (Rusinkiewicz, 2004), Gaussian curvature seems
o be the most widespread in comparisons similar to the one pre-
ented in this work Schumann et al. (2008), Wu et al. (2010, 2013).
al space and (b) PSR and MCSD in objective space where the scores �∂M are used to

For further comparisons in terms of accuracy and complexity,
it will be useful to consider also the MCSD models ∂Csim which
present the most similar smoothness to the best PSR models ∂Pbest.
These models ∂Csim can be computed as:

∂Csim = arg min
∂C

|K̄(∂C) − K̄(∂Pbest)|, ∂C ∈ C.  (14)

3.3. Processing time

3D models supporting planning and navigation of liver resection
procedures are computed pre-operatively (i.e. before the operation)
and therefore, there is no need to attend to real-time constraints.
However, it is desirable that new methods involved in surgery plan-
ning and navigation, do not alter the clinical workflow significantly
in a negative way.

Medical image processing is often performed in terms of a region
of interest (ROI), which represents a reduced set of the original
data. In general, this greatly improves the performance of algo-
rithms in terms of processing time, since the number of elements
to process decreases dramatically. Therefore, the evaluation of the
performance (processing time) presented in this work is performed
in the basis of minimal ROIs containing the liver.

3.4. Visual quality

Perceived visual quality of the 3D models is an important eval-

uation criterion since it can affect not only the interpretation of
the anatomy of the patient but also the comfort of the clinicians
working with the 3D models. In the literature, visual quality is
often discussed in terms of appearance of artifacts in the model
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Table  2
Objective score � computed for all PSR and best MCSD models.

Parenchyma PSR Best MCSD

d = 5 d = 6 d = 7 d = 8

P1 1.000 0.416 0.184 0.405 0.228
P2 1.000 0.341 0.248 0.541 0.257
P3 1.000 0.404 0.165 0.439 0.226
P4 1.000 0.418 0.161 0.461 0.210
P5 1.000 0.416 0.152 0.312 0.199
P6 1.000 0.379 0.148 0.406 0.205
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nd smoothness properties (Schumann et al., 2007; Wu et al., 2010,
013; Hong et al., 2012).

Some works explicitly introduce visual quality criteria in the
valuation, like in Oeltze and Preim (2005) for 3D modeling or Feng
t al. (2015) for 3D visualization in laparoscopic surgery.

In the same line, we  introduce subjective evaluation of visual
uality based on the opinion of experts. In our experiment, we
ecruited 8 laparoscopic liver surgeons ([7–30] years of experi-
nce). Each expert is asked the following question: “Evaluate the
uality of the virtual models (parenchyma) for their use in resection
lanning and surgery guidance”.  In order to evaluate the quality
f the 18 liver parenchyma models a 5-levels Likert scale was
mployed: Very low (1), Low (2), Medium (3), High (4), Very high (5).
he evaluated parenchyma models correspond to the ∂Pbest, ∂Cbest
nd ∂Csim models generated from the dataset described in Table 1.
o ensure completeness of visualization, parenchyma models are
hown together with vessels and tumors obtained by application of
CSD under the same parameters chosen arbitrarily. The experts
ere enforced to evaluate the quality of the parenchyma regardless

f the quality of vessels and tumors. The evaluation was  performed
n a desktop computer (19 inches screen at 1600 × 1200@60 Hz
bserved at a approximately 40 cm distance), similarly to typical
urgery planning stations.

In order to control possible biases, we followed the guidelines
resented in Choi et al. (2005). Remarkable question design aspects
aking into account are specificity of question (not allowing ambi-
uities or misinterpretations), simplicity and use of familiar words
s well as clarity of correspondence between numeric values and
ualitative tags in the answer fields. The models were presented in
andom order (<1 min  per model) to avoid patterns in sequential
isualizations. Additionally, we allowed the surgeons to repeat the
valuation on the first 6 models to compensate for the initial lack
f references in the evaluation.

. Results

.1. Mesh complexity and accuracy

PSR was applied to the 6 liver parenchyma of the data set. A
otal of 24 surface models were obtained considering PSR at depths

 ∈ {5, 6, 7, 8}. Fig. 5 shows the impact of this parameter on the
econstructions. On one hand, increasing the depth values, also
ncreases the complexity of the model in number of polygons. On
he other hand, increasing the depth values also increases the accu-
acy of the model. At depth d = 5, the median error of the 6 data
ets is within the range 3.69 ± 0.59 mm while the absolute maxi-
um  (excluding outliers) is 8.75 mm;  for d = 6, the median error

ecreases to 1.89 ± 0.34 mm with absolute maximum of 4.58 mm;

or d = 7 we obtained a median error as low as 1.03 ± 0.23 mm with
bsolute maximum of 2.79 mm;  and finally, for d = 8 the median
rror is within the range 0.82 ± 0.36 mm with a maximum error of
.04 mm.  As it is shown in Fig. 5, the most prominent errors are
located in areas presenting high curvature and concavities. For low
depth values (coarser reconstructions), natural formation of con-
cavities and prominent salients form areas of concentration of high
errors. However, as the depth d increases (finer reconstructions),
errors not only diminish in magnitude, but also distribute uniformly
throughout the organ rather than concentrating in any particular
areas.

MCSD presents a more complex parameter space than PSR. To
represent the extent of this parameter space we obtained the 50
MCSD models ∂M(s,e) resulting from the combination of s = {0, 22,
45, 67, 90}  and e = {0, 0.1, 0.2, . . .,  0.9}.

From the application of Eq. (10), the objective score value for
all PSR and MCSD models was  computed. The results, presented in
Table 2, show that PSR with d = 7 always present the absolute best
score values among all PSR and MCSD models, and therefore better
behavior in terms of complexity and accuracy. PSR reconstructions
different from d = 7 present lower score values than those of the
best MCSD.

Another interesting comparison concerning accuracy and mesh
complexity can be derived from the best MCSD (∂Cbest), the best
PSR models (∂Pbest) and those MCSD models similar smoothness
to ∂Pbest (Eq. (14)). The results (Table 3) reveal that the main con-
tribution to the trade-off difference for ∂Csim is the high number
of polygons (460.1 K polygons average) compared to ∂Pbest (72.4 K
polygons average). The relative difference of mean error is low in
the comparison of ∂Csim (0.81 mm average), ∂Pbest (1.16 mm aver-
age) and ∂Cbest (1.02 mm average). Fig. 6 illustrates the compared
models derived from P1.

A broader view of the evaluation results is presented in Fig. 7. In
this figure, the performance of all PSR and MCSD are shown in terms
of complexity and accuracy. We computed the Pareto frontier, this
is, the set of models which are not dominated by any other model
in terms of both better accuracy and complexity. For a given model
lying in the Pareto frontier, no other model can improve the two
objectives, only one or none of the two. The results in Fig. 7 show
that all PSR models ∂P, together with some MCSD,  including the
best MCSD ∂Cbest models are part of the Pareto frontier. None of the
most similar MCSD ∂Csim are part of the Pareto frontier.

4.2. Mesh smoothness

In order to evaluate the smoothness of the models, the mean
Gaussian curvature K̄ was computed for all PSR and MCSD mod-
els. A comparison of smoothness of PSR models with that of the
best MCSD ∂Cbest and most similar MCSD models ∂Csim in terms
of accuracy and complexity was  performed. The results, presented
in Table 4, show that, on one hand, the best MCSD ∂Cbest gener-
ally presents much higher curvature values than most of PSR and

the most similar MCSD ∂Csim. On the other hand, the most similar
MCSD ∂Csim (9.67 × 10−3 average curvature) are can only produce
relatively less smoothness as their correspondent best PSR ∂Pbest
(0.03 × 10−3 average curvature).
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.3. Processing time

Our performance results (shown in Table 5) were obtained using
 CPU Intel® CoreTM i7-930 at 2.80 GHz. The results were obtained
n a basis of best time of three executions per model, considering
he ROI containing the liver. For PSR, the execution time includes

lso the computation of the oriented cloud of points.

Mean execution time values show higher performance for
imilar MCSD models ∂Csim (t̄∂Csim

= 12.05 s) over best MCSD mod-

ls ∂Cbest (t̄∂Cbest
= 14.08 s) and best PSR models ∂Pbest (t̄∂Pbest

=

chymas in the dataset (P1, . . .,  P6) at different depth values (d ∈ {5, 6, 7, 8}). (right)
gons and color-coded projection of reconstruction error onto the PSR model.

14.50 s), while variability of execution time is significantly lower
for ∂Pbest models (s∂Cbest

= 1.24 s) compared to similar MCSD ∂Csim

(s∂Csim
= 4.06 s) and best MCSD ∂Cbest (s∂Cbest

= 4.45 s).

4.4. Visual quality
In this section we present the results of our experiments, where
8 surgeons evaluated the quality of 18 models (6 ∂Pbest, 6 ∂Cbest and
6 ∂Csim) using a 5-level Likert scale (Very low (1), Low (2), Normal (3),
High (4), Very high (5)). Subjective data obtained by questionnaires
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Fig. 6. Mesh models correspondent to the best MCSD (accuracy/complexity), best PSR (accuracy/complexity) and its most similar MCSD (smoothness) derived from P1.

Table 3
Number of polygons, mean error and objective score � for best PSR ∂Pbest (accuracy/complexity), their most similar MCSD ∂Csim (smoothness) and the best MCSD ∂Cbest

(accuracy/complexity).

Parenchyma P1 P2 P3

Model I II III I II III I II III

Polygons (in K) 62 625 125 75 207 59 71 263 131
Mean  error 1.11 0.64 0.98 1.37 1.48 1.79 0.94 0.81 0.89
Objective score 0.18 1.00 0.22 0.24 0.70 0.25 0.16 0.40 0.22

Parenchyma P4 P5 P6

Model I II III I II III I II III

Polygons (in K) 82 293 73 68 715 89 74 655 72
Mean  Error 0.84 0.72 1.05 0.99 0.61 1.13 0.88 0.58 1.11
Objective score 0.16 0.40 0.21 0.15 0.79 0.19 0.14 0.89 0.20

(I) Best PSR ∂Pbest – (II) Most similar MCSD ∂Csim – (III) Best MCSD ∂Cbest . Minimum values highlighted in boldface.

Table 4
Mean Gaussian curvature K̄ ,  excluding outliers ([5–95] percentiles), computed for all PSR ∂P, best MCSD ∂Cbest and most similar MCSD ∂Csim .

Name PSR Similar Best

d = 5 d = 6 d = 7 d = 8 MCSD MCSD

P1 4.56 0.29 0.19 0.19 0.19 1.60
P2 11.17 31.96 0.706 14.34 0.72 6186.43
P3 37.19 52.42 28.28 0.75 17.56 21,743.83
P4 8.22 14.86 151.16 3.15 77.46 20,474.71
P5 2.06 3.27 0.68 0.36 0.68 18,494.12
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ll values expressed in a scale ×10−3.

Fig. 8a) show lower mean quality score for ∂Cbest (s̄Cbest
= 2.729)

ersus ∂Csim (s̄Csim
= 3.291) and ∂Pbest (s̄Pbest

= 3.333).
In the same line as Feng et al. (2015), we  test the statistical

ifference between groups of methods regarding the perceived
uality. In our case, the comparison between methods is per-
ormed by means of Welch two sample t-test using the R statistical
nvironment (Fig. 8b). Statistical significance was  obtained in the
omparison between ∂Cbest and ∂Pbest (p = 0.0006661), and in the
omparison between ∂Csim and ∂Cbest (p = 0.001382). No statistical
ignificance was found in the comparison between ∂Pbest and ∂Csim
p = 0.777).

. Discussion

.1. PSR compared to state-of-the-art MCSD

The application of PSR to reconstruction of segmented images
equires the transformation of the binary image (segmentation)

o a cloud of oriented points. Perhaps due to this fact, PSR has
ound very little application in the medical domain. As opposed to
eonardi et al. (2011), in which PSR is enclosed in a larger method
or segmentation and reconstruction, our work focuses on the
0.20 0.32 681.94

surface reconstruction process and the comparison of PSR with the
state-of-the-art MCSD.

The election of PSR as an alternative to be evaluated against
state-of-the-art MCSD, is justified by the reduced parameter space,
the resilience to noise and smoothness properties of PSR. Under the
point of view of the application, the reduced parameter space of
PSR (not only in number of parameters, but also in possible param-
eter values), translates into a simpler interaction by clinicians, and
hence, a better integration in the clinical workflow. Empirically, we
have determined the depth parameter space to be d ∈ {5, 6, 7, 8}
in the case of reconstruction of liver parenchyma. This set of values
is clearly smaller than all reasonable combinations of smoothing
and decimation factors for MCSD. Since the liver is a smooth organ,
the good smoothness behavior exhibited by PSR contributes to the
natural appearance of the models. Local features and staircase arti-
facts are reduced, allowing easier interpretation of the internal
structures of the organ (vessels and tumors).

Our results suggest that PSR outperforms state-of-the-art MCSD

for modeling liver parenchyma in different aspects. Overall, ∂Pbest
present reconstructions with better accuracy/complexity trade-
off than state-of-the-art MCSD. Comparing models with similar
smoothness and visual quality (∂Csim and ∂Pbest), ∂Pbest models
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Fig. 7. Mesh complexity and accuracy for all MCSD and PSR models derived from the evaluation data set. Best MCSD (complexity/accuracy), together with the best PSR
(complexity/accuracy), its most similar MCSD (in smoothness) and the Pareto Frontier are highlighted.

Table 5
Processing time (best of three executions, in seconds) the best PSR (including computation of oriented cloud of points) ∂Pbest , best MCSD ∂Cbest and most similar MCSD ∂Csim .

Name Liver dimensions PSR Similar Best
(Region of interest) d = 7 MCSD MCSD

P1 310 × 279 × 330 14.5 9.4 13.7
P2 279 × 286 × 68 12.4 5.8 6.2
P3 296 × 290 × 264 13.8 13.8 13.0
P4 297 × 284 × 272 15.8 15.5 15.7
P5 330 × 345 × 285 15.2 16.6 19.2
P6 280 × 321 × 323 15.3 11.2 16.7

Mean  14.5 12.05 14.8
1.24
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Std.  Dev. 

inimum values highlighted in boldface.

resent a dramatic reduction of complexity (73% less triangles
n average) at the cost of decreasing the accuracy slightly. Accu-
acy values for PSR, however, remain within clinically acceptable
imits. Despite ∂Cbest models can achieve similar complexity as
Pbest in some cases, subjective evaluation experiments reveal that
erceived visual quality of ∂Cbest models is lower with statistical

ignificance than those of ∂Pbest and ∂Csim.

Based on the accuracy/complexity space (Fig. 5) two important
bservations can be made. First, PSR as method, defines the Pareto
rontier, which suggests the goodness of the method over MCSD.
 4.06 4.45

Secondly, parameters to obtain ∂Cbest depend on the input data
while PSR obtains ∂Pbest using the same parameter (d = 7), there-
fore indicating that PSR, as method, is more stable than MCSD. One
implication of the stability of PSR is the possibility to perform opti-
mal  parameter estimation which can be used to produce automatic
reconstructions (see Section 5.3).
As it is shown earlier in Fig. 1, state-of-art MCSD requires two
parameters (smoothing and decimation factors). In order to inte-
grate automatic MSCD in clinical workflows, a set of values can be
established for these parameters. In this line, the possibilities are
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Fig. 8. (a) Subjective evaluation results grouped by method; and (b) Welch two
sample t-test results with ** significant at p = 0.001382 and *** significant at
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 = 0.0006661. Results were obtained from the evaluation of 18 models by 8 sur-
eons. Score values, are expressed in a 5 levels Likert scale: Very low (0), Low (1),
edium (3), High (4), Very high (5).

ither ignoring the application of smoothing and decimation, (i.e.
onsidering s = 0 and d = 0) or choosing a set of “conservative” val-
es that can slightly improve the reconstructions assuming that
he optimal is unknown and unreachable. For smooth structures
ike the liver parenchyma, some degree of smoothing and decima-
ion is beneficial, not only under a polygon-reduction standpoint,
ut also for visualization purposes. As an alternative to automation,
xperts (biomedical engineers or clinicians) can manually set the
arameters in a try-and-fail fashion for every patient. This can be a
edious process and does not guarantee optimality of results.

.2. PSR compared to other reconstruction methods

The wide variety of reconstruction techniques in the literature
akes the choice of the method a relevant question. The answer

o this question is often driven and limited by the scope of the
pplication. There are a number of surface reconstruction meth-
ds other than MCSD or PSR. In particular, multi-level partition of
nity implicits (MPUI) (Ohtake et al., 2003) has been previously
dopted for vessel modeling from clouds of points (Schumann et al.,
007, 2008; Preim and Oeltze, 2008; Moench, 2010; Wu  et al., 2013)
nd can be applied to liver modeling as well. This and other recon-
truction methods are compared and discussed in Kazhdan et al.
2006). In this comparison, MPUI shows generation of spurious sur-
ace sheets under noisy conditions, which are inherent in medical
maging, while PSR exhibits good noise resilience.

More recent approaches like dynamic particles (Meyer et al.,
007, 2008) provide high-quality meshes suitable for visualiza-
ion and simulation purposes. These methods show more flexibility
regularity of triangulation and accuracy of reconstructions can
e controlled) at the cost of a more complex parameter space.
lthough these approaches can be better suited for simulation,
idening the parameter space complicates the integration into

linical workflows.

.3. Accuracy, complexity and depth parameter d

The choice of the depth parameter has an impact over

he smoothness, accuracy and complexity of the reconstruction.
ncreasing the depth parameter value generally produces similar
r superior smoothness, higher accuracy and higher complexity
f the model. Similar works study accuracy and complexity as
aging and Graphics 53 (2016) 30–42 39

independent dimensions of the problem (Schumann et al., 2007,
2008; Wu et al., 2010, 2013). For MCSD and PSR, there is a clear rela-
tionship between the complexity and accuracy of reconstruction.
Low complexity meshes, for instance, present limited representa-
tion power for small features, and hence, decreased accuracy.

Considering the accuracy/complexity relationship in a multi-
objective optimization framework present some interesting
advantages. First, it provides a basis for comparing recons-
tructions with similar properties: ∂Pbest vs. ∂Cbest for optimal
accuracy/complexity trade-off and ∂Pbest vs. ∂Csim for similar
smoothness. Secondly, optimal parameters can be estimated. In
this line, and by considering accuracy and complexity as equally
important objectives (see normalization in Section 3.1), our study
suggests that for liver modeling, PSR models with d = 7 are optimal
in terms of accuracy/complexity trade-off. Other applications might
consider different weights for accuracy and complexity objectives,
in which case, the optimal depth parameter may  vary. In Leonardi
et al. (2011), employ d = 5 for kidney modeling attending to a reduc-
tion of polygons criterion, however, the authors do not provide
any data related to accuracy of reconstruction nor comparison with
other methods.

The accuracy/complexity analysis described in this work, can
also support automatic generation of multi-resolution PSR mod-
els at different d values. Among other purposes, this approach can
support the use of proxy geometries for mesh processing and visu-
alization as in Dyken et al. (2012).

5.4. Integration of PSR in clinical workflows

The application domain of our study is planning and navigation
of liver resection procedures. In this domain, visual realism and
accuracy are of paramount importance. Visual realism is achieved
through smoothness, which removes staircase artifacts and small
features not needed for the visualization of the organ, thus reducing
the complexity of visualization. Accuracy plays an important role
since the model can be used as a base for clinical decisions as well
as for model-to-patient registration (e.g. surgery navigation). Some
of these clinical decisions are supported on operations performed
directly on the models. Low complexity models can improve the
performance of operations like mesh cutting, mesh volume or
distance computations, present in computer-assisted systems for
planning and navigation. By optimizing the depth parameter (d = 7)
we obtained a fully automatic reconstruction method able to pro-
duce smooth models with better accuracy/complexity trade-off
than the models generated by MCSD. The errors presented in the
results for PSR at d = 7 (median errors within 1.03 ± 0.23 mm)  are
clinically acceptable. For all this, we consider PSR a suitable candi-
date to replace state-of-the-art MCSD to model 3D for planning and
navigation purposes.

The difference in computing time between PSR and MCSD is,
for pre-operative purposes, negligible (Table 5), however, time is
still far from real-time reconstructions, which might be of inter-
est for other clinical workflows. The operations involved in PSR are
subject to parallelization strategies using graphics processing units
(GPUs). Works like Izadi et al. (2011), Zhou et al. (2011) show the
feasibility of using GPUs for real-time reconstruction of complex
scenes using PSR. As intra-operative systems (e.g. surgical naviga-
tion) move towards the use of deformable models, aspects related
to algorithm performance and parallelization capabilities will get
more relevance in medial systems design.

Process automation during imaging, segmentation and 3D mod-
eling is the key for improving the adoption of 3D patient-specific

models in clinical workflows. To be sure, the major bottleneck is
segmentation (currently is subject to extensive research), which
automation is still considered as a challenging task (Zygomalas
et al., 2015), thus requiring some degree of human interaction.
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images to oriented cloud of points based on computing gradient
fields. In order to make an automatic PSR, we  found the PSR param-
eter obtaining the best accuracy/complexity trade-off (d = 7).
0 R. Palomar et al. / Computerized Med

hile segmentation falls out of the scope of this work, the inte-
ration ability of PSR and how this can increase the adoption of
D patient-specific models with the help of state-of-the-art tools,

ike MeVis Distant Services (Zygomalas et al., 2015; Soler and
arescaux, 2008; Nicolau et al., 2011) or Fujifilm Synapse VINCENT

Ohshima, 2014), is a relevant question. PSR can be seamlessly inte-
rated in any medical platform, provided that the platform is able
o obtain segmented images (Fig. 1). Open source software like 3D
licer (Pieper et al., 2004) or ITK-Snap (Yushkevich et al., 2006) can
lso make use of this work not only for the reconstruction of liver
urfaces, but also to investigate further applications (e.g. modeling
f other anatomical structures).

Liver surgery is moving towards minimally invasive surgery
laparoscopy). The clinical advantages of this approach must take
nto consideration the increased complexity of the surgical proce-
ure (reduced maneuverability and visual field). In this context, the
se of 3D patient-specific models, together with intra-operative

maging (ultrasound) are becoming increasingly relevant. Recent
tudies highlight the advantages of integrating these models as part
f augmented reality guidance systems in laparoscopy (Ntourakis
t al., 2015) and open surgery (Nicolau et al., 2011). The combina-
ion of 3D patient-specific model, together with the latest trends
n surgery, like robotic surgery, have the potential to make surgical
nterventions easier, faster and probably safer (Volonté et al., 2011).
ome of these works highlight the importance of accuracy, and
eduction of human interaction (automation of processes), topics
hich are widely studied and discussed in this work.

.5. Application of PSR to Other anatomical structures

Our application of PSR to liver modeling (parenchyma) from
calar volumes inevitably raises the question of the adequacy of PSR
o obtain 3D models of other anatomical structures. In the context
f planning and navigation of liver resection procedures, the ques-
ion reduces to whether PSR is a suitable method for reconstruction
f tumors and vessels.

For tumors, due to their high variability in shape and size, as
ell as the need of preservation of local features, PSR demands

 high d parameter value (associated to a relatively high number
f polygons). Though this does not disqualify PSR to be applied to
umors, the advantage of PSR over MCSD is, at the least, not as
owerful as for the liver surface. Further investigation is needed to
etermine the degree of adequacy of PSR for such structures.

In the case of PSR applied to vessels, preservation of high
urvature and branches (concavities) demands a high value of
he d parameter, resulting in models with high number of poly-
ons. To cope with this problem, Wu et al. (2013) evaluates a
ariant of PSR (in that work referred to as scale-adaptive [SA]),
hich includes curvature-dependent polygonization (e.g. increas-

ng/decreasing the size of triangles according to the local curvature)
Wu et al., 2010). In Wu  et al. (2013), other methods including

C (without smoothing and decimation) are evaluated with appli-
ation to vessel modeling. The authors, point at SA as a suitable
ethod for reconstruction of vessels with applications to surgery

lanning. The methods evaluated by Wu et al. (2013) could be also
ompared with another set of techniques (known as model-based
ethods) (Preim and Oeltze, 2008), widely used in the context of

essel modeling for surgery planning.

.6. Future work

Leonardi et al. (2011) suggest the use of PSR to construct geo-

etric models of other organs than kidney. In the same line, and

espite the little attention PSR has been given in the medical
omain, we believe that its use can be extended to other organs
utperforming state-of-the-art methods.
aging and Graphics 53 (2016) 30–42

Smooth organs absent of sharp features are, in principle, good
candidates to undergo PSR. Evaluations similar to Wu et al. (2013)
could also consider the intrinsic relationship between number of
polygons and error according to our multi-objective optimization
framework. To the best of our knowledge, modeling of tumors has
not been subject to an exhaustive evaluation like the one presented
in this work or in Wu  et al. (2013), which can be of great interest.

New reconstruction methods that may  arise, can be evaluated
using this work as guideline. Despite the more complex parameter
space of methods based on dynamic particles (Meyer et al., 2007,
2008), these can support an interesting comparison with PSR for
modeling of anatomical structures for different purposes.

6. Conclusion

In this work, we propose the application of PSR to obtain patient-
specific models of liver parenchyma for planning and navigation of
liver resection procedures. For the application of PSR to medical
images, we  propose an efficient transformation of the segmented
Fig. 9. (a) Complete patient-specific model including parenchyma (PSR), vessels
(MCSD) and tumors (MCSD). (b) Use of a patient-specific model for guiding a liver
resection surgical procedure.
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Comparing PSR with the state-of-the-art (MCSD) in terms of
ccuracy, complexity and smoothness, PSR shows better recon-
truction performance and stability of results. This study also
eveals that PSR liver models using the optimal parameter

 = 7 not only are smooth, but also present better accu-
acy/complexity trade-off than MCSD models. Reconstructions
btained through automatic PSR (d = 7), presents median errors
ithin 1.03 ± 0.23 mm,  which makes them suitable for clinical

pplications. On average, these models have 79.59% less polygons
ompared to MCSD models with similar smoothness, while clini-
ians do not perceive a significant quality difference. Optimal PSR
odels d = 7, exhibit a significant improvement of visual qual-

ty compared to optimal MCSD in terms of accuracy/complexity
rade-off. Automatic PSR can be seamlessly integrated in clinical
orkflows already using MCSD, since the processing time is similar

o that of MCSD.
The contribution of this work, is therefore, a step towards

he automation and quality needed for a wide adoption of 3D
atient-specific models in the medical community. Currently, at
slo University Hospital (The Intervention Centre), PSR is employed

n a fully automatic way (after segmentation, which takes place in
 semi-automated way) to obtain patient-specific models of liver
arenchyma in selected patients undergoing laparoscopic liver
esection. Fig. 9a shows a complete patient-specific liver model
n which the parenchyma was obtained through PSR (d = 7) while

CSD was applied for vessels and tumors. During operation, (Fig
b) the patient-specific model, which includes the resection path,
elps the surgeons to perform the resection according to the pre-
perative plan.
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