3,582 research outputs found

    Recognizing Focal Liver Lesions in Contrast-Enhanced Ultrasound with Discriminatively Trained Spatio-Temporal Model

    Full text link
    The aim of this study is to provide an automatic computational framework to assist clinicians in diagnosing Focal Liver Lesions (FLLs) in Contrast-Enhancement Ultrasound (CEUS). We represent FLLs in a CEUS video clip as an ensemble of Region-of-Interests (ROIs), whose locations are modeled as latent variables in a discriminative model. Different types of FLLs are characterized by both spatial and temporal enhancement patterns of the ROIs. The model is learned by iteratively inferring the optimal ROI locations and optimizing the model parameters. To efficiently search the optimal spatial and temporal locations of the ROIs, we propose a data-driven inference algorithm by combining effective spatial and temporal pruning. The experiments show that our method achieves promising results on the largest dataset in the literature (to the best of our knowledge), which we have made publicly available.Comment: 5 pages, 1 figure

    Diagnostic imaging for hepatocellular carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) occurs mostly in individuals with cirrhosis, which is why the guidelines of the most important scientific societies indicate that these patients are included in surveillance programs through the repetition of an ultrasound examination every 6 months. The aim is to achieve early identification of the neoplasia in order to increase the possibility of curative therapies (liver transplantation, surgery or local ablative therapies) and to increase patient survival. HCC nodules arising in cirrhotic livers show characteristic angiographic behavior that can be evaluated with dynamic multidetector computed tomography and dynamic magnetic resonance imaging (MRI). However, the use of these techniques in real life is often hindered by the lack of uniform terminology in reporting and in the interpretation of the exams reflected in the impossibility of comparing examinations performed in different centers and/or at different times. Liver Imaging Reporting and Data System® was created to standardize reporting and data collection of computed tomography and MRI for HCC. In some cases HCC arises in patients with healthy livers and, although there is evidence that angiographic behavior is not different from cirrhotic patients in this clinical situation, the guidelines still indicate the execution of a biopsy. Frequent use of palliative therapeutic techniques such as transarterial chemoembolization, transarterial radioembolization or administration of antiangiogenic drugs (sorafenib) poses problems of interpretation of the therapeutic response with repercussions on the subsequent choices that have been attempted to resolve with the use of stringent criteria such as Modified Response Evaluation Criteria In Solid Tumors

    Liver Segmentation and Liver Cancer Detection Based on Deep Convolutional Neural Network: A Brief Bibliometric Survey

    Get PDF
    Background: This study analyzes liver segmentation and cancer detection work, with the perspectives of machine learning and deep learning and different image processing techniques from the year 2012 to 2020. The study uses different Bibliometric analysis methods. Methods: The articles on the topic were obtained from one of the most popular databases- Scopus. The year span for the analysis is considered to be from 2012 to 2020. Scopus analyzer facilitates the analysis of the databases with different categories such as documents by source, year, and county and so on. Analysis is also done by using different units of analysis such as co-authorship, co-occurrences, citation analysis etc. For this analysis Vosviewer Version 1.6.15 is used. Results: In the study, a total of 518 articles on liver segmentation and liver cancer were obtained between the years 2012 to 2020. From the statistical analysis and network analysis it can be concluded that, the maximum articles are published in the year 2020 with China is the highest contributor followed by United States and India. Conclusions: Outcome from Scoups database is 518 articles with English language has the largest number of articles. Statistical analysis is done in terms of different parameters such as Authors, documents, country, affiliation etc. The analysis clearly indicates the potential of the topic. Network analysis of different parameters is also performed. This also indicate that there is a lot of scope for further research in terms of advanced algorithms of computer vision, deep learning and machine learning

    PCA-SVM based CAD System for Focal Liver Lesions using B-Mode Ultrasound Images

    Get PDF
    The contribution made by texture of regions inside and outside of the lesions in classification of focal liver lesions (FLLs) is investigated in the present work. In order to design an efficient computer-aided diagnostic (CAD) system for FLLs, a representative database consisting of images with (1) typical and atypical cases of cyst, hemangioma (HEM) and metastatic carcinoma (MET) lesions, (2) small as well as large hepatocellular carcinoma (HCC) lesions and (3) normal (NOR) liver tissue is used. Texture features are computed from regions inside and outside of the lesions. Feature set consisting of 208 texture features, (i.e. 104 texture features and 104 texture ratio features) is subjected to principal component analysis (PCA) for finding the optimal number of principal components to train a support vector machine (SVM) classifier for the classification task. The proposed PCA-SVM based CAD system yielded classification accuracy of 87.2% with the individual class accuracy of 85%, 96%, 90%, 87.5% and 82.2% for NOR, Cyst, HEM, HCC and MET cases respectively. The accuracy for typical, atypical, small HCC and large HCC cases is 87.5%, 86.8%, 88.8%, and 87% respectively. The promising results indicate usefulness of the CAD system for assisting radiologists in diagnosis of FLLs.Defence Science Journal, 2013, 63(5), pp.478-486, DOI:http://dx.doi.org/10.14429/dsj.63.395

    Artificial Intelligence in the Diagnosis of Hepatocellular Carcinoma: A Systematic Review.

    Get PDF
    Hepatocellular carcinoma ranks fifth amongst the most common malignancies and is the third most common cause of cancer-related death globally. Artificial Intelligence is a rapidly growing field of interest. Following the PRISMA reporting guidelines, we conducted a systematic review to retrieve articles reporting the application of AI in HCC detection and characterization. A total of 27 articles were included and analyzed with our composite score for the evaluation of the quality of the publications. The contingency table reported a statistically significant constant improvement over the years of the total quality score (p = 0.004). Different AI methods have been adopted in the included articles correlated with 19 articles studying CT (41.30%), 20 studying US (43.47%), and 7 studying MRI (15.21%). No article has discussed the use of artificial intelligence in PET and X-ray technology. Our systematic approach has shown that previous works in HCC detection and characterization have assessed the comparability of conventional interpretation with machine learning using US, CT, and MRI. The distribution of the imaging techniques in our analysis reflects the usefulness and evolution of medical imaging for the diagnosis of HCC. Moreover, our results highlight an imminent need for data sharing in collaborative data repositories to minimize unnecessary repetition and wastage of resources
    corecore