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Abstract: Hepatocellular carcinoma ranks fifth amongst the most common malignancies and is the
third most common cause of cancer-related death globally. Artificial Intelligence is a rapidly growing
field of interest. Following the PRISMA reporting guidelines, we conducted a systematic review to
retrieve articles reporting the application of AI in HCC detection and characterization. A total of
27 articles were included and analyzed with our composite score for the evaluation of the quality of
the publications. The contingency table reported a statistically significant constant improvement over
the years of the total quality score (p = 0.004). Different AI methods have been adopted in the included
articles correlated with 19 articles studying CT (41.30%), 20 studying US (43.47%), and 7 studying
MRI (15.21%). No article has discussed the use of artificial intelligence in PET and X-ray technology.
Our systematic approach has shown that previous works in HCC detection and characterization
have assessed the comparability of conventional interpretation with machine learning using US,
CT, and MRI. The distribution of the imaging techniques in our analysis reflects the usefulness and
evolution of medical imaging for the diagnosis of HCC. Moreover, our results highlight an imminent
need for data sharing in collaborative data repositories to minimize unnecessary repetition and
wastage of resources.

Keywords: artificial intelligence; deep learning; diagnosis; hepatocellular carcinoma; HCC;
machine learning

1. Introduction

Artificial intelligence (AI) is “a field of science and engineering concerned with the
computational understanding of what is commonly called intelligent behavior, and with
creating artefacts that exhibit such behavior” [1].

Alan Turing first described the use of computers for the simulation of critical thinking
and intelligence in 1950. In 1956, John McCarthy coined the definition of AI, the all-
encompassing term for computer programs replicating human intelligence. Machine
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learning is a subset of AI that trains on learning from previous experience and rectifies
its functioning sequentially. Deep learning (DL) is a further subset of machine learning
that utilizes multi-layered networks between the computing units termed “neurons” that
process and validate large training datasets between input and output units, and it leads to
meaningful predictions in multiple spheres of medical research (diagnostic, therapeutic,
prognostic, etc.) [2].

Hepatocellular carcinoma (HCC) ranks fifth amongst the most common malignancies
and is the third most common cause of cancer-related death globally [3]. Though there
have been several breakthroughs in the treatment and diagnostic capability, the prognosis
of HCC remains dismal due to delayed diagnosis and limited treatment strategies. AI
has far reaching potential in the sphere of (a) risk factor stratification, (b) characterization,
and (c) improved prognostication in established cases [2]. HCC is a notorious cancer with
multiple and overlapping risk factors with the spectrum of its evolving conditions, includ-
ing NAFLD (Non-Alcoholic Fatty liver disease), NASH (Non-Alcoholic steatohepatitis),
and subsequent cirrhosis. Several AI modalities have now been modelled to differentiate
and predict the risk of incident HCC [2]. The next challenge lies in classifying indetermi-
nate liver lesions requiring histopathological evidence. The use of computed tomography
(CT) and magnetic resonance imaging (MRI) based on DL and radiomics and the suc-
cess in differentiating between HCC and non-HCC liver nodules with high diagnostic
accuracy serve as an essential impetus for creating universal standardized liver tumor
segmentation techniques [4]. The following systematic review will expand on the cur-
rent role of artificial intelligence in HCC detection and characterization, regardless of the
instrumental technique.

2. Materials and Methods

Following the Preferred Reporting Items for Systematic Reviews and Meta-analyses
(PRISMA) reporting guidelines, we conducted a systematic review. This review reports
qualitative data, and because of inconsistent reporting of outcome measures and differences
in populations and study design, we did not perform a meta-analysis.

2.1. Searches

PubMed, Scopus, and Cochrane were searched using a combination of the following
key words: ((Artificial Intelligence) OR (Machine Learning)) AND ((Hepatocellular Carci-
nomas) OR (HCC) OR (Liver Cancer)) to retrieve articles reporting the application of AI
in detecting or diagnosing HCC. Results were admitted from the time of inception up to
and including 5 May 2022. The search terms were modified to fit each database (the terms
and their adjustments are found in the Supplementary Materials File S1). Additionally, the
reference list of included articles and relevant reviews was checked manually to identify
other papers.

2.2. Inclusion and Exclusion Criteria

Only published articles reporting the application of AI in detecting or diagnosing
HCC were included, excluding all the studies reporting the application of AI outside the
Diagnosis of HCC, such as risk prediction, prognosis, or treatment. Only diagnoses based
on CT, MRI, Ultrasound (US), 18F-FDG Positron emission tomography (PET), or X-ray
were selected, while other methods like pathology reports or biomarkers were excluded.
Reviews, letters, editorials, conference papers, preprints, commentaries, book chapters, or
any article in languages other than English were excluded too.
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2.3. Quality Assessment

Studies were assessed for quality based on three items:

• The number of images, estimating the risk of bias and overfitting: fewer than 50
(score 0), 50 to 100 (score 1), and more than 100 (score 2) [5]. This factor was considered
the most frequently reported in articles. Where only the number of patients was
reported, we considered at least one image per patient.

• The use of a completely independent cohort for validation: no cohort (score 0), the
partition of the cohort between completely separated training and test set (score 1),
external validation cohort (score 2).

• By 2011, the speed of graphics processing units had increased significantly, mak-
ing it possible to train convolutional neural networks “without” the layer-by-layer
pre-training. With the increased computing speed, deep learning had significant ad-
vantages in terms of efficiency and speed: no data (score 0), before 2011 (score 1), 2011
or after (score 2).

A simple quality score (QS), consisting of the sum of the 3 previously stated items, was
calculated. A maximum possible score of 6 meant a high-quality study design of the article.

2.4. Study Selection & Data Extraction

Duplicates were removed using Endnote X9. Titles and/or abstracts of studies iden-
tified using our search criteria were screened independently by 2 authors (A.M. & M.A.)
to identify all studies meeting our inclusion criteria. Any disagreement was resolved
through discussion with a third reviewer (F.G.). Random included articles were used to
generate an extraction sheet. Three authors (A.M., M.A., and J.P.S.P) reviewed the full texts
for inclusion and data extraction. Any discrepancies were corrected by consensus. The
following parameters were extracted from each article:

• PMID; First author; Year of publication; Country; Journal.
• The number of patients; Diagnostic method; AI method.
• Research question; Key findings.
• Quality score.

F.G. then reviewed all articles, rechecked data, and analyzed them using an Excel (R)
sheet. Statistical calculations were performed with Jamovi (R) software version 2.0.0.0 [6,7].

3. Results
3.1. Searching Results

The study flow diagram is illustrated in Figure 1. Searches identified 3160 records: 1677
from PubMed, 1426 from Scopus, and 57 from Cochrane. A total of 1052 were duplicates
and automatically excluded using EndNoteX9. A total of 2108 studies were evaluated by
title/abstract screening against the eligibility criteria, and 2032 were excluded. Of these,
1813 were not related to the topic, 5 not including HCC, 5 not including AI, 12 not discussing
diagnosis, 80 duplicates not detected by the software, 62 conference papers, 26 reviews,
5 book chapters, and 24 letters. Of the remaining 76 records potentially eligible, after
the full-texts screening, 27 articles were included, and 49 were excluded because 6 were
not related to the topic, 7 did not include HCC, 3 did not include AI, 11 did not discuss
diagnosis, 9 diagnosed based on methods other than CT/PET/MRI/US/X-ray, 5 articles
were in a language other than English, 4 were reviews, 3 articles were not available, and 1
was a clinical trial with no published data. After the manual search, 19 articles were further
identified. Thus, a total of 46 cited articles were included in this review, published between
1998 and 2022 (Table 1).



J. Clin. Med. 2022, 11, 6368 4 of 19

J. Clin. Med. 2022, 11, x FOR PEER REVIEW 4 of 19 
 

 

manual search, 19 articles were further identified. Thus, a total of 46 cited articles were 
included in this review, published between 1998 and 2022 (Table 1). 

 
Figure 1. PRISMA Flow Diagram. 

Figure 1. PRISMA Flow Diagram.



J. Clin. Med. 2022, 11, 6368 5 of 19

Table 1. Breakdown of Articles by Year of Publication.

Levels Counts % of Total Cumulative %

1998 1 2.2% 2.2%
2003 1 2.2% 4.3%
2006 2 4.3% 8.7%
2008 1 2.2% 10.9%
2010 1 2.2% 13.0%
2011 1 2.2% 15.2%
2012 1 2.2% 17.4%
2013 1 2.2% 19.6%
2014 2 4.3% 23.9%
2015 1 2.2% 26.1%
2017 3 6.5% 32.6%
2018 4 8.7% 41.3%
2019 10 21.7% 63.0%
2020 7 15.2% 78.3%
2021 5 10.9% 89.1%
2022 5 10.9% 100.0%

Median 2019

3.2. Quality Assessments

The mean of the “Number of Images” score was 1.70, identifying 36 articles (78.3%) where
at least 100 images were analyzed. (Table 2) The mean of the “Cohort for Validation” Score
was 0.609. Indeed, an external validation cohort was used only in 2 articles (4.3%). (Table 3)
The mean of the “Year of Publication” score was 1.87, documenting that most of the works
(87.0%) included in this systematic review were published in 2011 or later. (Table 4) On
average, the Total Quality Score was 4.17, with a median of 4.00 and SD of 1.04. (Table 5)
The contingency table correlating the Total Score with the Year of Publication reports a
statistically significant constant improvement over the years of the quality score (p = 0.004).
(Table 6) A total of 3 articles (6.52%) scored a QS lower than 3, while 2 (4.34%) received the
maximum score. Results from articles with a QS strictly lower than 3 are written in italics
in Table 7.

Table 2. “Number of Images” Score.

Levels Counts % of Total Cumulative %

0 4 8.7% 8.7%
1 6 13.0% 21.7%
2 36 78.3% 100.0%

Mean: 1.70 Median: 2.00 SD: 0.628

Table 3. “Cohort for Validation” Score.

Levels Counts % of Total Cumulative %

0 20 43.5% 43.5%
1 24 52.2% 95.7%
2 2 4.3% 100.0%

Mean: 0.609 Median: 1.00 SD: 0.577
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Table 4. “Year of Publication” Score.

Levels Counts % of Total Cumulative %

1 6 13.0% 13.0%
2 40 87.0% 100.0%

Mean: 1.87 Median: 2.00 SD: 0.341

Table 5. Total Score.

Levels Counts % of Total Cumulative %

1 1 2.2% 2.2%
2 2 4.3% 6.5%
3 7 15.2% 21.7%
4 16 34.8% 56.5%
5 18 39.1% 95.7%
6 2 4.3% 100.0%

Mean: 4.17 Median: 4.00 SD: 1.04

Table 6. Contingency Tables; Total Score and Year.

Year χ2

Tests Year χ2

Tests Year χ2

Tests Year χ2

Tests Year χ2

Tests

Total
Score 1998 2003 2006 2008 2010 2011 2012 2013 2014 2015 2017 2018 2019 2020 2021 2022 Total Value df p

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

111 75 0.004

2 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 2
3 0 0 1 1 1 0 0 0 0 1 2 0 1 0 0 0 7
4 0 1 1 0 0 0 1 0 0 0 1 3 3 2 1 3 16
5 0 0 0 0 0 1 0 1 1 0 0 1 5 3 4 2 18
6 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2

Total 1 1 2 1 1 1 1 1 2 1 3 4 10 7 5 5 46

3.3. Results

Different AI methods have been adopted in the included articles, such as CNN (Con-
volutional Neural Network), SVM (Support-Vector Machine), RF (Random Forest), KNN
(K-Nearest Neighbor), PM-DL (pattern matching and deep learning), ANN (Artificial
Neural Network), DNN (Deep Neural Network), CDNs (Convolutional Dense Networks),
DLS (Deep Learning System), GLM (Generalized Linear Model), DWT (Discrete Wavelet
Transform), LSTM (Long Short-Term Memory), NNE (Neural Network Ensemble), and
LDA (Linear Discriminant Analysis). A total of 19 articles used CT (41.30%), 20 used
US (43.47%), and 7 used MRI (15.21%) in their work. No article has discussed the use of
artificial intelligence in PET and X-ray technology. Table 7 lists the total study population,
diagnostic method, research question or purpose, AI method, key findings included in this
systematic review to summarize how artificial intelligence is used today in diagnosing HCC.
Moreover, when the information was available, we reported in Table 7 the background of
the images studied, i.e., whether HCC on the cirrhotic or healthy liver and whether other
cancerous and benign lesions studied were present.
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Table 7. Characteristics of the studies included in the systematic review.

Study Country/
Region Journal Total Study

Population
Diagnostic

Method Research Question/Purpose AI Method Key Findings

Ziegelmayer et al.,
2022 [8] Germany Investigative Radiology 60 patients CT

To compare the robustness of CNN
features versus radiomics features to

technical variations in image
acquisition parameters.

CNN CNN features were more stable.

Xu et al., 2022 [9] China
Computational and

Mathematical Methods
in Medicine

211 patients
(122 training set,

89 testing set)
CT

To establish an SVM based on
radiomic features at non-contrast CT
to train a discriminative model for

HCC and ICCA at early stage.

SVM The model may facilitate the differential
diagnosis of HCC and ICCA in the future.

Turco et al.,
2022 [10] USA

IEEE Transactions on
Ultrasonics,

Ferroelectrics, and
Frequency control

72 patients US

Proposes an interpretable radiomics
approach to differentiate between

malignant and benign FLLs
on CEUS.

Logistic regression,
SVM, RF, and KNN

Aspects related to perfusion (peak time
and wash-in time), the microvascular

architecture (spatiotemporal coherence),
and the spatial characteristics of contrast
enhancement at wash-in (global kurtosis)
and peak (GLCM Energy) are particularly

relevant to aid FLLs diagnosis.

Sato et al., 2022 [11] Japan
Journal of

Gastroenterology and
Hepatology

972 patients
(864 training set,
108 testing set)

US

To analyse the diagnostic
performance of deep multimodal

representation model-based
integration of tumour image, patient
background, and blood biomarkers

for the differentiation of liver
tumours observed using B-mode US.

CNN

The integration of patient background
information and blood biomarkers in
addition to US images, multi-modal

representation learning outperformed the
CNN model that used US images alone.

Rela et al., 2022 [12] India

International Journal of
Advanced Technology

and Engineering
Exploration

68 patients
(51 training set,
17 testing set)

CT
Different machine learning

algorithms are used to classify the
tumour as liver abscess and HCC.

SVM, KNN,
Decision tree,

Ensemble, and
Naive Bayes

SVM classifier gives better performance
compared to all other AI methods

in the study.

Zheng et al.,
2021 [13] China Physics in Medicine

and Biology

120 patients
(56 training set with

5376 images,
64 testing set with

6144 images)

MRI
To investigate the feasibility of

automatic detection of small HCC
(≤2 cm) based on PM-DL model.

CNN

The superior performance both in the
validation cohort and external test cohort
indicated the proposed PM-DL model may
be feasible for automatic detection of small

HCCs with high accuracy.
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Table 7. Cont.

Study Country/
Region Journal Total Study

Population
Diagnostic

Method Research Question/Purpose AI Method Key Findings

Yang et al., 2021 [14] Taiwan PLoS One

731 patients
(394 training set with

10,130 images,
337 testing set with

22,116 images)

CT

To use a previously proposed mask
region–based CNN for automatic

abnormal liver density detection and
segmentation based on HCC CT

datasets from a radiological
perspective.

CNN

The study revealed that this single deep
learning model cannot replace the complex

and subtle medical evaluations of
radiologists, but it can reduce

tedious labour.

Stollmayer et al.,
2021 [15] Hungary World Journal of

Gastroenterology

69 patients (training
set with 186 images,

testing set with
30 images)

MRI

To compare diagnostic efficiency of
2D and 3D-densely connected CNN

(DenseNet) for FLLs on
multi-sequence MRI.

CNN

Both 2D and 3D-DenseNets can
differentiate FNH, HCC and MET with

good accuracy when trained on
hepatocyte-specific contrast-enhanced

multi-sequence MRI volumes.

Kim et al., 2021 [16] Korea European Radiology

1320 patients (training
set with 568 images,

testing set with
589 images, tuning

set with 193 images)

CT

To develop and evaluate a deep
learning-based model capable of

detecting primary hepatic
malignancies in multiphase CT

images of patients at high
risk for HCC.

CNN
The proposed model exhibited an 84.8% of
sensitivity with 4.80 false positives per CT

scan in the test set.

Căleanu et al.,
2021 [17] Romania Sensors 91 patients US

To examine the application of CEUS
for automated FLL diagnosis

using DNN.
DNN

This deep learning-based method provides
comparable or better results, for an

increased number of FLL types.

Zhou et al.,
2020 [18] China Frontiers in Oncology

435 patients (616 liver
lesions; 462 training
set, 154 testing set)

CT

To propose a framework based on
hierarchical CNNs for automatic

detection and classification FLLs in
multi-phasic CT.

Hierarchical CNNs

Overall, this preliminary study
demonstrates that the proposed

multi-modality and multi-scale CNN
structure can locate and classify FLLs

accurately in a limited dataset and would
help inexperienced physicians to reach a

diagnosis in clinical practice.

Kim et al., 2020 [19] South Korea Scientific Reports
549 patients, and

external validation
data set (54 patients)

MRI

To develop a fully automated deep
learning model to detect HCC using
hepatobiliary phase MR images and

evaluate its performance in
detecting HCC on liver MRI
compared to human readers

Fine-tuned CNN

The optimised CNN architecture achieved
94% sensitivity, 99% specificity, and

0.97 area under curve (AUC) for HCC
cases in the test dataset and achieved 87%
sensitivity and 93% specificity and an AUC

of 0.90 for external validation datasets.
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Table 7. Cont.

Study Country/
Region Journal Total Study

Population
Diagnostic

Method Research Question/Purpose AI Method Key Findings

Huang et al.,
2020 [20] China

IEEE journal of
biomedical and health

informatics

Data set 1:
155 patients with

FNH and 49 patients
with atypical HCC

Data set 2:
102 patients with

FNH and only
36 patients with

atypical HCC

US

To propose a novel liver tumour
CAD approach extracting

spatial-temporal semantics for
atypical HCC.

SVM
The average accuracy reaches 94.40%,

recall rate 94.76%, F1-score value 94.62%,
specificity 93.62% and sensitivity 94.76%.

Shi et al., 2020 [21] NA Abdominal Radiology

342 patients with
449 untreated lesions

(194 HCC group;
255 non-HCC group)

CT

To evaluate whether a three-phase
dynamic contrast-enhanced CT

protocol, when combined with a
deep learning model, has similar
accuracy in differentiating HCC

from other FLLs) compared with a
four-phase protocol.

CDNs

When combined with a CDN, a
three-phase CT protocol without

pre-contrast showed similar diagnostic
accuracy as a four-phase protocol in
differentiating HCC from other FLLs,

suggesting that the multiphase CT
protocol for HCC diagnosis might be

optimised by removing the pre-contrast
phase to reduce radiation dose.

Zhen et al.,
2020 [22] China Frontiers in Oncology

1210 patients
(31,608 images), and

external validated
cohort of 201 patients

(6816 images)

MRI To develop a DLS to classify
liver tumours. CNN

DLS that integrated these models could be
used as an accurate and timesaving

assisted-diagnostic strategy for liver tumours
in clinical settings, even in the absence of

contrast agents. DLS therefore has the
potential to avoid contrast-related side effects
and reduce economic costs associated with

current standard MRI inspection practices for
liver tumour patients.

Krishan et al.,
2020 [23] India

Proceedings of the
Institution of

Mechanical Engineers,
Part H: Journal of

Engineering in
Medicine

794 normal liver
images and

844 abnormal liver
types (483 MET,

361 HCC)

CT

To detect the presence of a tumour
region in the liver and classify the

different stages of the tumour from
CT images.

R-part decision tree,
AdaBoost, RF,

k-SVM, GLM, and
NN. A multi-level
ensemble model is

also developed.

The accuracy achieved for different classifiers
varies between 98.39% and 100% for tumour

identification and between 76.38% and
87.01% for tumour classification. The

multi-level ensemble model achieved high
accuracy in both the detection and
classification of different tumours.
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Table 7. Cont.

Study Country/
Region Journal Total Study

Population
Diagnostic

Method Research Question/Purpose AI Method Key Findings

Brehar et al.,
2020 [24] Romania Sensors 268 patients US

To compare deep-learning and
conventional machine-learning

methods for the automatic
recognition of the HCC areas from

US images

CNNs

The achieved results show that the
deep-learning approach overcomes

classical machine-learning solutions, by
providing a higher classification

performance.

Hamm et al.,
2019 [25] NA European radiology

296 patients;
334 imaging studies;
494 hepatic lesions

divided into training
(434) and test sets (60)

MRI

To develop and validate a
proof-of-concept CNN–based DLS

that classifies common hepatic
lesions on multi-phasic MRI.

CNN

This preliminary deep learning study
demonstrated feasibility for classifying

lesions with typical imaging features from
six common hepatic lesion types.

Das et al., 2019 [26] India Pattern Recognition
and Image Analysis

123 real-time images
(63 HCC, and
60 metastasis
carcinoma)

CT

To present an automatic approach that
integrates the adaptive thresholding

and spatial fuzzy clustering approach
for detection of cancer region in CT

scan images of liver.

Multilayer
perceptron and C4.5

decision tree
classifiers

This result proves that the spatial fuzzy
c-means-based segmentation with C4.5

decision tree classifier is an effective
approach for automatic recognition of the

liver cancer.

Trivizakis et al.,
2019 [27] Greece

IEEE Journal of
Biomedical and Health

Informatics

130 images for the
training and

validation of the
network

MRI

Propose and evaluate a novel 3D
CNN designed for tissue

classification in medical imaging
and applied for discriminating

between primary and metastatic
liver tumours from diffusion

weighted MRI data.

3D CNN

The proposed 3D CNN architecture can
bring significant benefit in diffusion

weighted MRI liver discrimination and
potentially, in numerous other tissue

classification problems based on
tomographic data, especially in size-limited,

disease-specific clinical datasets.

Kutlu et al.,
2019 [28] Turkey Sensors

56 images benign and
56 malignant liver

tumours
CT

A new liver and brain tumour
classification method is proposed by
using the power of CNN in feature

extraction, the power of DWT in
signal processing, and the power of

LSTM in signal classification.

CNN in feature
extraction, DWT in
signal processing,

and LSTM in signal
classification

The proposed method has a satisfactory
accuracy rate at the liver tumour and brain

tumour classifying.

Nayak et al.,
2019 [29] India

International Journal of
Computer Assisted

Radiology and Surgery

40 patients (healthy 14,
cirrhosis 12, and

cirrhosis with HCC 14)
CT

To proposes a CAD system for
detecting cirrhosis and HCC in a

very efficient and less
time-consuming approach.

SVM

The proposed CAD system showed
promising results and can be used as

effective screening tool in
medical image analysis.

Schmauch et al.,
2019 [30] France Diagnostic and

Interventional Imaging

544 patients
(367 training set,

177 test set)
US

To create an algorithm that
simultaneously detects and

characterises (benign vs. malignant)
FLL using deep learning.

ANN
This method could prove to be highly

relevant for medical imaging once
validated on a larger independent cohort.
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Table 7. Cont.

Study Country/
Region Journal Total Study

Population
Diagnostic

Method Research Question/Purpose AI Method Key Findings

Jansen et al.,
2019 [31]

The
Netherlands PLoS ONE 95 patients

(213 images) MRI
Additional MR sequences and risk

factors are used for automatic
classification.

Randomised trees
classifier

The proposed classification can
differentiate five common types of lesions

and is a step forward to a
clinically useful aid.

Das et al., 2019 [32] India Cognitive Systems
Research

75 patients
(225 images) CT

To introduce a new automated
technique based on

watershed–Gaussian segmentation
approach.

DNN

The developed system is ready to be tested
with huge database and can aid the

radiologist in detecting the liver cancer
using CT images.

Mokrane et al.,
2019 [33] France European Radiology

178 patients
(142 training set,

36 validations set)
CT

To enhance clinician’s
decision-making by diagnosing
HCC in cirrhotic patients with

indeterminate liver nodules using
quantitative imaging features

extracted from triphasic CT scans.

KNN, SVM, and RF

A proof of concept that
machine-learning-based radiomics

signature using change in quantitative CT
features across the arterial and portal

venous phases can allow a non-invasive
accurate diagnosis of HCCs in cirrhotic
patients with indeterminate nodules.

Lakshmipriya et al.,
2019 [34] India Journal of Biomedical

and Health Informatics

634 images
(440 images training

set, 194 images
validation set)

CT

An ensemble FCNet classifier is
proposed to classify hepatic lesions

from the deep features extracted
using GoogleNetLReLU transfer

learning approach.

CNN
Results demonstrate the efficacy of the
proposed classifier design in achieving

better classification accuracy.

Acharya et al.,
2018 [35] Malaysia Computers in biology

and medicine
101 patients with

463 images US

This study initiates a CAD system to
aid radiologists in an objective and

more reliable interpretation of
ultrasound images of liver lesions.

Radon transform
and bi-directional
empirical mode

decomposition to
extract features

from the focal liver
lesions.

The accuracy, sensitivity, and specificity of
lesion classification were 92.95%, 90.80%,

and 97.44%, respectively.

Ta et al., 2018 [36] USA Radiology

106 images
(54 malignant,

51 benign, and one
indeterminate FLL)

US

To assess the performance of CAD
systems and to determine the
dominant US features when

classifying benign versus malignant
FLLs by using contrast

material–enhanced US cine clips.

ANN and SVM

CAD systems classified benign and
malignant FLLs with an accuracy like that

of an expert reader. CAD improved the
accuracy of both readers. Time-based

features of TIC were more discriminating
than intensity-based features.
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Table 7. Cont.

Study Country/
Region Journal Total Study

Population
Diagnostic

Method Research Question/Purpose AI Method Key Findings

Bharti et al.,
2018 [37] India Ultrasonic Imaging 94 patients

(189 images) US

To deal with this difficult visualisation
problem, a method has been developed
for classifying four liver stages, that is,
normal, chronic, cirrhosis, and HCC

evolved over cirrhosis.

KNN, SVM,
rotation forest,

CNNs

The experimental results strongly suggest
that the proposed ensemble classifier

model is beneficial for differentiating liver
stages based on US images.

Yasaka et al.,
2018 [38] Japan Radiology

560 patients
(460 patients training

set with
55,536 images,
100 patients

validation set with
100 images)

CT

To investigate diagnostic
performance by using a deep

learning method with a CNN for the
differentiation of liver masses at

dynamic contrast
agent-enhanced CT.

CNN
Deep learning with CNN showed high

diagnostic performance in differentiation
of liver masses at dynamic CT.

Hassan et al.,
2017 [39] Egypt

Arabian Journal for
Science and
Engineering

110 patients
(110 images) US

A new classification framework is
introduced for diagnosing focal liver

diseases based on deep learning
architecture.

Stacked Sparse
Autoencoder

Our proposed method presented overall
accuracy of 97.2% compared with

multi-SVM, KNN, and Naïve Bayes.

Guo et al., 2017 [40] China Clinical Hemorheology
and Microcirculation 93 patients US

To propose a novel two-stage
multi-view learning framework for

the CEUS based CAD for liver
tumours, which adopted only three
typical CEUS images selected from

the arterial phase, portal venous
phase and late phase.

Deep canonical
correlation analysis
and multiple kernel

learning

The experimental results indicate that the
proposed achieves best performance for

discriminating benign liver tumours from
malignant liver cancers.

Kondo et al.,
2017 [41] Japan Transactions on Medical

Imaging 98 patients US

To propose an automatic
classification method based on

machine learning in CEUS of FLLs
using the contrast agent Sonazoid.

SVM

The results indicated that combining the
features from the arterial, portal, and

post-vascular phases was important for
classification methods based on machine

learning for Sonazoid CEUS.

Gatos et al.,
2015 [42] NA Medical physics 52 patients; (30 benign

and 22 malignant) US
Detect and classify FLLs from CEUS
imaging by means of an automated

quantification algorithm.
SVMs

The proposed quantification system that
employs FLLs detection and classification
algorithms may be of value to physicians

as a second opinion tool for avoiding
unnecessary invasive procedures.
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Table 7. Cont.

Study Country/
Region Journal Total Study

Population
Diagnostic

Method Research Question/Purpose AI Method Key Findings

Virmani et al.,
2014 [43] India Journal of Digital

Imaging 108 images US
An NNE-based CAD system to
assist radiologists in differential

diagnosis between FLLs.
NNE

The promising results obtained by the
proposed system indicate its usefulness to
assist radiologists in differential diagnosis

of FLLs.

Wu et al., 2014 [44] China Optik 22 patients US
To propose a diagnostic system for
liver disease classification based on

CEUS imaging.
DNN

Quantitative comparisons demonstrate
that the proposed method outperforms the

compared classification methods in
accuracy, sensitivity, and specificity

Virmani et al.,
2013 [45] India Defence Science Journal

108 images
comprising of

21 NOR images,
12 Cyst, 15 HEM,

28 HCC, and 32 MET

US
To investigate the contribution made

by texture of regions inside and
outside of the lesions in FLLs.

SVM

The proposed PCA-SVM based CAD
system yielded classification accuracy of

87.2% with the individual class accuracy of
85%, 96%, 90%, 87.5%, and 82.2% for NOR,

Cyst, HEM, HCC, and MET cases,
respectively. The accuracy for typical,

atypical, small HCC and large HCC cases
is 87.5%, 86.8%, 88.8%, and

87%, respectively.

Streba et al.,
2012 [46] Romania World Journal of

Gastroenterology 224 patients US

To study the role of time-intensity
curve analysis parameters in a

complex system of neural networks
designed to classify liver tumours.

ANN

Neural network analysis of CEUS-obtained
time-intensity curves seem a promising

field of development for future techniques,
providing fast and reliable diagnostic aid

for the clinician.

Mittal et al.,
2011 [47] India Computerized Medical

Imaging and Graphics

88 patients with
111 images

comprising 16 normal
liver, 17 Cyst, 15 HCC,
18 HEM and 45 MET

US

It proposes a CAD system to assist
radiologists in identifying focal liver

lesions in B-mode
ultrasound images.

Two step neural
network classifier

The classifier has given correct diagnosis
of 90.3% (308/340) in the tested segmented
regions-of-interest from typical cases and

77.5% (124/160) in tested segmented
regions-of-interest from atypical cases.

Sugimoto et al.,
2010 [48] Japan World Journal of

Radiology

137 patients
(74 HCCs, 33 liver

metastases and
30 liver

hemangiomas)

US
To introduce CAD aimed at

differential Diagnosis of FLLs by use
of CEUS.

ANNs

The classification accuracies were 84.8%
for metastasis, 93.3% for hemangioma, and

98.6% for all HCCs. In addition, the
classification accuracies for histologic

differentiation types of HCCs were 65.2%
for w-HCC, 41.7% for m-HCC, and 80.0%

for p-HCC.
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Table 7. Cont.

Study Country/
Region Journal Total Study

Population
Diagnostic

Method Research Question/Purpose AI Method Key Findings

Shiraishi et al.,
2008 [49] Japan Medical Physics

97 patients,
(103 images;

26 metastases,
16 hemangiomas, and

61 HCCs)

US

To develop a CAD scheme for
classifying focal liver lesions as liver
metastasis, hemangioma, and three
histologic differentiation types of

HCC, by use of microflow imaging
of CEUS.

ANNs

The classification accuracies for the
103 FLLs were 88.5% for metastasis, 93.8%
for hemangioma, and 86.9% for all HCCs.
In addition, the classification accuracies for

histologic differentiation types of HCCs
were 79.2% for w-HCC, 50.0% for m-HCC,

and 77.8% for p-HCC.

Stoitsis et al.,
2006 [50] Greece

Nuclear Instruments
and Methods in Physics

Research

147 images (normal
liver 76, hepatic cyst
19, hemangioma 28,

HCC 24)

CT

To classify of four types of hepatic
tissue: normal liver, hepatic cyst,
hemangioma, and hepatocellular

carcinoma, from CT images.

Combined use of
texture features and

classifiers

The achieved classification performance
was 100%, 93.75%, and 90.63% in the
training, validation, and testing set,

respectively.

Matake et al.,
2006 [51] NA Academic radiology 120 patients CT

To apply an ANN for differential
diagnosis of certain hepatic masses

on CT images and evaluate the effect
of ANN output on radiologist

diagnostic performance.

ANN

The ANN can provide useful output as a
second opinion to improve radiologist

diagnostic performance in the differential
diagnosis of hepatic masses seen on

contrast-enhanced CT.

Gletsos et al.,
2003 [52] Greece

IEEE transactions on
information technology

in biomedicine
147 patients CT

To present a CAD system for the
classification of hepatic lesions from

CT images.

Neural-Network
Classifier

The suitability of co-occurrence texture
features, the superiority of GAs for feature
selection, compared to sequential search

methods, and the high performance
achieved by the NN classifiers in the

testing images set have been
demonstrated.

Chen et al.,
1998 [53] Taiwan IEEE Transactions on

Biomedical Engineering 30 patients CT

To present a CT liver image
diagnostic classification system
which will automatically find,

extract the CT liver boundary, and
further classify liver diseases.

Modified
probabilistic NN

The proposed system was evaluated by 30
liver cases and shown to be efficient and

very effective.

AI: Artificial Intelligence; CT: Computerized Tomography; CNN: Convolutional Neural Network; SVM: Support-Vector Machine; HCC: Hepatocellular Carcinoma; ICCA: Intrahepatic
Cholangiocarcinoma; CEUS: Contrast Enhanced Ultrasound; FLL: Focal Liver Lesion; RF: Random Forest; KNN: K-Nearest Neighbor; US: Ultrasound; MRI: Magnetic Resonance
Imaging; PM-DL: pattern matching and deep learning; 2D: Two-Dimensional; 3D: Three-Dimensional; FNH: Focal Nodular Hyperplasia; MET: Metastatic; ANN: Artificial Neural
Network; DNN: Deep Neural Network; CAD: Computer-Aided Diagnosis; NA: Not Applicable; CDNs: Convolutional Dense Network; DLS: Deep Learning System; GLM: Generalized
Linear Model; NN: Neural Network; DWT: Discrete Wavelet Transform; LSTM: Long Short-Term Memory; NNE: Neural Network Ensemble; LDA: Linear Discriminant Analysis.
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4. Discussion

Artificial Intelligence is a rapidly growing field of interest. It has immense potential
to be the standard of care in resource-limited settings where there is lesser availability
of expert care and a heavy burden of cancer volume load. However, the use of AI and
ML-based algorithms are limited in current practice owing to their limited generalizability.
ML algorithms require large training sets of data, processing using GPUs and functions
on the GIGO (Garbage in Garbage out) principle, which means that the output is as
robust as the input obtained. However, robustness and standardization of large datasets,
including follow-up evaluation and patient quality of care, is extremely cumbersome
and difficult. The incongruity between modelled datasets versus real-world data is a
fundamental challenge that must be overcome in the future [2].

We have grouped systemically the articles using artificial intelligence in HCC detection
and characterization in a unique table, helping to plan further research projects. Indeed,
for each article, we extracted the scope, the AI method used, and the key findings related
to that AI approach, with the idea of having an index of all projects carried out to date.
The significant heterogeneity of the studies reflected the difficulty of extrapolating several
variables related to the different radiological techniques and pulling them together (e.g.,
gold standard used for the diagnosis of HCC, patient features, radiologist’s opinion, dose
and type of contrast agent, and follow-up imaging).

In this work, 27 articles were analyzed with our composite score for the evaluation of
the quality of the publications, with an overall score at 4.17/6. The “Cohort for Validation”
score was the lowest, indeed, an external validation cohort was used only in 2 articles. This
phenomenon, although explained by the difficulty of collecting data, limits the generaliz-
ability of the conclusions. We observe a statistically significant constant improvement over
the years on our composite criterion combining the number of images and the presence of a
validation cohort. (p = 0.004) This improvement is probably due to the publication of guide-
lines, dedicated checklists to ensure proper methodology, and technological improvement
in the field of AI.

Our results highlight an imminent need for data sharing in collaborative data reposi-
tories to minimize unnecessary repetition and wastage of resources. In addition, universal
standardized data sharing protocols for sharing datasets from clinical trials are essential
to help make the available data robust and fill in the missing data. One such example is
the creation of the Human Brain Project and project EBRAINS by the European Union to
handle data related to brain research and its broader usage in the development of AI net-
works [54]. To help make the datasets uniformly accessible and usable, it is also imperative
to diversify the data. Most of the work on AI-based algorithms was done on small-scale
datasets due to economic and logistic constraints in high-income developed countries
with limited to no data from lower middle- and low-income countries, which puts their
credibility in ambiguity. Significant work needs to be done to increase the transparency
and understanding of AI algorithms so that healthcare professionals gain confidence in
using them in clinical settings.

Our systematic approach has shown that previous works in HCC detection and char-
acterization have assessed the comparability of conventional interpretation with machine
learning using US, CT, and MRI. The distribution of the imaging techniques in our anal-
ysis reflects the usefulness and evolution of medical imaging for the diagnosis of HCC.
Ultrasound and CT are overrepresented in our analysis as both are easily available imaging
techniques that have long proven their usefulness in the diagnosis of HCC. More recent
and limited access to MRI may explain its absence before and low representation since
2019 in our analysis. On the opposite side, no study investigated X-ray or PET techniques.
Indeed, even if X-ray has an interesting role in interventional therapeutic procedures, this
technique has not been used for diagnostic purposes in this field. Moreover, unlike the
other branches of medicine, such as neurology [55], head and neck cancer [56], or lung
imaging [57–59], artificial intelligence in PET technology has not yet been studied and
tested in HCC diagnosis. As PET, in combination with CT scan, is already used in other
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cancer to define undetermined lesions with high sensitivity and precision, AI and PET
technology in HCC have not been explored yet. The most straightforward explanation can
be found in the difficulty in analyzing structural and morphological characteristics, the
hepatocellular cancer lesions having a variable degree of avidity for the PET tracers such
as 18F-FDG. Indeed, the liver is unique in its capacity to maintain glucose homeostasis,
thus leading to low 18F-FDG uptakes in low-grade (i.e., relatively metabolically less active)
tumors [60]. It has been reported that only up to two-thirds of the tumors are 18F-FDG avid,
although higher standardized uptake values (SUV) indicate a more malignant tumor [61,62].
Using other tracers such as 18F-Choline and 11C-Acetate may be a promising approach to
increase the accuracy of results and openness to new AI technologies in combination with
PET in diagnosing HCC [63,64].

In the future, DL algorithms combining clinical, radiological, pathological, and molec-
ular information can help identify and better prognosticate patients. In addition, algorithms
trained on post-chemotherapy patients could help in the early identification of their re-
sponse and the time to switch between other therapeutic options. This will enable earlier
identification of patients with poor treatment response and pre-emptive therapy adjustment
based on molecular signature and imaging [2,4]. Anyhow, conducting high quality AI stud-
ies with large sets of data remains a real challenge whatever the medical imaging technique.
Supervised and moreover unsupervised training-based algorithms need very large sets
of data for training but also for validation purpose. High quality methodology requires
standardized multi-parametric imaging acquisition protocols and solid diagnostic methods
including multiple reader assessment, follow-up imaging, and/or anatomopathological.
Multi-center AI studies and pooled imaging data could be an effective solution to spare
time and financial resources.

Limitations and Strengths

The most significant limitation of this review is a wide diversity from one article
to another in terms of textural parameters and methods used, which meant that even
for similar subjects, it was challenging to aggregate and compare the articles between
them. Secondly, the scale used to assess the quality of the articles was practical but rather
simplistic. This score made it possible to evaluate many articles with high reproducibility
at the expense of a thorough analysis of the methods. At the same time, to the best of the
authors’ knowledge, this is the first systematic review in the scientific literature focusing on
the use of AI in radiological HCC detection and characterization, omitting pathology and
prognosis. This allowed for a detailed analysis that described all the scientific techniques
and efforts studied in this narrow field, providing an overview that can provide points for
reflection and guide future research.

5. Conclusions

Our systematic approach has shown that previous works in HCC detection and char-
acterization have assessed the comparability of conventional interpretation with machine
learning using US, CT, and MRI. The distribution of the imaging techniques in our anal-
ysis reflects the usefulness and evolution of medical imaging for the diagnosis of HCC.
Moreover, our results highlight an imminent need for data sharing in collaborative data
repositories to minimize unnecessary repetition and wastage of resources.
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