34,508 research outputs found

    Emulating and evaluating hybrid memory for managed languages on NUMA hardware

    Get PDF
    Non-volatile memory (NVM) has the potential to become a mainstream memory technology and challenge DRAM. Researchers evaluating the speed, endurance, and abstractions of hybrid memories with DRAM and NVM typically use simulation, making it easy to evaluate the impact of different hardware technologies and parameters. Simulation is, however, extremely slow, limiting the applications and datasets in the evaluation. Simulation also precludes critical workloads, especially those written in managed languages such as Java and C#. Good methodology embraces a variety of techniques for evaluating new ideas, expanding the experimental scope, and uncovering new insights. This paper introduces a platform to emulate hybrid memory for managed languages using commodity NUMA servers. Emulation complements simulation but offers richer software experimentation. We use a thread-local socket to emulate DRAM and a remote socket to emulate NVM. We use standard C library routines to allocate heap memory on the DRAM and NVM sockets for use with explicit memory management or garbage collection. We evaluate the emulator using various configurations of write-rationing garbage collectors that improve NVM lifetimes by limiting writes to NVM, using 15 applications and various datasets and workload configurations. We show emulation and simulation confirm each other's trends in terms of writes to NVM for different software configurations, increasing our confidence in predicting future system effects. Emulation brings novel insights, such as the non-linear effects of multi-programmed workloads on NVM writes, and that Java applications write significantly more than their C++ equivalents. We make our software infrastructure publicly available to advance the evaluation of novel memory management schemes on hybrid memories

    An Environment for Analyzing Space Optimizations in Call-by-Need Functional Languages

    Full text link
    We present an implementation of an interpreter LRPi for the call-by-need calculus LRP, based on a variant of Sestoft's abstract machine Mark 1, extended with an eager garbage collector. It is used as a tool for exact space usage analyses as a support for our investigations into space improvements of call-by-need calculi.Comment: In Proceedings WPTE 2016, arXiv:1701.0023

    Liveness-Based Garbage Collection for Lazy Languages

    Full text link
    We consider the problem of reducing the memory required to run lazy first-order functional programs. Our approach is to analyze programs for liveness of heap-allocated data. The result of the analysis is used to preserve only live data---a subset of reachable data---during garbage collection. The result is an increase in the garbage reclaimed and a reduction in the peak memory requirement of programs. While this technique has already been shown to yield benefits for eager first-order languages, the lack of a statically determinable execution order and the presence of closures pose new challenges for lazy languages. These require changes both in the liveness analysis itself and in the design of the garbage collector. To show the effectiveness of our method, we implemented a copying collector that uses the results of the liveness analysis to preserve live objects, both evaluated (i.e., in WHNF) and closures. Our experiments confirm that for programs running with a liveness-based garbage collector, there is a significant decrease in peak memory requirements. In addition, a sizable reduction in the number of collections ensures that in spite of using a more complex garbage collector, the execution times of programs running with liveness and reachability-based collectors remain comparable

    Implementing and reasoning about hash-consed data structures in Coq

    Get PDF
    We report on four different approaches to implementing hash-consing in Coq programs. The use cases include execution inside Coq, or execution of the extracted OCaml code. We explore the different trade-offs between faithful use of pristine extracted code, and code that is fine-tuned to make use of OCaml programming constructs not available in Coq. We discuss the possible consequences in terms of performances and guarantees. We use the running example of binary decision diagrams and then demonstrate the generality of our solutions by applying them to other examples of hash-consed data structures
    • …
    corecore