32,595 research outputs found

    Recent advancement in Disease Diagnostic using machine learning: Systematic survey of decades, comparisons, and challenges

    Full text link
    Computer-aided diagnosis (CAD), a vibrant medical imaging research field, is expanding quickly. Because errors in medical diagnostic systems might lead to seriously misleading medical treatments, major efforts have been made in recent years to improve computer-aided diagnostics applications. The use of machine learning in computer-aided diagnosis is crucial. A simple equation may result in a false indication of items like organs. Therefore, learning from examples is a vital component of pattern recognition. Pattern recognition and machine learning in the biomedical area promise to increase the precision of disease detection and diagnosis. They also support the decision-making process's objectivity. Machine learning provides a practical method for creating elegant and autonomous algorithms to analyze high-dimensional and multimodal bio-medical data. This review article examines machine-learning algorithms for detecting diseases, including hepatitis, diabetes, liver disease, dengue fever, and heart disease. It draws attention to the collection of machine learning techniques and algorithms employed in studying conditions and the ensuing decision-making process

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    Self-paced Convolutional Neural Network for Computer Aided Detection in Medical Imaging Analysis

    Full text link
    Tissue characterization has long been an important component of Computer Aided Diagnosis (CAD) systems for automatic lesion detection and further clinical planning. Motivated by the superior performance of deep learning methods on various computer vision problems, there has been increasing work applying deep learning to medical image analysis. However, the development of a robust and reliable deep learning model for computer-aided diagnosis is still highly challenging due to the combination of the high heterogeneity in the medical images and the relative lack of training samples. Specifically, annotation and labeling of the medical images is much more expensive and time-consuming than other applications and often involves manual labor from multiple domain experts. In this work, we propose a multi-stage, self-paced learning framework utilizing a convolutional neural network (CNN) to classify Computed Tomography (CT) image patches. The key contribution of this approach is that we augment the size of training samples by refining the unlabeled instances with a self-paced learning CNN. By implementing the framework on high performance computing servers including the NVIDIA DGX1 machine, we obtained the experimental result, showing that the self-pace boosted network consistently outperformed the original network even with very scarce manual labels. The performance gain indicates that applications with limited training samples such as medical image analysis can benefit from using the proposed framework.Comment: accepted by 8th International Workshop on Machine Learning in Medical Imaging (MLMI 2017

    Segmentació de mamografies utilitzant tècniques d'aprenentatge profund

    Full text link
    Treballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2023, Director: Laura Igual Muñoz[en] CADe and CADx (computer-aided detection and computer-aided diagnosis) systems are designed to assist medical professionals in quickly analyzing and evaluating information obtained through X-rays, magnetic resonance imaging (MRI), ultrasounds, among others. These systems combine elements of computer vision and artificial intelligence with medical imaging techniques. An important field of work for these systems is the analysis of mammograms to aid in the diagnosis of breast cancer. The objective of this work is to develop a mammogram segmentation system using deep learning, specifically the U-Net neural network architecture. To accomplish this, the publicly available CBIS-DDSM dataset is utilized, which is one of the largest and widely employed datasets in the field of mammography to validate new automatic segmentation methods

    Machine Learning Methods for Breast Cancer Diagnostic

    Get PDF
    This chapter discusses radio-pathological correlation with recent imaging advances such as machine learning (ML) with the use of technical methods such as mammography and histopathology. Although criteria for diagnostic categories for radiology and pathology are well established, manual detection and grading, respectively, are tedious and subjective processes and thus suffer from inter-observer and intra-observer variations. Two most popular techniques that use ML, computer aided detection (CADe) and computer aided diagnosis (CADx), are presented. CADe is a rejection model based on SVM algorithm which is used to reduce the False Positive (FP) of the output of the Chan-Vese segmentation algorithm that was initialized by the marker controller watershed (MCWS) algorithm. CADx method applies the ensemble framework, consisting of four-base SVM (RBF) classifiers, where each base classifier is a specialist and is trained to use the selected features of a particular tissue component. In general, both proposed methods offer alternative decision-making ability and are able to assist the medical expert in giving second opinion on more precise nodule detection. Hence, it reduces FP rate that causes over segmentation and improves the performance for detection and diagnosis of the breast cancer and is able to create a platform that integrates diagnostic reporting system

    Advanced Brain Tumour Segmentation from MRI Images

    Get PDF
    Magnetic resonance imaging (MRI) is widely used medical technology for diagnosis of various tissue abnormalities, detection of tumors. The active development in the computerized medical image segmentation has played a vital role in scientific research. This helps the doctors to take necessary treatment in an easy manner with fast decision making. Brain tumor segmentation is a hot point in the research field of Information technology with biomedical engineering. The brain tumor segmentation is motivated by assessing tumor growth, treatment responses, computer-based surgery, treatment of radiation therapy, and developing tumor growth models. Therefore, computer-aided diagnostic system is meaningful in medical treatments to reducing the workload of doctors and giving the accurate results. This chapter explains the causes, awareness of brain tumor segmentation and its classification, MRI scanning process and its operation, brain tumor classifications, and different segmentation methodologies
    • …
    corecore