38 research outputs found

    Limited Hip Flexion and Internal Rotation Resulting From Early Hip Impingement Conflict on Anterior Metaphysis of Patients With Untreated Severe SCFE Using 3D Modelling.

    Get PDF
    INTRODUCTION Slipped capital femoral epiphysis (SCFE) is the most common hip disorder in adolescent patients that can result in complex 3 dimensional (3D)-deformity and hip preservation surgery (eg, in situ pinning or proximal femoral osteotomy) is often performed. But there is little information about location of impingement.Purpose/Questions: The purpose of this study was to evaluate (1) impingement-free hip flexion and internal rotation (IR), (2) frequency of impingement in early flexion (30 to 60 degrees), and (3) location of acetabular and femoral impingement in IR in 90 degrees of flexion (IRF-90 degrees) and in maximal flexion for patients with untreated severe SCFE using preoperative 3D-computed tomography (CT) for impingement simulation. METHODS A retrospective study involving 3D-CT scans of 18 patients (21 hips) with untreated severe SCFE (slip angle>60 degrees) was performed. Preoperative CT scans were used for bone segmentation of preoperative patient-specific 3D models. Three patients (15%) had bilateral SCFE. Mean age was 13±2 (10 to 16) years and 67% were male patients (86% unstable slip, 81% chronic slip). The contralateral hips of 15 patients with unilateral SCFE were evaluated (control group). Validated software was used for 3D impingement simulation (equidistant method). RESULTS (1) Impingement-free flexion (46±32 degrees) and IRF-90 degrees (-17±18 degrees) were significantly (P<0.001) decreased in untreated severe SCFE patients compared with contralateral side (122±9 and 36±11 degrees).(2) Frequency of impingement was significantly (P<0.001) higher in 30 and 60 degrees flexion (48% and 71%) of patients with severe SCFE compared with control group (0%).(3) Acetabular impingement conflict was located anterior-superior (SCFE patients), mostly 12 o'clock (50%) in IRF-90 degrees (70% on 2 o'clock for maximal flexion). Femoral impingement was located on anterior-superior to anterior-inferior femoral metaphysis (between 2 and 6 o'clock, 40% on 3 o'clock and 40% on 5 o'clock) in IRF-90 degrees and on anterior metaphysis (40% on 3 o'clock) in maximal flexion and frequency was significantly (P<0.001) different compared with control group. CONCLUSION Severe SCFE patients have limited hip flexion and IR due to early hip impingement using patient-specific preoperative 3D models. Because of the large variety of hip motion, individual evaluation is recommended to plan the osseous correction for severe SCFE patients. LEVEL OF EVIDENCE Level III

    The effect of three-dimensional (3D) printing on quantitative and qualitative outcomes in paediatric orthopaedic osteotomies: a systematic review.

    Get PDF
    Three-dimensional (3D) printing technology is increasingly being utilized in various surgical specialities. In paediatric orthopaedics it has been applied in the pre-operative and intra-operative stages, allowing complex deformities to be replicated and patient-specific instrumentation to be used. This systematic review analyses the literature on the effect of 3D printing on paediatric orthopaedic osteotomy outcomes.A systematic review of several databases was conducted according to PRISMA guidelines. Studies evaluating the use of 3D printing technology in orthopaedic osteotomy procedures in children (aged ≤ 16 years) were included. Spinal and bone tumour surgery were excluded. Data extracted included demographics, disease pathology, target bone, type of technology, imaging modality used, qualitative/quantitative outcomes and follow-up. Articles were further categorized as either 'pre-operative' or 'intra-operative' applications of the technology.Twenty-two articles fitting the inclusion criteria were included. The reported studies included 212 patients. There were five articles of level of evidence 3 and 17 level 4.A large variety of outcomes were reported with the most commonly used being operating time, fluoroscopic exposure and intra-operative blood loss.A significant difference in operative time, fluoroscopic exposure, blood loss and angular correction was found in the 'intra-operative' application group. No significant difference was found in the 'pre-operative' category.Despite a relatively low evidence base pool of studies, our aggregate data demonstrate a benefit of 3D printing technology in various deformity correction applications, especially when used in the 'intra-operative' setting. Further research including paediatric-specific core outcomes is required to determine the potential benefit of this novel addition. Cite this article: EFORT Open Rev 2021;6:130-138. DOI: 10.1302/2058-5241.6.200092

    3D - Printed Patient Specific Instrumentation in Corrective Osteotomy of the Femur and Pelvis: A Review of the Literature

    Get PDF
    Background: The paediatric patient population has considerable variation in anatomy. The use of Computed Tomography (CT)-based digital models to design three-dimensionally printed patient specific instrumentation (PSI) has recently been applied for correction of deformity in orthopedic surgery. This review sought to determine the existing application of this technology currently in use within paediatric orthopaedics, and assess the potential benefits that this may provide to patients and surgeons. Methods: A review was performed of MEDLINE, EMBASE, and CENTRAL for published literature, as well as Web of Science and clinicaltrials.gov for grey literature. The search strategy revolved around the research question: “What is the clinical impact of using 3D printed PSI for proximal femoral or pelvic osteotomy in paediatric orthopaedics?” Two reviewers, using predetermined inclusion criteria, independently performed title and abstract review in order to select articles for full text review. Data extracted included effect on operating time and intraoperative image use, as well as osteotomy and screw positioning accuracy. Data were combined in a narrative synthesis; meta-analysis was not performed given the diversity of study designs and interventions. Results: In total, ten studies were included: six case control studies, three case series and a case report. Five studies directly compared operating time using PSI to conventional techniques, with two showing a significant decrease in the number of intraoperative images and operative time. Eight studies reported improved accuracy in executing the surgical plan compared to conventional methods. Conclusion: Compared to conventional methods of performing femoral or pelvic osteotomy, use of PSI has led to improved accuracy and precision, decreased procedure times, and decreased intra-operative imaging requirements. Additionally, the technology has become more cost effective and accessible since its initial inception and use

    Registration based assessment of femoral torsion for rotational osteotomies based on the contralateral anatomy

    Full text link
    BACKGROUND Computer-assisted techniques for surgical treatment of femoral deformities have become increasingly important. In state-of-the-art 3D deformity assessments, the contralateral side is used as template for correction as it commonly represents normal anatomy. Contributing to this, an iterative closest point (ICP) algorithm is used for registration. However, the anatomical sections of the femur with idiosyncratic features, which allow for a consistent deformity assessment with ICP algorithms being unknown. Furthermore, if there is a side-to-side difference, this is not considered in error quantification. The aim of this study was to analyze the influence and value of the different sections of the femur in 3D assessment of femoral deformities based on the contralateral anatomy. MATERIAL AND METHODS 3D triangular surface models were created from CT of 100 paired femurs (50 cadavers) without pathological anatomy. The femurs were divided into sections of eponymous anatomy of a predefined percentage of the whole femoral length. A surface registration algorithm was applied to superimpose the ipsilateral on the contralateral side. We evaluated 3D femoral contralateral registration (FCR) errors, defined as difference in 3D rotation of the respective femoral section before and after registration to the contralateral side. To compare this method, we quantified the landmark-based femoral torsion (LB FT). This was defined as the intra-individual difference in overall femoral torsion using with a landmark-based method. RESULTS Contralateral rotational deviation ranged from 0° to 9.3° of the assessed femoral sections, depending on the section. Among the sections, the FCR error using the proximal diaphyseal area for registration was larger than any other sectional error. A combination of the lesser trochanter and the proximal diaphyseal area showed the smallest error. The LB FT error was significantly larger than any sectional error (p < 0.001). CONCLUSION We demonstrated that if the contralateral femur is used as reconstruction template, the built-in errors with the registration-based approach are smaller than the intraindividual difference of the femoral torsion between both sides. The errors are depending on the section and their idiosyncratic features used for registration. For rotational osteotomies a combination of the lesser trochanter and the proximal diaphyseal area sections seems to allow for a reconstruction with a minimal error

    In-Depth Oral Presentations and Oral Communications

    Get PDF

    Posterior Hip Impingement at Maximal Hip Extension in Female Patients With Increased Femoral Version or Increased McKibbin Index and Its Effect on Sports Performance.

    Get PDF
    BACKGROUND The location of posterior hip impingement at maximal extension in patients with posterior femoroacetabular impingement (FAI) is unclear. PURPOSE To investigate the frequency and area of impingement at maximal hip extension and at 10° and 20° of extension in female patients with increased femoral version (FV) and posterior hip pain. STUDY DESIGN Cross-sectional study; Level of evidence, 3. METHODS Osseous patient-specific 3-dimensional (3D) models were generated of 50 hips (37 female patients, 3D computed tomography) with a positive posterior impingement test and increased FV (defined as >35°). The McKibbin index (combined version) was calculated as the sum of FV and acetabular version (AV). Subgroups of patients with an increased McKibbin index >70° (24 hips) and FV >50° (20 hips) were analyzed. A control group of female participants (10 hips) had normal FV, normal AV, and no valgus deformity (neck-shaft angle, <139°). Validated 3D collision detection software was used for simulation of osseous impingement-free hip extension (no rotation). RESULTS The mean impingement-free maximal hip extension was significantly lower in patients with FV >35° compared with the control group (15° ± 15° vs 55° ± 19°; P 35° had osseous posterior extra-articular ischiofemoral hip impingement. At 20° of extension, the frequency of posterior extra-articular ischiofemoral impingement was significantly higher for patients with a McKibbin index >70° (83%) and for patients with FV >35° (76%) than for controls (0%) (P 70° versus <70° (251 vs 44 mm2; P = .001). CONCLUSION The limited hip extension found in our study could theoretically affect the performance of sports activities such as running, ballet dancing, or lunges. Therefore, although not examined directly in this study, these activities are not advisable for these patients. Preoperative evaluation of FV and the McKibbin index is important in female patients with posterior hip pain before hip preservation surgery (eg, hip arthroscopy)

    Diagnosis of acetabular retroversion: Three signs positive and increased retroversion index have higher specificity and higher diagnostic accuracy compared to isolated positive cross over sign.

    Get PDF
    Objectives The crossover-sign (COS) is a radiographic sign for diagnosis of acetabular-retroversion(AR) in patients with femoroacetabular-impingement (FAI) but overestimates AR. Three signs combined with retroversion-index (RI) could potentially improve diagnostic-accuracy. Aims (1)To calculate central acetabular-version (AV, CT/MRI) in patients with isolated positive COS and in patients with three radiographic signs for AR on radiographs (AP).(2)To calculate diagnostic performance of positive COS and of three signs combined with retroversion-index (RI) > 30% on radiographs (AP) to detect global AR (AV < 10°, CT/MRI). Methods A retrospective, IRB-approved, controlled diagnostic study comparing radiographic signs for AR (AP radiographs) with MRI/CT-based measurement of central AV was performed. 462 symptomatic patients (538 hips) with FAI or hip-dysplasia were compared to control-group (48 hips). Three signs for AR(on radiographs) were analyzed: COS, posterior-wall-sign and ischial-spine-sign. RI (synonym cross-over-index) quantifies overlap of anterior and posterior wall in case of positive COS. Diagnostic performance for COS and for three signs combined with RI > 30% to detect central AV < 10° (global AR) was calculated. Results (1)Central AV was significantly (p  30% on radiographs compared to patients with positive COS (18 ± 7°).(2)Sensitivity and specificity of three signs combined with RI > 30% on radiographs was 85% and 63% (87% and 23% for COS). Negative-predictive-value (NPV) was 94% (93% for COS) to rule out global AR (AV < 10°, CT/MRI). Diagnostic accuracy increased significantly (p < 0.001) from 31% (COS) to 68% using three signs. Conclusion Improved specificity and diagnostic accuracy for diagnosis of global AR can help to avoid misdiagnosis. Global AR can be ruled out with a probability of 94% (NPV) in the absence of three radiographic signs combined with retroversion-index < 30% (e.g. isolated COS positive)

    Doctor of Philosophy

    Get PDF
    dissertationGeometric abnormalities of the human hip joint, as found in femoroacetabular impingement (FAI) and acetabular dysplasia, alter hip biomechanics and may be the primary causes of osteoarthritis in young adults. However, empirical evidence of direct correlations between abnormal geometry, altered biomechanics, and osteoarthritis is scarce. Also, clinical measures used to diagnose FAI and dysplasia still have substantial limitations, including questions about their reliability, assumptions about hip joint geometry and their ability to definitively distinguish pathologic from normal hips. The goals of this dissertation are twofold. First, a set of tools are presented and applied to quantify three-dimensional (3D) anatomical differences between hips with FAI and control subjects. The 3D tools were developed, validated and applied to patients with a subtype of FAI, called cam FAI, to improve basic understanding of the spectrum of FAI deformities, and to provide meaningful new metrics of morphology that are relatable to current diagnostic methods and translate easily for clinical use. The second goal of this dissertation is to improve our understanding of intra-articular hip contact mechanics as well as hip joint kinematics and muscle forces. To do so, a finite element study of intraarticular cartilage contact mechanics was completed with a cohort of live human subjects, using a validated modeling protocol. Finally, musculoskeletal modeling was used with gait data from healthy subjects and acetabular dysplasia patients to provide preliminary estimates of hip joint kinematics, kinetics, and muscle forces and compare differences between the groups. The translational methods of this dissertation utilized techniques from orthopaedics, computer science, physical therapy, mechanics, and medical imaging. Results from this dissertation offer new insight into the complex pathomechanics and pathomorphology of FAI and acetabular dysplasia. Application and extension of the work of this dissertation has the potential to help establish links between FAI and dysplasia with osteoarthritis and to improve patient care

    Unexpected case of ankle tuberculosis in a young professionals leading to delay in diagnosis

    Get PDF
    We report a case of a 38 year-old engineer presented with left ankle pain for 2 years and initially treated as gouty arthritis because of high serum uric acid. A year later his left ankle become swollen and plain radiograph showed soft tissue swelling around the ankle with normal articular surface and bone. An MRI investigation reported as gouty arthritis of ankle with tophi. While on treatment for gouty arthritis, he developed pus discharge from the swelling. The ankle pain also worsen and he was unable to weight bear on the affected leg. An incision and drainage shown pus from the ankle joint which grew pseudomonas aeruginosa. He was treated with intravenous followed by oral ciprofloxacin 250 mg bd. However his condition does not improved and a month after antibiotic treatment a repeated radiograph shows narrowing of joint space with irregular cortical destruction, osteopenic bone . suggestive of worsening of his septic arthritis. During this period he deny of having any fever, cough or night sweats. However he did notice some loss of weight and loss of appetite. He has worked in Africa and Russia before in petroleum industry. After 4 months of antibiotic and no sign of improvement, a biopsy and repeat culture was taken from the ankle which reveal tuberculous arthritis and positive for AFB culture. A plain chest radiograph revealed miliary tuberculosis picture. He was started on a anti TB treatment and the wound healed after a few weeks. After 4 months of treatment he was able to walk without support with reduce ankle range of motion. This case illustrate that the diagnosis was delay because tuberculosis was not suspected in a young professionals with ankle pain and elevated serum uric acid level. Further delay in diagnosis because MRI report also suggestive of gouty tophi and the pus culture and sensitivity grew pseudomonas aeruginosa
    corecore